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Supplementary Section 7S.9
Infinity

As we saw briefly in section 1.3, modern mathematical logic of the sort studied in 
Introduction to Formal Logic with Philosophical Applications was developed largely in 
response to some odd and unsettling results in mathematics. One important source of 
the pressure to refine the concept of logical consequence came from the development 
of non-Euclidean geometries. But perhaps more important, mathematicians were 
working with concepts of infinity in new and robust ways which demanded ground-
ing, especially as they led to strange new results and paradoxes.

LOGIC, INFINITY, AND PARADOX
The calculus developed by Leibniz and Newton in the seventeenth and eighteenth 
centuries was both wildly successful and oddly unnerving. Its central technique 
involves finding the area under a curve by dividing the curve into infinitely many, 
infinitely small areas, called infinitesimals by Leibniz and fluxions by Newton, and 
then adding these infinitely many areas together. On the one hand, the results were 
precise, perfect, and widely applied in science and mathematics. On the other hand, 
the idea of adding an infinite number of infinitely small areas seemed preposterous 
to some mathematicians and philosophers, more so when the results often turned out 
to be small finite numbers. How can the sum of an infinite number of infinitely small 
quantities be √7/2 or −3? Infinity was supposed to be the realm of  God and para-
doxes, not productive mathematical methods.

Among the most unsettling results that led Frege and others to seek more secure 
systems of inference were those of Georg Cantor that showed that there are dif-
ferent sizes of infinity, indeed infinitely many different sizes of infinity. Until the 
mid-nineteenth century, the infinite was a concept perhaps of more interest to phi-
losophers than to mathematicians. Earlier mathematicians certainly knew about a 
variety of concepts of mathematical infinity. There were large infinities of addition, 
like the infinity of the counting numbers, the dense infinity of the rational numbers 
and the continuous infinity of the real numbers, and the infinity of space. There were 
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small infinities, too, such as the number of points in a finite line segment or the infini-
tesimals or fluxions used in calculus.

But infinities led to paradoxes. Among the oldest and most influential of the prob-
lems are known as Zeno’s paradoxes. Little is known of the eponymous Zeno of Elea, 
who lived in the fifth century b.c.e., beyond that his paradoxes are intended to sup-
port the claims of the philosopher Parmenides that reality is one, uniform, and un-
changing. While we seem to experience a complex, variegated, and changing world, 
Parmenides claimed that the real world is stable and constant, unlike the world we 
perceive. Zeno’s paradoxes, invoking the infinite divisibility of space and time, seem 
to show an error in our beliefs about a changing world.

For example, consider the famous paradox of the racing Achilles and the tortoise. 
Achilles gives the tortoise a head start, let’s say one hundred feet. But now, Achil-
les can never catch the tortoise. For while he runs the hundred feet initially separat-
ing the pair, the tortoise is also in motion, though more slowly than Achilles. When 
Achilles reaches the tortoise’s starting point, the tortoise will have moved, say, ten 
feet farther. And when Achilles reaches 110 feet, the tortoise will have again moved 
farther, another foot, say. As Achilles moves one foot farther toward the tortoise, the 
tortoise is once again a little bit farther along. This goes on infinitely: no matter how 
many times Achilles reaches a given point formerly occupied by the tortoise, the tor-
toise will have moved a little farther. Achilles can never catch the tortoise.

Or consider the paradox of the arrow, which assumes that time is composed of 
atomic instants, ones that cannot be further subdivided. The arc traced by a flying 
arrow consists of some number of these instants. Consider any one of these instants, 
and ask whether the arrow is moving at that instant. If the arrow is in motion at the 
instant, then it must be at one place at the beginning of the instant and at another 
distinct place at the end of that instant. But then there seem to be parts of an instant, 
its beginning and its end, contrary to our assumption that time consists of atomic in-
stants. Hence the arrow cannot be in motion at any instant. But the flight of the arrow 
consists of the sum of its motions at each instant. Since it does not move at any instant, 
the sum of these instants is zero: the arrow does not move.

Mathematicians and philosophers dealt with the paradoxes largely by constructing 
some distinctions, between actual and potential infinities, for example, and between 
categorematic and syncategorematic uses of ‘infinity’. The distinction between ac-
tual and potential infinity is found in Aristotle’s work from the fourth century b.c.e. 
Aristotle claims that the Achilles paradox, for example, is solved by the observation 
that Achilles need not traverse an actual infinite series of distances, which would be 
impossible. Instead, the infinite number of distances is only potentially infinite. We 
don’t actually divide space in the way that Zeno presumes. Thus, the paradox is merely 
potential and unproblematic. Similarly, if time is not actually infinitely divisible, but 
only potentially so, the arrow can fly.

