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where g is a positive constant and n is a non-negative integer.
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The n=1 case is straightforward because, to within a constant, the integrand
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is the derivative of e#":
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For n>1, I, can be related to I, or I, with a reduction formula:
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Hence

with the recursive chain continuing until we reach I, or I;, depending on
the parity of n. This leads to the result
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Or, more compactly,
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These results enable the characteristic speeds of gas molecules to be calcu-
lated, because their distribution in equilibrium at temperature T is given by
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where v >0 is the speed, m is the mass of the gas particle, k is the Boltzmann
constant, and A is the normalization factor ensuring that
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The average speed, <v>, is given by
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while the root-mean-square speed, vy, is slightly higher:
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