

CHECKLIST OF KEY EQUATIONS

© Atkins, Ratcliffe, Wormald, de Paula 2023

TOPIC 1A Work and heat

Property or process	Equation	Comment	Equation number
Work of raising a weight	work = mgh	At surface of Earth	1
Expansion work	$w = -p_{\rm ex}\Delta V$	Constant external pressure	2
	$w = -nRT \ln(V_{\rm f}/V_{\rm i})$	Reversible, isothermal expansion, perfect gas	5
Heat capacity	$C = q/\Delta T$	Preliminary definition*	6a
Boltzmann distribution	$N_2/N_1 = e^{-(\varepsilon_2 - \varepsilon_1)/kT} = e^{-\Delta\varepsilon/kT}$		7

 $^{^{\}ast}$ The definition is developed in Topics 1B and 1D.

TOPIC 1B Internal energy and enthalpy

Property or process	Equation	Comment	Equation number
Internal energy change	$\Delta U = w + q$	Definition	1
	$\Delta U = q_V$	No non-expansion work	3
Heat capacity at constant volume	$C_{V} = dU/dT$	Definition, constant volume	4b
Enthalpy	H = U + pV	Definition	5
Change in enthalpy	$\Delta H = \Delta U + p \Delta V$	Constant pressure	6b
	$\Delta H = q_p$	No non-expansion work	8
Heat capacity at constant pressure	$C_p = dH / dT$	Definition, constant pressure	9b
Relation between molar heat capacities	$C_{p,\mathrm{m}} - C_{V,\mathrm{m}} = R$	Perfect gas	10

TOPIC 1C Calorimetry

Property	Equation	Comment	Equation number
Calorimeter constant	$C = q/\Delta T$	Determined empirically	1
Electrical heating	$q = I\Delta\phi\Delta t$	<i>I</i> in amperes, $\Delta \phi$ in volts	2
Enthalpy and internal energy	$\Delta H_{\rm m} = \Delta U_{\rm m} + \Delta v_{\rm gas} RT$	Gases regarded as perfect	3

TOPIC 1D Fundamental processes

Property	Equation	Comment	Equation number
Forward and reverse processes	$\Delta_{\text{forward}} H^{\ominus}(T) = -\Delta_{\text{reverse}} H^{\ominus}(T)$	Same temperature	1
Composite processes	$\Delta_{\mathrm{sub}}H^{\ominus}(T) = \Delta_{\mathrm{fus}}H^{\ominus}(T) + \Delta_{\mathrm{vap}}H^{\ominus}(T)$	Same temperature	2

TOPIC 1E Chemical change

Property	Equation	Comment	Equation number
Standard reaction enthalpy	$\Delta_{\rm r} H = \sum_{\rm Products} v H_{\rm m} - \sum_{\rm Reactants} v H_{\rm m}$	Definition	1a
	$\Delta_{\rm r} H^\ominus = \sum_{\rm Products} v \Delta_{\rm f} H^\ominus - \sum_{\rm Reactants} v \Delta_{\rm f} H^\ominus$	Calculation	1b
Heat capacity difference	$\Delta_{\mathbf{r}} C_p^{\Theta} = \sum_{\text{Products}} v C_{p,\mathbf{m}}^{\Theta} - \sum_{\text{Reactants}} v C_{p,\mathbf{m}}^{\Theta}$	Definition	2b
Temperature dependence of standard reaction enthalpy	$\Delta_{\mathbf{r}} H^{\Theta}(T_{\mathbf{f}}) = \Delta_{\mathbf{r}} H^{\Theta}(T_{\mathbf{i}}) + \Delta_{\mathbf{r}} C_{p}^{\Theta} \times (T_{\mathbf{f}} - T_{\mathbf{i}})$	Kirchhoff's law; $\Delta_{\rm r} C_{\rm p}^{\ \ominus}$ independent of temperature	3

TOPIC 2A Entropy

Property	Equation	Comment	Equation number
Entropy change	$\Delta S = q_{\rm rev}/T$	Definition	1
Entropy change on heating	$\Delta S = \int_{T_i}^{T_f} (C/T) dT$		3b
	$\Delta S = C \ln(T_{\rm f}/T_{\rm i})$	If <i>C</i> independent of temperature	3c
Entropy of phase transition	$\Delta_{\rm trs} S(T_{\rm trs}) = \Delta_{\rm trs} H(T_{\rm trs}) / T_{\rm trs}$	trs = vap, fus,	4a,b
Entropy change of surroundings	$\Delta S_{\rm sur} = -\Delta H/T$	At constant pressure	5

