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Supplementary Section 6S.13
Second-Order Logic and Set Theory

In chapters 4 and 5, we explored first-order predicate logic. In first-order logic, the 
quantifiers range over objects, the values of the variables, which appear only as singu-
lar terms. Extending our uses of variables to the predicate places, as I do in this sec-
tion, creates second-order logic. Logics of even higher orders are also possible.

We will both look at the syntax of higher-order logics, mainly focusing on second-
order logic and its expressive power, and examine a philosophical question that arises 
from the introduction of variables in predicate positions. One salient question about 
higher-order logics is whether we should consider them to be logic, rather than math-
ematics. Debate over this question tends to focus on whether second-order logic is set 
theory. Set theory is important in mathematics because of its role as a foundation for 
mathematics. So to contextualize the question of whether second-order logic is logi-
cal or mathematical, we will delve a little into set theory.

SECOND-ORDER LOGIC: SYNTA X
Let’s start with an inference that might be taken as naturally logical, at 6S.13.1.

6S.13.1	 There are red apples.
	 There are red fire trucks.
	 So, some apples and some fire trucks have something in common.

A natural way to express the inference at 6S.13.1 is to quantify over the predicates 
themselves, treating the predicates as if they are variables, as I do in line 8 of 6S.13.2.

6S.13.2	 1. (∃x)(Rx ∙ Ax)
	 2. (∃x)(Rx ∙ Fx)
	 3. Ra ∙ Aa	 1, EI
	 4. Rb ∙ Ab	 3, EI
	 5. Ra	 3, Simp
	 6. Rb	 4, Simp
	 7. Ra ∙ Rb	 5, 6, Conj
	 8. (∃X)(Xa ∙ Xb)	 7, by existential generalization over  
		    predicates
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The generalization at line 8 is not possible in first-order logic. To accommodate it, 
I’ll introduce a second-order language, which I’ll call S.

In our first-order language, singular terms are divided between constants and vari-
ables. In our second-order language, S, we apply that same distinction to the predi-
cates. I now reserve ‘V’, ‘W’, ‘X’, ‘Y’, and ‘Z’ as predicate variables, keeping the others 
as predicate constants. The quantifiers, as in the last line of 6S.13.2, use the corre-
sponding predicate variables, the last five capital letters. So the vocabulary of S, is the 
same as that of FF, with just the addition of a distinction between predicate constants 
and predicate variables.

Vocabulary of S
Capital letters

A . . . U, used as predicate constants
V, W, X, Y, and Z, used as predicate variables

Lower-case letters

a, b, c, d, e, i, j, k . . . u are used as constants.
f, g, and h are used as functors.
v, w, x, y, z are used as singular variables.

Five propositional operators: ∼, ∙, ∨, ⊃, ≡
Quantifiers: ∃, ∀
Punctuation: (, ), [, ], {, }

The formation rules for second-order quantifiers in S are exactly parallel to the rules 
for forming first-order quantifiers, with the same restriction to avoid overlapping 
quantifiers. A first-order quantifier that uses an ‘x’ may overlap with a second-order 
quantifier that uses an ‘X’.

Formation rules for wffs of S
1.	 An n-place predicate constant or predicate variable followed by n singular 

terms (constants, variables, or functor terms) is a wff.
2.	 For any singular variable β, if ℱ is a wff that does not contain either ‘(∃β)’ or 

‘(∀β)’, then ‘(∃β)ℱ ’ and ‘(∀β)ℱ ’ are wffs.
3.	 For any predicate variable β, if ℱ is a wff that does not contain either ‘(∃β)’ or 

‘(∀β)’, then ‘(∃β)ℱ ’ and ‘(∀β)ℱ ’ are wffs.
4.	 If α is a wff, so is ∼α.
5.	 If α and β are wffs, then so are:

(α ∙ β)
(α ∨ β)
(α ⊃ β)
(α ≡ β)

6.	 These are the only ways to make wffs.
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In F and FF, I did not allow zero-place predicates. For S, it will be convenient to 
permit zero-place predicate constants and variables, thus allowing for unanalyzed 
propositions that look and act just like the sentential variables of PL. For example, the 
law of the excluded middle, which we saw as a metalinguistic schematic sentence at 
1.6.5, is neatly regimented in second-order logic, as at 6S.13.3.

