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(1) Differentiate y = 1/x2 from ‘first principles ’.

dy

dx
= lim

δx→0

1/(x+δx)2 − 1/x2

δx

= lim
δx→0

x2 − (x+δx)2

(x+δx)2 x2 δx

= lim
δx→0

x2 − x2 − 2xδx− δx 2

(x+δx)2 x2 δx

= lim
δx→0

−2x− δx

(x+δx)2 x2
=

−2x

x2 x2
= − 2

x3

∴ d

dx
(x-2) = −2x-3

(2) By first taking logarithms, differentiate y = ax where a is a constant.

y = ax ⇒ ln y = ln(ax) = x ln a (1)

∴ d

dx
(1) ⇒ 1

y

dy

dx
= ln a

∴ dy

dx
= y ln a = ax ln a

i.e.
d

dx
(ax) = ax ln a

A simple check on this formula is provided by the special case of a=e , whence
d/dx(ex) = ex is recovered because ln e = 1.



DIFFERENTIATION 11

(3) Give an argument for why the gradient of a straight line perpendicular
to y = mx+ c is −1/m .

Slope of
−→
AB = tan θ =

BC

AB

Slope of
−→
BC = − tan ϕ = − AB

BC

∴ Slope of
−→
AB =

−1

Slope of
−→
BC

i.e. Gradient of line perpendicular to y = mx+ c is −1/m .

There is an alternative more algebraic proof of this result, but it is somewhat
longer than the geometric argument above. We let the coordinates of the point
of intersection be (x0, y0), and those of two arbitrary points on the respective
lines, with slopes m and µ, be (x1, y1) and (x2, y2). Then, from the definition
of a gradient, and Pythagoras’ theorem, we have

m =
y1−y0

x1−x0

and µ =
y2−y0

x2−x0

, and

(x1−x0)
2 + (y1−y0)

2︸ ︷︷ ︸
AB 2

+(x2−x0)
2 + (y2−y0)

2︸ ︷︷ ︸
BC 2

= (x1−x2)
2 + (y1−y2)

2︸ ︷︷ ︸
AC 2

With a suitable expansion, and cancellation, of the last equation, it is not very
difficult to show that the three relationships lead to the result µ = −1/m .