In the thirteenth century, the terms ‘categorematic’ and ‘syncategorematic’ were 
introduced to distinguish ways of speaking about the infinite. When one speaks of an 
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infinite quantity as if it actually exists, as when one says that there are infinitely many 
points on a line, one speaks categorematically and dangerously. But when one says 
that a line can be extended, potentially, indefinitely, one speaks syncategorematically. 
Again, uses of this distinction were invoked to avoid accidentally saying something 
paradoxical or unacceptable about actual infinities.

So mathematicians and philosophers mainly avoided invoking infinities as much 
as possible, relinquishing their resistance in the case of the successful calculus, but 
often with guilty consciences, and in the face of severe criticism. For example, the 
philosopher Bishop George Berkeley wrote a treatise in the eighteenth century, The 
Analyst, in which he accused the proponents of the calculus of basing their work on 
fundamental errors about the nature of space. It wasn’t until the nineteenth century, 
when Dedekind, Weierstrass, and others arithmetized analysis by showing how to 
define limits more precisely, that the calculus was seen to be put on firm footing.

In the mid-nineteenth century, though, the mathematician Georg Cantor con-
structed a startling and influential proof that there are different sizes of infinity. This 
proof changed the way philosophers and mathematicians thought about and worked 
with infinity, introducing us to what the late nineteenth-century mathematician 
David Hilbert called Cantor’s paradise of infinitary mathematics.

To get a feel for the different sizes of infinity, we will consider a now-classic concept 
that is sometimes called the infinite hotel.

THE INFINITE HOTEL
You are the desk clerk at an infinite hotel that has, let us suppose, infinitely many 
rooms. The hotel is fully booked when a new guest arrives. In a finite hotel, you would 
have to turn away the potential new guest. But in an infinite hotel, you can add the new 
guest. To do so, shift every current guest from room n to room n + 1: the guest in room 
2 moves to room 3; the guest who was in room 3 moves to room 4; the guest from room 
4 moves to room 5; and so on. Now room 1 is available for the arriving guest.

If a further finite group of guests arrives, you can perform the same procedure to 
free up any finite number of rooms. Just add any finite number of guests, m, by shift-
ing all current guests from their current room n to room n + m and putting the new 
guests in the first m rooms. If seven guests arrive, for example, move all the current 
guests to rooms with numbers exactly seven greater than their current rooms. If a bil-
lion guests arrive, just move them to rooms with numbers a billion greater than the 
ones they are in currently. Then slot the new guests into the newly vacant rooms with 
numbers at the beginning of the natural number sequence.

Next, a bus with an infinite number of guests arrives. If you try to shift all guests 
from room n to room (n + the number of guests on the bus), you have to move the 
guest in room 2, say, to room 2 + infinity. But since there is no number ‘infinity’ (or 
so one might think) you do not know where to put the current guests.
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You can still accommodate an infinite number of new guests, but you have to use a 
new procedure. Shift every current guest from room n to room 2n. The guest in room 
2 moves to room 4, the guest who was in room 3 moves to room 6, and so on. Now, all 
the even-numbered rooms are filled, and the odd-numbered rooms are vacant. We can 
put the new guests in the odd-numbered rooms: room 1, room 3, room 5, and so on.

Next, an infinite number of infinite busloads of guests arrives. You can still accom-
modate them, but again you need a different procedure. Shift all current guests from 
room n to room 2n. So the person in room 2 stays in room 21 (i.e., room 2); the person 
who was in room 2 moves to room 22 (i.e., room 4); the person who was in room 3 
moves to room 23 (i.e., room 8); the person who was in room 4 moves to room 24 (i.e., 
room 16); and so on. All of the present guests can be accommodated in the infinite 
number of rooms that are powers of two, leaving lots of empty rooms. We can place 
the people on the first bus in room numbers 3n (for n people on the bus), the people 
in the second bus in rooms 5n, the people in the third bus to rooms 7 n, and so on for 
each (prime number)n. Since there are an infinite number of prime numbers, there 
will be an infinite number of infinite such sequences. And there will still be lots of 
empty rooms left over!

A natural question to arise is whether there are any sets of guests that the infinite 
hotel could not accommodate. This question is precisely a question about the fine 
structure of the numbers and whether there are different sizes of infinity.

T WO CONCEPTS OF SIZE
Numbers have at least two different functions: measuring the size of a collection of 
things; and ordering, or ranking, a series. When we use numbers to measure size, we 
use the property of the numbers called cardinality. When we use them to measure 
rank (first, second, third . . .), we use the property called ordinality. Mathematicians 
sometimes consider the numbers in their different uses as different objects altogether. 
Thus we have cardinal numbers and ordinal numbers.