6S.13.3	 (∀X)(X ∨ ∼X)

Normally, though, we will expect predicates (both predicate constants and predi-
cate variables) to be followed by one or more singular terms.

Second-order logic is only one of the higher-order logics. All logics beyond first-
order logic are called higher-order. To create third-order logic, we introduce attri-
butes of attributes. For example, one might say that some properties are virtuous; 
virtue may be seen as a property of properties. We won’t pursue higher-order logics 
much here, but it is interesting to note that one can productively construct logics of 
very high order. A logic of infinite order is called type theory. Whitehead and Russell, 
in their foundational work, Principia Mathematica, use type theory to avoid the para-
doxes of naive set theory that Russell found in Frege’s work.

SECOND-ORDER LOGIC: TRANSLATION
Let’s proceed to see the expressive power of second-order logic. We can regiment 
some general claims about properties.

6S.13.4	 Everything has some relation to itself.
	 (∀x)(∃V)Vxx

6S.13.5	 No two distinct things have all properties in common.
	 (∀x)(∀y)[x≠y ⊃ (∃X)(Xx ∙ ∼Xy)]

6S.13.6	 Identical objects share all properties.
	 (∀x)(∀y)[x=y ⊃ (∀Y)(Yx ≡ Yy)]

6S.13.6 is Leibniz’s law. We saw Leibniz’s law and its converse, the identity of in-
discernibles, at 5.4.8 and 5.4.9, written as schematic sentences in the metalanguage. 
In a second-order language, we can write them as simple object-level sentences. The 
identity of indiscernibles is 6S.13.7.

6S.13.7	 (∀x)(∀y)[(∀Z)(Zx ≡ Zy) ⊃ x=y]

At 6S.13.8 and 6S.13.9, sentences about properties become a little more complex.

6S.13.8	 All people have some property in common.
	 (∀x)(∀y)[(Px ∙ Py) ⊃ (∃Y)(Yx ∙ Yy)]

6S.13.9	 No two people have every property in common.
	 (∀x)(∀y)[(Px ∙ Py ∙ x≠y) ⊃ (∃Z)(Zx ∙ ∼Zy)]
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Second-order logic allows us to regiment analogies, like 6S.13.10.

6S.13.10	 Cat is to meow as dog is to bark.
	 (∃X)(Xcm ∙ Xdb)

Note the odd use of constants at 6S.13.10; we’re taking ‘cat’, ‘meow’, ‘dog’, and 
‘bark’ to be names of particular things. We can think of them as names of collections 
or abstract singular terms.

Second-order logic allows us to regiment three important characteristics of rela-
tions: reflexivity, symmetry, and transitivity.

A relation is reflexive if every object bears that relation to itself.

Being the same size as something is a reflexive relation. So is being equidistant from 
a given point. Being a sibling is not reflexive, I think, because people aren’t their own 
siblings. But it is a symmetric relation.

A relation is symmetric if whenever one thing bears that relation to another, 
the reverse is also true.

While being a sibling is symmetric, being older than is asymmetric, which means 
that if a relation holds in one direction (if I am older than you, for example) then it 
follows that it does not hold in the other direction (it follows that you are not older 
than me).

Lastly, transitivity is exemplified by hypothetical syllogism. If a relation is transi-
tive, then if x bears the relation to y and y bears the relation to z, then x also bears the 
relation to z. Being older than, or larger than, or earlier than are all transitive relations.

We can express that any particular relation is reflexive, symmetric, or transitive 
without any use of second-order quantification, as 6S.13.11–6S.13.13 do, for some 
relation R.

6S.13.11	 Reflexivity	 (∀x)Rxx
6S.13.12	 Symmetry	 (∀x)(∀y)(Rxy ≡ Ryx)
6S.13.13	 Transitivity	 (∀x)(∀y)(∀z)[(Rxy ∙ Ryz) ⊃ Rxz]

Second-order logic allows us to do more with these characteristics. We can quan-
tify over them and make assertions concerning these properties, as at 6S.13.14.

6S.13.14	 Some relations are transitive.
	 (∃X)(∀x)(∀y)(∀z)[(Xxy ∙ Xyz) ⊃ Xxz]

In mathematics, many relations, like ‘greater than’, are antisymmetric, which we 
can also represent. Be careful to distinguish asymmetry from antisymmetry. 6S.13.15 
says that relation S is asymmetric. 6S.13.16 says that relation T is antisymmetric.

6S.13.15	 Asymmetry	 (∀x)(∀y)(Sxy ≡ ∼Syx)
6S.13.16	 Antisymmetry	 (∀x)(∀y)[(Txy ∙ Tyx) ⊃ x=y)]
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Putting them together, we can express that each property holds of some relations, 
at 6S.13.17.

6S.13.17	 Some relations are symmetric, while some are antisymmetric.
	 (∃X)(∀x)(∀y)(Xxy ≡ Xyx) ∙ (∃X)(∀x)(∀y)(Xxy ≡ ∼Xyx)

These properties of relations are especially important because we can use them to 
characterize identity. We call any relation which is reflexive, symmetric, and transitive 
an equivalence relation. Identity is the most basic equivalence relation. The power of 
second-order logic entails that we need not reserve a special identity predicate, as we 
did in chapter 5. Instead, we can just introduce it as shorthand for the second-order 
claim on the right at 6S.13.18.

6S.13.18	 x=y  →←  (∀X)(Xx ≡ Xy)

Lastly on the expressive power of second-order logic, some philosophers of math-
ematics are especially interested in second-order logic because they see it as the ap-
propriate logic for mathematics. Frege’s logic, which developed from Begriffsschrift to 
Grundgesetze, was a higher-order language; he took numbers as properties of prop-
erties. Contemporary philosophers, Stewart Shapiro perhaps most notably, have de-
fended the logic vigorously, especially for its ability to provide categorical theories; 
first-order mathematical theories allow for non-standard models.

One of the advantages of second-order logic for mathematics is that it allows us to 
generalize what first-order logic allows us to say only schematically. Recall the induc-
tion schema in Peano arithmetic, which we saw as the fifth axiom at 5.6.16. Since it 
is a schema, the theory is not finitely axiomatizable: infinitely many instances of the 
schema are all axioms. Second-order logic allows us to replace the induction schema 
with single axiom, 6S.13.19, which uses ‘a’ to stand for zero, ‘Nx’ for ‘x is a number’, 
and ‘f(x)’ for the successor function. The leading quantifier ranges over any math-
ematical property using the predicate variable ‘X’.

6S.13.19	 (∀X){{Na ∙ Xa ∙ (∀x)[(Nx ∙ Xx) ⊃ Xf(x)]} ⊃ (∀x)(Nx ⊃ Xx)}

EXERCISES 6S.13

Translate each of the following sentences into S. Exercises 
16–20 are adapted from Spinoza’s Ethics. 

1.	 Liza has some attributes, but she lacks some attributes.

2.	 Cristóbal and Dante share no properties.

3.	 Reva has at least two different properties.
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4.	 Everyone shares some property with Tudor.

5.	 Everyone shares some property with some monkeys.

6.	 Some chemists share some property with Einstein.

7.	 Gillian shares some attributes with a famous scientist.

8.	 All psychologists and biologists have some property in common.

9.	 Alec shares some of his mother’s properties. (f(x): the mother of x)

10.	 Ron has all of his father’s properties. (g(x): the father of x)

11.	 Some attributes are properties of nothing.

12.	 Some relations are transitive.

13.	 Something lacks all symmetric relations.

14.	 Some relations are both reflexive and symmetric.

15.	 Something lacks all transitive relations.

16.	 Two substances, whose attributes are different, have no properties in common 
(1p2). Note: The parenthetical citations are standard for Spinoza’s work; for 
example, ‘1p2’ refers to the second proposition in part 1.