One way to characterize cardinal numbers is to invoke one-one correspondence. 
Consider a basket of apples and a classroom of hungry kindergartners. We can de-
termine whether there are the same number of apples and kindergarteners by giving 
each student exactly one apple. If there are no extra apples or children, there are (or 
were, since the kids were hungry) the same number of each. The view that we can 
define numbers in terms of one-one correspondence has become known as Hume’s 
principle, though the use of one-one correspondence to measure size precedes Hume.

Another way to think about numbers, perhaps more closely related to their ordinal 
properties, is in terms of wholes and parts: a > b if, and only if, there is some positive 
number c such that b + c = a.

With finite numbers, the characterization in terms of one-one correspondence con-
verges with the characterization in terms of parts and wholes. The size of a group is 
the same as the correspondence between the objects in the group and some initial 



C a n t o r ’ s  D i a g o n a l  A r g u m e n t     5

segment of the natural numbers. If we have five hungry students, we can line them up 
(ordinally) and give them each a number from one to five (cardinally).

But these two concepts diverge with infinite collections. The size of the integers 
seems to be bigger than the size of the even numbers since the size of a whole seems 
to be greater than the size of its proper part and the even numbers are a proper part of 
the integers. But, the even numbers (E) and the integers (N) can be put into one-one 
correspondence with each other.

E:  2, 4, 6, 8 . . . 
	 ↑↓	 ↑↓	 ↑↓	 ↑↓
N: 1, 2, 3, 4 . . . 

Let’s give names to these different concepts of size. Two sets have the same sizeh (for 
Hume) if they can be put in one-one correspondence with each other. Two sets have 
the same sizew (for the whole is greater than the sum of its parts) if it is not possible to 
put either in one-one correspondence with a proper part of itself. So, N and E have the 
same sizeh but different sizews.

You might think, and before Cantor’s work in the mid-nineteenth century it was 
widely believed, that there is just one size of infinity, that all infinities have the same 
size. That claim turns out to be false. Moreover, sizeh has come to be recognized as the 
central notion of cardinality. Parallel conclusions can be drawn about infinite ordinal 
numbers. There are many, indeed infinitely many, different infinite numbers. These 
are the conclusions of Cantor’s influential diagonal argument, one of the most impor-
tant intellectual discoveries of all time.

CANTOR’S DIAGONAL ARGUMENT
When we make a list, we put objects into one-one correspondence with the natural 
numbers: item 1, item 2, item 3, and so on. Any infinite list will thus be the same sizeh 
as the natural numbers. For example, we can show how to list the even numbers, as 
we showed in the previous section; the set of even numbers is the same sizeh as the set 
of integers.

For another example, we can list the prime numbers. The set of primes, P, like the 
set of even numbers, is a proper subset of the set of natural numbers. But again, it is an 
infinite set the same sizeh as the natural numbers, which we can show by putting the 
primes in a list.

P:  2, 3, 5, 7, 11, 13 . . . 
	 ↑↓	 ↑↓	 ↑↓	 ↑↓	 ↑↓	 ↑↓
N: 1, 2, 3, 4,  5,  6, . . . 

By listing the even numbers, or the odd numbers, or the multiples of seven, or the 
prime numbers, we are showing that such sets of numbers have the same infinite 
cardinality as the set of natural numbers, despite being proper subsets of the natural 
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numbers. It is characteristic of an infinite set that it can be put into one-one corre-
spondence with a proper subset of itself.

So both the set of prime numbers and the set of even numbers are the same sizeh 
as the natural numbers while being a smaller sizew. Other sets have a sizew larger than 
the natural numbers while having the same sizeh. Consider the rational numbers, all 
ordered pairs of natural numbers. We often call the rational numbers fractions, tak-
ing the first of the ordered pair as the numerator and the second as the denominator. 
There seem to be more rationals than natural numbers. Between every two natural 
numbers there are many rational numbers, though the reverse is not true. So the ratio-
nals have a larger sizew. But using a neat trick, we can make a list of the rationals too, 
showing that they can be put into one-one correspondence with the natural numbers 
and thus that the natural numbers and the rational numbers have the same sizeh. Just 
follow the path indicated by the arrows in the diagram below to construct a complete 
(if sometimes redundant) list.

1/1	 1/2	 1/3	 1/4	 1/5	 1/6	 1/7	 . . .
2/1	 2/2	 2/3	 2/4	 2/5	 2/6	 2/7	 . . .
3/1	 3/2	 3/3	 3/4	 3/5	 3/6	 3/7	 . . .
4/1	 4/2	 4/3	 4/4	 4/5	 4/6	 4/7	 . . .
5/1	 5/2	 5/3	 5/4	 5/5	 5/6	 5/7	 . . .
6/1	 6/2	 6/3	 6/4	 6/5	 6/6	 6/7	 . . .
 7/1	 7/2	 7/3	 7/4	 7/5	 7/6	 7/7	 . . .
. . .	 . . .	 . . .	 . . .	 . . .	 . . .	 . . .	 . . .