17.	 Two or more distinct things are distinguished by the difference of their attri-
butes (1p4).

18.	 There cannot exist in the universe two or more substances having some attri-
bute (1p5).

19.	 Two things with no common properties cannot be the cause of one another 
(1p3). (f(x): the cause of x)

20.	 Two things with no common properties cannot be understood through each 
other (1a5). (Uxy: x is understood through y)

SET THEORY AND THE FOUNDATIONS OF ARITHMETIC
Calling S a logical theory is controversial. Many philosophers have argued that no 
higher-order logics are really logic. Perhaps most influentially, Quine calls second-
order logic “set theory in sheep’s clothing” (Philosophy of Logic, p. 66). Some philos-
ophers, like Quine, take first-order logic with identity as a canonical language, the 
privileged language used for expressing one’s most sincere beliefs and commitments. 
Many philosophers see the step from first-order logic to second-order logic as breach-
ing a barrier.
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The line between logical and nonlogical claims is not always clear or obvious. Most 
people who think about these things take identity to be a logical relation. Most take set 
theory to be mathematical. But the difference between first-order logic and some ver-
sions of set theory is mainly just the inclusion of one symbol, ∈, used for set inclusion, 
and a few basic principles which govern that relation. These principles, the axioms of 
set theory, are very powerful. But they are neatly presentable in a compact form.

There are a wide variety of formulations of basic set theory. Some of these formu-
lations differ in their consequences. There is dispute among mathematicians over 
which set theory is correct. There is dispute over whether there is a correct set theory. 
And, beyond basic set theory, there are lots of controversial extensions. These topics 
are for another place. Our interest in set theory is mainly just to consider the question 
of whether higher-order logics are logical or mathematical.

For the purposes of our discussion, then, we can consider one simple set of axioms 
of set theory, which is standardly called ZF.

Zermelo-Fraenkel Set Theory1

Substitutivity:	 (∀x)(∀y)(∀z)[y=z ⊃ (y∈x ≡ z∈x)]
Pairing:	 (∀x)(∀y)(∃z)(∀w)[w∈z ≡ (w=x ∨ w=y)]
Null Set:	 (∃x)(∀y) ∼y∈x
Sum Set:	 (∀x)(∃y)(∀z)[z∈y ≡ (∃w)(z∈w ∙ w∈x)]
Power Set:	 (∀x)(∃y)(∀z)[z∈y ≡ (∀w)(w∈z ⊃ w∈x)]
Selection:	 (∀x)(∃y)(∀z)[z∈y ≡ (z∈x ∙ ℱz)]
	   for any formula ℱ not containing y as a free variable
Infinity:	 (∃x)(a∈x ∙ (∀y)(y∈x ⊃ Sy∈x)

Note that in addition to ∈, the axiom of infinity uses ‘a’ for the empty set, whose 
existence is guaranteed by the null set axiom, and ‘S’ for the function, ‘y ∪ {y}’, the 
definitions for the components of which are standard. ‘S’ is a successor function, es-
sential to mathematics. In arithmetic, the successor function is used to generate the 
natural numbers. In ZF, we use it to generate an infinite set of sets.

Almost all of what we consider to be mathematics is derivable, with just the ad-
dition of further definitions, from the axioms of set theory. Let’s take a moment to 
sketch how the powerful tools of the real numbers can be constructed out of set the-
ory. The discussion in this section will get a little bit technical, but only the general 
form of the sketch is most important.

First, we can define the natural numbers, N, within set theory using any of vari-
ous standard constructions, like those of Zermelo or Von Neumann. (Remember, ‘a’ 
stands for the empty set.)

1Many mathematicians adopt a further axiom, the axiom of choice, yielding a theory known as ZFC. 
Choice says that given any set of sets, there is a set that contains precisely one member of each of the 
subsets of the original set.
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	 Zermelo	 Von Neumann
0 = a	 0 = a
1 = {a}	 1 = {a}
2 = {{a}}	 2 = {a, {a}}
3 = {{{a}}}	 3 = {a, {a}, {a, {a}}}
. . .		 . . .

The Zermelo sets and the von Neumann sets are different, but either can do the work 
of translating arithmetic into set theory.

Using the Peano axioms (see 5.6.16) and the notion of an ordered pair, which is 
easily definable within set theory, we can define standard arithmetic operations like 
addition and multiplication. We can define the integers, Z, in terms of the natural 
numbers by using subtraction. Since −3 is 5 − 8, we can define −3 as the ordered 
pair <5, 8>. But −3 could also be defined as <17, 20>. To avoid ambiguity, we take 
the negative numbers to be equivalence classes of such ordered pairs. The equivalence 
class for subtraction is defined using addition: <a, b> ∼ <c, d> iff a + d = b + c, 
where <a, b> ∼ <c, d> indicates that <a, b> is in the same equivalence class as <c, d>. 
So, we can define Z = . . . −3, −2, −1, 0, 1, 2, 3 . . . in terms of N, addition, and the 
notion of an ordered pair.

The rationals, Q , can be defined in terms of the integers, Z, by using ordered pairs of 
integers. The function ‘a/b’ can be defined as the equivalence class of ordered pairs 
<a,b>, where ‘<a,b> ∼ <c,d> iff ad=bc’ is the relevant identity clause. By adopting 
the definitions of Z and Q , we have translated the theory of rational numbers into the 
theory of natural numbers, with the background assumptions of set theory and logic. 
Anything we want to say about the rationals, we can say in a slightly more compli-
cated fashion about the natural numbers.

The real numbers, R, are differentiated from the rationals by their continuity. There 
are a variety of ways to define continuity set-theoretically, and a variety of ways to de-
fine the reals in terms of the rationals. Dedekind’s definition, from 1872, relies on the 
concept of a cut, which has become known as a Dedekind cut. The real numbers are 
identified with separations of the rationals, Q , into two sets, Q 1 and Q 2, such that ev-
ery member of Q 1 is less than or equal to the real number and every member of Q 2 is 
greater. So even though √2 is not rational, it divides the rationals into two such sets; we 
know for any rational whether it is greater or less than √2. Not all cuts are produced by 
rational numbers. So we can distinguish the continuity of the reals from the disconti-
nuity of the rationals on the basis of these cuts. Real numbers are thus defined in terms 
of sets of rationals, the set of rationals below the cut. These sets have no largest mem-
ber, since for any rational less than √2, for example, we can find another one larger. But 
they do have an upper bound in the reals (i.e., the real number being defined).

By adding our definition of the real numbers in terms of sets of rational numbers to 
our definitions of the rationals in terms of the natural numbers, we have shown how to 
define the reals in terms of the natural numbers. Such definitions do two things. First, 
they make it clear that analysis (including calculus, differential equations, theories of 
real and complex numbers, analytic functions, and measurement theory) is accessible 
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to finite (or at least denumerable) methods. Second, they make it plausible that we 
can reduce the problem of justifying our knowledge of arithmetic to the problem of 
justifying our knowledge of the natural numbers. Arithmetic is, in some sense, reduc-
ible to set theory.

SECOND-ORDER LOGIC AND SET THEORY
The question we are pursuing is whether second-order logic is logic or mathematics. 
We are taking set theory to be mathematics and M, F, and FF to be logic. When we 
interpret first-order languages, we specify a domain for the variables to range over. 
Sometimes we use restricted domains. If we want to interpret number theory, for 
example, we restrict our domain to the integers. If we want to interpret a biological 
theory, we might restrict our domain to species. For our most general reasoning, we 
take an unrestricted domain: the universe, everything there is. Consider 6S.13.20.

6S.13.20	 There are blue hats.
	 (∃x)(Bx ∙ Hx)

On standard semantics, for 6S.13.20 to be true, there must exist a thing that will 
serve as the value of the variable ‘x’, and that has both the property of being a hat and 
being blue. As Quine says, to be is to be the value of a variable. Our most sincere com-
mitments arise from examining the domain of quantification for our best theory of 
everything.