Note that while this neat technique traces a path through the diagram which is some-
times diagonal, it is not what we call the diagonal argument.

Such constructions may tempt us to think that any set of numbers can be listed and 
thus that all sets of numbers have the same sizeh. But if there were some kinds of sets 
whose members could not be put into a list, then that set would be strictly larger than 
the set of natural numbers, in both sizeh and sizew. There would be different sizes of 
infinity, however we measure size.

Cantor shows that we indeed cannot make certain lists. In terms of the infinite ho-
tel, he shows that there are sets of guests that could not be accommodated. In general, 
Cantor shows how to construct sets of larger and larger sizehs. In particular, his diago-
nal argument proves that we cannot list the real numbers.

There are different versions of the diagonal argument, and it can be applied to both 
numbers and, perhaps more generally, to sets. Let’s take a look at the argument as it 
applies to the real numbers. The real numbers may be represented as their decimal ex-
pansions, many of which are non-repeating and non-terminating. The structure of the 
argument is a reductio ad absurdum, or indirect proof. We start by supposing, contrary 
to our desired conclusion, that we can make a list of all of the real numbers. For sim-
plicity’s sake, let’s imagine that we can list all of the real numbers between zero and 
one; it turns out that we can’t list even these reals. Each such real, in its decimal rep-
resentation, will consist of a 0, a decimal point, and a sequence (perhaps terminating 
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or repeating, and perhaps not) of natural numbers. We can ignore the zero and the 
decimal point and just look at the sequence of digits past the decimal point.

So we can write, we are supposing for reductio, a complete list of such sequences. 
Let’s represent that hypothetical list, L, abstractly, using a concatenation of variables.

L	 a1 a2 a3 a4 a5 a6 a7 . . . 
	 b1 b2 b3 b4 b5 b6 b7 . . . 
	 c1 c2 c3 c4 c5 c6 c7 . . . 
	 d1 d2 d3 d4 d5 d6 d7 . . . 
	 . . . 

So, for example, ‘a1 a2 a3 a4 a5 a6 a7 . . . ’ could represent ‘3756920 . . .’, which would 
stand for the real number whose decimal expansion starts 0.3756920 . . . 

By hypothesis, L contains the decimal extensions of all real numbers between 0 and 1. 
Cantor’s diagonal technique allows us to find a number between 0 and 1 that does not, 
in principle, appear in L, contradicting our assumption that L is a complete list.

Consider the number C, defined by concatenating one term from each of the num-
bers in the list L. We select the number by looking the diagonal of L, taking the first term 
from the first number in the list, the second term from the second number, and so on.

C = a1 b2 c3 d4 e5 f6 g7 . . . 

C could be in L. It has the same first number as the first number in the list, the same 
second number as the second number in the list, and so on.

But, given C, we can construct a new number that cannot be on the list, showing 
the list to be incomplete. Just change each digit in C to create a new number C*. For 
instance, to construct C*, we can add one to each digit of C other than nine, and re-
place all nines in C with zeroes.

Now, C* is certainly not in L. C* is different from the first number in L in its first 
digit, different from the second number in L in its second digit, and so on, for all num-
bers on the list.

In a quixotic attempt to complete the list, we could add C* to L, to make a new list, 
L*. But the same procedure allows us to form a new number, say C**, that’s not in L*. 
However complete we make our list, we can always find a number that is not in it.

Thus, all possible lists of real numbers are necessarily incomplete. We are in prin-
ciple prevented from establishing a one-one correspondence between the natural 
numbers and the real numbers. There are strictly more real numbers than natural 
numbers.

The preceding proof is called a diagonal argument, due to its method of producing 
C* along the diagonal of the list.

INTO THE TRANSFINITE AND CANTOR’S THEOREM
With Cantor, let’s call the size of the natural numbers 0א. Since the real numbers be-
tween zero and one have a strictly larger size than 0א, we can say that the set of reals 
between zero and one has a size greater than 0א. Just as the set of natural numbers 
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contains many proper subsets with the size 0א, the set of real numbers has many sub-
sets of its greater size. To see this, first remember that we use the real numbers as the 
representations of all of the points on a line. We can show that there are the same 
number of real numbers overall as there are real numbers between zero and one by 
providing a mapping between the real numbers (points on a line) between zero and 
one and all the real numbers (points).

Here is a geometric demonstration.