Now, consider a sentence of second-order logic, 6S.13.21.

6S.13.21	 Some properties are shared by two people.
	 (∃X)(∃x)(∃y)(Px ∙ Py ∙ x≠y ∙ Xx ∙ Xy)

For 6S.13.21 to be true, there must exist two people, and there must exist a prop-
erty. The value of the variable ‘X’ is not an ordinary object, but a property of an object. 
By quantifying over properties, we take properties as kinds of objects; we need some 
thing to serve as the value of the variable.

The commitments of second-order logic to properties, in addition to the objects 
which have those properties, are thus apparently profligate and definitely controver-
sial. The first-order sentence about blue hats referred only to an object with proper-
ties. The second-order sentence reifies properties. Is there really blueness, in addition 
to blue things? What are properties like blueness?

One classic (and classical) way to understand properties comes from Plato’s work. 
We could take the objects that serve as the values of predicate variables to be Platonic 
forms, or eternal ideas. Such an interpretation would be extremely contentious.

The least controversial way to understand properties is to take them to be sets of the 
objects that have those properties. We call this conception of properties extensional. 
On an extensional interpretation, ‘blueness’ refers to the collection of all blue things; 
the taller-than relation is just the set of ordered pairs of objects whose first element is 
taller than its second element. Thus, second-order logic seems at least to commit us 
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to the existence of sets. Remember, ordered pairs are just kinds of sets. Second-order 
logic, in its least-controversial interpretation, seems to be some form of set theory.

If we believe that there are mathematical objects, we can include sets in our on-
tology, allowing them in our first-order domain of discourse by taking them to be 
values of first-order variables. We need not include them under the guise of second-
order logic, sneaking them in through the interpretations of second-order variables. 
Quine’s complaints about second-order logic, that it is set theory in sheep’s clothing, 
are based in part on this sneakiness.

In favor of second-order logic, it is difficult to see how one could regiment in first-
order logic sentences like many we have already seen in this section. The possibility of 
deriving the properties of identity from the second-order axioms, rather than intro-
ducing a special predicate with special inferential properties, is especially tempting. 
Perhaps the most famous example motivating quantification beyond the basic first-
order logic we have seen is called the Geach-Kaplan sentence, 6S.13.22.

6S.13.22	 Some critics admire only one another.

6S.13.22 is difficult to regiment into first-order logic, indeed provably so, if one uses 
the predicates that appear in the sentence.

Quine favors using schematic predicate letters in lieu of predicate variables. 
With schematic letters, we regiment the law of the excluded middle, for example, as 
6S.13.23, rather than 6S.13.3, above, with the understanding that any wff of F can be 
substituted for ‘α’.

6S.13.23	 α ∨ ∼α

Schematic letters are metalinguistic variables. Those who favor schematic letters 
to second-order logic are admitting that we cannot formulate claims like 6S.13.23 
in our canonical object language. We must, instead, ascend to a metalanguage, using 
metalinguistic variables.

So, while it seems that second-order logic is some form of set theory, precisely what 
form of set theory it is depends on the semantics for the specific language of second-
order logic we adopt. And there may be an option between first- and second-order log-
ics, called plural quantification. Plural quantification regiments the natural-language 
locution, “There are some Ps,” and can handle the Geach-Kaplan sentence more natu-
rally than standard first-order logic.

Given that second-order logic is some type of set theory, a natural question to ask 
is whether that is a problem for the language. Does its value in expressing some natu-
ral claims and their inferences outweigh its controversial ontological commitments? 
What exactly differentiates logic and mathematics? Is there a firm line between the 
disciplines? What is the purpose of logic? Is there one right logic? These are interest-
ing and complex questions. If you’ve completed the work in Introduction to Formal 
Logic with Philosophical Applications, you are ready to begin to answer them.
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Summary
Most of the formal work in Introduction to Formal Logic with Philosophical Applications 
covers themes that philosophers sometimes call baby logic, an introduction to a vast 
and burgeoning field that raises many important questions about human reasoning, 
ontology, epistemology, and other philosophical topics. To answer questions about 
which logic is the right logic, and what that would mean for our views of ourselves 
and our intellectual capacities, one should explore the wide variety of logics available 
beyond baby logic.