0 1

For each point on the curved line between zero and one, we can find a point on the 
infinite line, and vice versa. Since there is a one-one mapping between the two lines, 
there are the same number of points in each line.

If you prefer an analytic proof, take f(x) = tan (2x−1)π/2 from x=0 to x=1. The 
tangent curve ranges between negative infinity and positive infinity over a domain be-
tween zero and one. Thus we can correlate each point on a small segment of the x-axis 
with a unique real number on the whole y-axis, and vice versa. There is a one-one cor-
respondence between the real numbers between 0 and 1 and all of the real numbers.

We have seen now that infinity is at least more complicated than was thought prior 
to the nineteenth century. There are at least two different sizes of infinity, even in 
terms of sizeh. It turns out that there are in fact infinitely many different sizes of infin-
ity, since a generalized version of the diagonal argument can be run on any set of any 
size. For any set, there is another set of greater size.

To get a feel for the properties of infinite numbers, let’s take a look at some proper-
ties of numbers and whether they hold just for finite numbers or for infinite numbers 
as well. I won’t prove that these properties hold here.

The familiar properties at 7S.9.1. hold for all cardinal numbers, whether finite or 
transfinite.

7S.9.1	 For all cardinal numbers a, b, and c:

a + b = b + a
ab = ba
a + (b + c) = (a + b) + c
a ∙ (b ∙ c) = (a ∙ b) ∙ c
a ∙ (b + c) = ab + ac
a(b + c) = ab ∙ ac

(ab)c = ac ∙ bc

(ab)c = abc
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Not all properties of finite numbers hold for infinite numbers. We already saw one 
property that holds only for infinite sets, the property of having a proper subset which 
is the same sizeh as itself. The properties at 7S.9.2 hold for infinite numbers, but not 
for finite numbers.

7S.9.2	 For infinite cardinals a:

a + 1 = a
2a = a
a ∙ a = a

We can show the three claims at 7S.9.2 by producing bijective (one-one) mappings 
between sets of each size. That’s what we did in the discussion of the infinite hotel.

Consider one final important property, 7S.9.3, which holds both of finite and trans-
finite numbers.

7S.9.3	 2a > a

Whether a is finite or infinite, 2a will always be a number with a larger cardinality. 
7S.9.3 has an analog in set theory: the power set (or set of all subsets) of a set is always 
strictly larger than the given set. The set-theoretic claim is called Cantor’s theorem, 
and its proof is a set-theoretic version of the diagonal argument, which I’ll leave for an 
appendix to this section.

Given Cantor’s theorem, which shows that there are infinitely many different sizes 
of infinity, we can start naming the infinite numbers of differing cardinalities, pro-
ceeding beyond the sequence of natural numbers. We can define a sequence of infi-
nite cardinalities:

 . . . 4א ,3א ,2א ,1א ,0א

While there are an infinite number of infinite cardinalities on this list, set theorists, 
by various ingenious methods including the addition of axioms that neither follow 
from nor contradict the standard axioms, generate even larger cardinals than these. 
Cardinal counting gets pretty wild. There are ethereal cardinals, subtle cardinals, 
almost ineffable cardinals, totally ineffable cardinals, remarkable cardinals, super-
strong cardinals, and superhuge cardinals, among many others. All of these cardinal 
numbers are transfinite and larger than any of the sequence of alephs.

Returning to just the alephs, the natural numbers have the size 0א. We saw that the 
rational numbers have the same cardinality. There are more real numbers than natu-
ral numbers, as we saw in the diagonal argument. But how many reals are there? Are 
the reals the next largest size of infinity, 1א, or are there other sizes of infinity between 
the size of the natural numbers and the size of the real numbers? Cantor’s continuum 
hypothesis is the claim that the reals are of size 1א, but the size of the real numbers is 
one of the most interesting open questions in mathematics.
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THE CONTINUUM HYPOTHESIS
Certain questions in the history of mathematics have proven difficult to answer. Fer-
mat’s theorem, that there are no n for which there are a, b, and c, such that an + bn = 
cn, was conjectured in 1637, written in the margin of Fermat’s copy of Diophantus’s 
Arithmetica. It was proven in 1994. Goldbach’s conjecture, that every even number 
greater than four can be written as the sum of two odd primes, remains unproven, 
though most mathematicians believe that it is also true.

Euclid’s parallel postulate, which we saw in section 1.3 of IFLPA, is more interest-
ing. It can fail, as it does in non-Euclidean spaces. But it can also hold, as it does in 
Euclidean space. Thus, we have decided that the question whether the parallel pos-
tulate is true is, strictly speaking, ill-formed. There is no one true answer. There are 
different kinds of spaces, each defined by a different version of the parallel postulate.