TELL ME MORE 

•	What paradoxes did Russell find in Frege’s work? See 7.7: Logicism.

For Further Research and Writing
1.	 The debate over second-order logic is one aspect of a larger question of deter-

mining a canonical language, and whether there even is such a best language. 
Is there a correct logic? What is the purpose of logic? Could there be a different 
logic for natural language and for mathematics? What differentiates logic and 
mathematics? There are lots of good potential paper topics here. Quine, Hack-
ing, and Shapiro are excellent sources.

2.	 Some philosophers, notably George Boolos, have explored a formal tool that seems 
to lie between first-order and second-order logic, called plural quantification. Is 
plural quantification more like first-order logic or more like second-order logic? 
Is it appropriate for formal versions of natural languages? Is it useful in mathemat-
ics? The entry by Linnebo in the suggested readings is an excellent place to start.

3.	 What problems arise for translating the Geach-Kaplan sentence into first-order 
logic? How does plural quantification help? See Linnebo, “Plural Quantifica-
tion,” and Boolos, “To Be Is to Be a Value of a Variable” in Boolos’s Logic, Logic, 
and Logic. Quine takes the Geach-Kaplan sentence to be an argument for set 
theory; see Methods of Logic section 46.

Suggested Readings
Boolos, George. Logic, Logic, and Logic. Cambridge, MA: Harvard University Press, 1998. 

This collection of Boolos’s papers contain two especially important papers on second-
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SOLUTIONS TO EXERCISES 6S.13
1.	 (∃X)Xl ∙ (∃X) ∼Xl
2.	  (∀X)(Xc ≡ ∼Xd)
3.	 (∃X)(∃Y)[Xr ∙ Yr ∙ (∃x) ∼(Xx ≡ Yx)]
4.	 (∀x)[Px ⊃ (∃X)(Xt ∙ Xx)]
5.	 (∀x)[Px ⊃ (∃X)(∃y)(My ∙ Xx ∙ Xy)]
6.	 (∃x)[Cx ∙ (∃X)(Xx ∙ Xe)]
7.	 (∃x)[(Fx ∙ Sx) ∙ (∃X)(Xg ∙ Xx)]
8.	 (∀x){Px ⊃ (∀y)[By ⊃ (∃X)(Xx ∙ Xy)]}
9.	 (∃X)(Xa ∙ Xf(a))

10.	 (∀X)(Xg(r) ⊃ Xr)
11.	 (∃X)(∀x) ∼Xx
12.	 (∃X){(∀x)(∀y)(∀z)[(Xxy ∙ Xyz) ⊃ Xxz]}
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13.	 (∃z)(∀X)[(∀x)(∀y)(Xxy ≡ Xyx) ⊃ (∀w)(∼Xzw ∙ ∼Xwz)]
14.	 (∃X)[(∀x)Xxx ∙ (∀x)(∀y)(Xxy ≡ Xyx)]
15.	 (∃w)(∀X){(∀x)(∀y)(∀z)[(Xxy ∙ Xyz) ⊃ Xxz] ⊃ (∀v)(∼Xwv ∙ ∼Xvw)}
16.	 (∀x)(∀y){[Sx ∙ Sy ∙ ∼(∀X)(Xx ≡ Xy)] ⊃ ∼(∃X)(Xx ∙ Xy)}
17.	 (∀x)(∀y)[x≠y ⊃ (∃X)(Xx ≡ ∼Xy)]
18.	 (∀x)(∀y){[Sx ∙ Ux ∙ Sy ∙ Uy ∙ (∃X)(Xx ∙ Xy)] ⊃ x=y}
19.	 (∀x)(∀y)[∼(∃X)(Xx ∙ Xy) ⊃ (∼x=f(y) ∙ ∼y=f(x))]
20.	 (∀x)(∀y)[∼(∃X)(Xx ∙ Xy) ⊃ (∼Uxy ∙ ∼Uyx)]