Cantor’s continuum hypothesis is interesting in part because we do not know if it 
is like Fermat’s theorem or Goldbach’s conjecture, in having a solution, or whether 
it is ill-formed, like the parallel postulate. Cantor provided a method for generating 
larger and larger transfinite numbers. He shows that the cardinal number of the reals 
is equal to 20א. He also shows that 20א is greater than 0א. Cantor’s theorem does not 
show, however, that it is the next greater transfinite number. Let’s take 1א to be the 
name we give to the next transfinite cardinal after 0א. The continuum hypothesis is 
that 0א2 = 1א. The generalized continuum hypothesis is that אn+1 = 2אn.

To understand how the continuum hypothesis might be false, remember that cer-
tain operations on finite numbers that generate larger numbers, like exponentiation, 
skip numbers. When we multiply a finite cardinal by two or seventeen, or add six, or 
raise to the π power, we generate cardinals that are not merely one larger. Only the 
successor function yields the next natural number. So it seems possible that 2n, for 
transfinite n, is more like ordinary exponentiation in skipping some transfinite num-
bers, rather than like succession, which gives the next largest number. In other words, 
we do not know that 20א is 1א. Indeed, we do not even know that transfinite cardinal 
numbers can be ordered linearly.

At the 1900 Paris Congress, David Hilbert cited the continuum hypothesis as one 
of the ten most important unsolved problems in mathematics. Cantor believed the 
continuum hypothesis, but he could not prove it. Two results in the twentieth century 
further entrenched the problem. In 1940, Kurt Gödel showed that the continuum 
hypothesis is consistent with the standard axioms of set theory. But in 1963, Paul 
Cohen showed that its negation is also consistent with set theory. Thus, the contin-
uum hypothesis is independent of the standard axioms. We can consistently consider 
the continuum to be of all different sizes: 3א ,2א ,1א, and so on. Even the additions 
of many large cardinal axioms to the standard axioms of set theory fail to settle the 
question.

But we can settle the question of the size of the continuum by adopting some stron-
ger axioms for set theory. Some mathematicians believe that the continuum hypoth-
esis, even the generalized version, is so intuitively true that we should just adopt it, or 
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an equivalent, as part of set theory. As we will see, Gödel favored this approach. Alter-
natively, we could take the question to be ill-formed, like the question of whether the 
parallel postulate is true. Perhaps there are different set theories, with different sizes 
of the continuum. Mathematicians are divided on whether the continuum hypothesis 
is true, though opinion has generally turned against it.

ORDINALS AND COUNTING
As we saw above, we use cardinal numbers to measure size, while we use ordinal num-
bers for ranking; first, second, third, and so on. Cantor defined cardinal numbers in 
terms of ordinal numbers, making the ordinals more fundamental. Frege’s attempt 
to define the numbers followed Cantor’s work; Frege sought independent definitions 
of the ordinals and cardinals. Remember, the development of modern logic, like the 
logic in the first five chapters of Introduction to Formal Logic with Philosophical Ap-
plications, was in the service of Frege’s project in the foundations of arithmetic. To 
finish this section, let’s look briefly at the ordinal numbers, and at how we can define 
arithmetic by using the more general set theory.

Cantor developed set theory in order to generate his theory of transfinites. Frege 
assumed a similar set theory in his work. Despite some differences, Cantor and Frege 
both used inconsistent set theories, which we now call naive set theory for its as-
sumption that any property determines a set. The inconsistency was discovered by 
Bertrand Russell; it is called Russell’s paradox. Russell’s paradox shows that some 
properties taken to define sets lead to contradictions.

To understand Russell’s paradox, one needs a little understanding of set theory. 
Sets are collections that have members, the items in the set. They can include other 
sets as members. Let’s say that there are seventy million pet dogs in the United States 
and ninety million pet cats. So there’s a set of pet dogs, D, with seventy million mem-
bers, and a set of pet cats, C, with ninety million members. There’s also a set of pet 
dogs or cats, B, with 160 million members. And there’s a set, let’s call it P, with just two 
members, both sets: the set of dogs and the set of cats. 7S.9.4 lists all four of these sets.

7S.9.4	 D: {all the pet dogs in the United States}
	 C: {all the pet cats in the United States}
	 B: {anything which is either a pet dog or a pet cat in the United 

States}
	 P: {{the pet dogs}, {the pet cats}}

The dogs and cats are not members of the set P. They are members of the two sets 
that are members of this set.

Since sets can have other sets as members, as P does, they might even have them-
selves as members. Consider a possible set of all sets. Since it is itself a set, it should be 
a member of itself. It turns out that this possible set is too large actually to be a set, a 
fact that is a consequence of Russell’s paradox.
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Russell, presenting the paradox to Frege, inquired about the property of not includ-
ing oneself. Consider the set of all and only sets that do not include themselves. If it 
includes itself, then it shouldn’t include itself, since it is the set only of sets that do not 
include themselves. But if it doesn’t include itself, then it should include itself since it 
is the set of all sets that do include themselves. The set of all sets that do not include 
themselves both includes itself and does not include itself, a contradiction. Naive set 
theory is inconsistent. Some properties cannot consistently determine sets.

To avoid Russell’s paradox, set theory is ordinary presented axiomatically, rather 
than naively, these days. Instead of assuming that every property determines a set, 
we start with some simple sets, perhaps just the empty set, and rules for constructing 
sets, like the axioms of Zermelo-Fraenkel set theory.

Ordinal numbers, set-theoretically, are just special kinds of sets, ones that are well 
ordered, the definition of which is at 7S.9.5.

7S.9.5	 A set A is well ordered by a relation <, if for all x, y, and z in A

	 1. ∼x < x
	 2. (x < y ∙ y < z) ⊃ x < z
	 3. Either x < y, x = y, or y < x
	 4. Every nonempty subset of A has a smallest element.

For convenience, we standardly pick a particular ordinal to represent each particu-
lar number. We choose one example of a well-ordering for each number and use it as 
the definition of that number.

To move through the ordinals from smaller to larger, we most often look for the 
successor of a number, the set that stands for the next ordinal number. Ordinals that 
can be constructed in this way are called successor ordinals. In transfinite set theory, 
there are also sets that are called limit elements. We get to them not by finding a suc-
cessor of a set, but by collecting all the sets we have counted so far into one further 
set. This operation of collecting several sets into one is called union. If we combine 
all the sets that correspond to the finite ordinals into a single set, we get another well-
ordered set. This new set will be another ordinal: there will be a well-ordering on it, 
and it will have a minimal element. This limit ordinal will be larger than all of the 
ordinals in it.

So, there are two kinds of ordinals: successor ordinals and limit ordinals. Limit or-
dinals are the way in which we jump from considering successors to the next infinite 
ordinal number. It is like getting to the end of an infinite sequence and jumping to the 
next level of infinity.

7S.9.6 displays a list of ordinal numbers in order of their sizes.
7S.9.6	 1, 2, 3, . . . ω
	 ω+1, ω+2, ω+3 . . . 2ω
	 2ω+1, 2ω+2, 2ω+3 . . . 3ω
	 4ω, 5ω, 6ω . . . ω2

	 ω2, ω3, ω4 . . . ωω

	 ωω, (ωω)ω, ((ωω)ω)ω, . . . ε0
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The list 7S.9.6 is of ordinals, so by ‘1’, I mean the first ordinal, rather than the cardi-
nal ‘1’. ω is the first transfinite ordinal, corresponding to the set of natural numbers, 
the cardinal number 0א. The limit ordinals are the ones found after the ellipses on 
each line, the completions of an infinite series.

Summary
Cantor’s theory of transfinites transformed the way we think of infinity. His diagonal 
argument shows that there are different levels of infinity. We form ordinals to rep-
resent the ranks of these different levels of infinity by taking certain series to com-
pletion. Completing an infinite series violates the restriction on actual infinity and 
syncategorematic infinities that blocked Zeno’s paradoxes (and others). That such 
a completion is mathematically consistent and fecund entails that new responses to 
Zeno are necessary.

The mathematics of infinity has developed robustly in the last century and a half. 
While some philosophers and mathematicians initially resisted the surprising results, 
set theorists today work productively on higher transfinites, seeking proper and more 
full axiomatizations of set theory and even asking whether there are multiple set-
theoretic universes. Axiomatic set theory is a vibrant area of contemporary research, 
at the intersection of logic, mathematics, and philosophy.

TELL ME MORE 

•	What are the axioms of Zermelo-Fraenkel set theory? See 6S.13: Second-Order Logic 
and Set Theory.

For Further Research and Writing
1.	 What is the relationship between modern mathematical logic and theories of 

infinity? How do Frege’s claims in Begriffsschrift about his motivations for de-
veloping modern logic connect with the theories of infinity?

2.	 What are Zeno’s paradoxes? How does the distinction between actual and po-
tential infinities help to solve those paradoxes? How do the modern solutions 
to the paradoxes differ from Aristotle’s solution? See Marcus and McEvoy as 
well as Dowden for further discussions.

3.	 Distinguish sizeh from sizew. Is one characterization of size more intuitive than 
another? Why do mathematicians use sizeh to define cardinality? Tiles’s The 
Philosophy of Set Theory could be helpful.

4.	 What is Cantor’s diagonal argument? Discuss versions in number theory and 
in set theory. Presentations in Tiles, Dauben, and Yarnelle are all accessible.
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5.	 What is Cantor’s continuum hypothesis? What questions about the structure 
of the transfinite numbers does it leave open? See the Gödel article and Tiles’s 
discussion of the question.

6.	 How did Cantor’s diagonal argument change the way we think about infinity? 
Moore’s survey will be especially useful here.

7.	 How does naive set theory differ from axiomatic set theory? Is there a correct 
axiomatization of set theory? What considerations favor one axiomatization 
over another? Maddy’s dense and fecund paper is an excellent source, as is 
Kneale and Kneale’s book.
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APPENDIX
I mentioned that Cantor’s theorem is the set-theoretic analogue of the arithmetic 
claim that 2a > a. In set-theoretic terms, this claim is that ℂ(℘(A)) > ℂ(A). ‘ℂ(A)’ 
refers to the cardinality of a set A; ℂ is the measure of the size of a set. For finite sets, 
ℂ(A) is just the number of elements of A. ‘℘(A)’ refers to the power set of A, the set of 
all subsets of a set A. 7S.9.7 shows two finite sets and their power sets.

7S.9.7	 S1={a, b}	 ℘(S1)={{a}, {b}, {a, b}, ∅}
	 S2={2, 4, 6}	 ℘(S2)={{2}, {4}, {6}, {2, 4}, {2, 6}, {4, 6},  
		    {2, 4, 6}, ∅}

In general the power set of a set with n elements will have 2n elements, which is why 
the number-theoretic claim that 2n > a n is the arithmetic correlate of the set-theoretic 
claim that ℂ(℘(A)) > ℂ(A). For infinite n, sets with n members are the same size as 
sets with n+1 members, or with 2n members, or with n2 members, as we saw at 7S.9.2. 
With infinite numbers, it is not always clear that what we think of as a larger set is in 
fact larger. We might believe that sets with n members are the same size as sets with 2n 
members. This conclusion would be erroneous. ℂ(℘(A)) > ℂ(A).

The claim that ℂ(℘(A)) > ℂ(A) used to be called Cantor’s paradox; it is now 
called Cantor’s theorem. The proof of the theorem is a set-theoretic version of the di-
agonalization argument. Understanding it requires some familiarity with set theory. 
Most basically, a set is a collection of objects, a plurality considered as a unit. We can 
define sets either by listing their elements, or by stating a rule for inclusion in the set. 
At 7S.9.8, A is defined in the first way; B is defined in the second way.

7S.9.8	 A = {Alvin, Simon, Theodore}
	 B = {x | x is one of the three most popular singing chipmunks}

An element, ∈, of a set is just one of its members. At 7S.9.9, we see two true claims 
about elements of the sets defined at 7S.9.8.

7S.9.9	 Alvin ∈ A
	 Theodore ∈ B
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A subset S of a set A is a set which includes only members of A. If S omits at least one 
member of A, it is called a proper subset. The set C, defined at 7S.9.10, is a subset of A.

7S.9.10	 C = {Alvin, Simon}

We can express the subset relation of C to A as ‘C ⊆ A’. C is also a proper subset of 
A, which means that it is a subset of A while not being identical to A, and which we 
can write as C ⊂ A.

To prove Cantor’s theorem, we need two more set-theoretic definitions, at 7S.9.11.
7S.9.11	 A function is called one-one if it every element of the domain maps 

to a different element of the range: f(a)=f(b) ⊃ a=b

	 A function maps a set A onto another set B if the range of the func-
tion is the entire set B, in other words, if no elements of B are 
left out of the mapping.

To prove Cantor’s theorem, 7S.9.12, we want to show that the cardinality of the 
power set of a set is strictly larger than the cardinality of the set itself (i.e. ℂ(℘(A)) 
> ℂ(A)). It suffices to show that there is no function which maps A one-one and onto 
its power set.

7S.9.12	 Assume that there is a function f: A → ℘(A)

		  Consider the set B = {x | x ∈ A ∙ x ∉ f(x)}
		  B is a subset of A, since it consists only of members of A.
		  So, B is an element of ℘(A), by definition of the power set.
		  That means that B itself is in the range of f.
		  Since, by assumption, f is one-one and onto, there must be an  

	   element of A, b, such that f(b) is B itself.

		  Is b ∈ B?
			   If it is, then there is a contradiction, since B is defined  

		    only to include sets that are not members of their  
		    images.

			   If it is not, then there is a contradiction, since B should  
		    include all elements that are not members of their  
		    images.

		  Either way, we have a contradiction.

		  So, our assumption fails.
		  There is no such function f: A → ℘(A).
		  ℘(A) is strictly larger than A.
		  ℂ(℘(A)) > ℂ(A)).
QED