TOPIC 2B Entropy in biology

Property	Equation	Comment	Equation number
Standard entropy of reaction	$\Delta_{\mathrm{r}} S^{\scriptscriptstyle \Theta} = \sum_{\mathrm{Products}} v S^{\scriptscriptstyle \Theta}_{\mathrm{m}} - \sum_{\mathrm{Reactants}} v S^{\scriptscriptstyle \Theta}_{\mathrm{m}}$	Definition	1
Standard entropy change of surroundings	$\Delta_{\rm r} S_{\rm sur}^{\scriptscriptstyle \ominus} = -\Delta_{\rm r} H^{\scriptscriptstyle \ominus}/T$	Constant pressure	2
Hydrophobicity index	$\pi = \log_{10}\{s(\mathrm{RX})/s(\mathrm{HX})\}$	Definition	3

TOPIC 2C The Gibbs energy

Property	Equation	Comment	Equation number
Gibbs energy	G = H - TS	Definition; also referred to as 'free energy'	3
Standard reaction Gibbs energy	$\Delta_{\rm r}G^{\ominus} = \Delta_{\rm r}H^{\ominus} - T\Delta_{\rm r}S^{\ominus}$	Definition	6a
	$\Delta_{\rm r}G^{\ominus} = \underset{\rm Products}{\sum} vG_{\rm m}^{\ominus} - \underset{\rm Reactants}{\sum} vG_{\rm m}^{\ominus}$	Calculation	6b
Maximum non-expansion work	$\Delta G = w_{\text{non-exp,max}}$	Constant temperature and pressure	7

TOPIC 3A Water in transition

Property	Equation	Comment	Equation number
Variation of Gibbs energy with pressure and temperature	dG = Vdp - SdT	Constant composition	1
Variation of Gibbs energy with pressure	$G_{\rm m}(p_{\rm f}) = G_{\rm m}(p_{\rm i}) + (p_{\rm f} - p_{\rm i})V_{\rm m}$	Incompressible substance	3
	$G_{\rm m}(p_{\rm f}) = G_{\rm m}(p_{\rm i}) + RT \ln(p_{\rm f}/p_{\rm i})$	Perfect gas	4

TOPIC 3B The thermodynamic properties of water

Property	Equation	Comment	Equation number
Clapeyron equation	$\mathrm{d}p/\mathrm{d}T = \Delta_{\mathrm{trs}}H/T\Delta_{\mathrm{trs}}V$		1
Clausius-Clapeyron equation	$d \ln p/dT = \Delta_{\text{vap}}H/RT^2$	Vapour is a perfect gas	2
Capillary rise	$h = 2\gamma/\rho gr$	Hemispherical meniscus	3

TOPIC 3C The thermodynamic description of aqueous solutions

Property	Equation	Comment	Equation number
Chemical potential	$\mu_{J}(g) = \mu_{J}^{\scriptscriptstyle \ominus}(g) + RT \ln(p_{J}/p^{\scriptscriptstyle \ominus})$	Perfect gas	2b
Raoult's law	$p_{\mathrm{w}} = x_{\mathrm{w}} p_{\mathrm{w}}^*$	Ideal solution	3
Chemical potential of water	$\mu_{\rm w}(\rm aq) = \mu_{\rm w}^*(\rm l) + RT \ln x_{\rm w}$	Ideal solution	4a
	$\mu_{\mathbf{w}}(\mathbf{a}\mathbf{q},h) = \mu_{\mathbf{w}}^{*}(\mathbf{l}) + RT \ln x_{\mathbf{w}} + M_{\mathbf{w}}gh$	In a gravitational field	4b
Henry's law	$[S] = K_{\rm H} p_{\rm S}$	Ideal-dilute solution	5
Chemical potential of solute	$\mu_{\rm S}(\rm aq) = \mu_{\rm S}^* + RT \ln([\rm S]/c^{\circ})$	Ideal-dilute solution	6a
	$\mu_{\rm S}({\rm aq}) = \mu_{\rm S}^{\star} + RT \ln{\rm [S]} + zF\phi$	In electric field	6c
Activity	$a_{\mathrm{W}} = \gamma_{\mathrm{W}} x_{\mathrm{W}}$	Of water	8
	$a_{\rm S} = \gamma_{\rm S}[{\rm S}]/c^{\rm \Theta}$	Of solute	8

TOPIC 3D Water at equilibrium in solution

Property	Equation	Comment	Equation number	
Elevation of boiling point	$\Delta T_{\rm b} = K_{\rm b} b_{\rm S}$	Empirical relation	1	
Depression of freezing point	$\Delta T_{\mathrm{f}} = K_{\mathrm{f}} b_{\mathrm{S}}$	Empirical relation	1	
van 't Hoff equation	$\Pi \approx [S]RT$	Ideal solution	2	
Water potential	$\Psi = (\mu_{\mathrm{W}} - \mu_{\mathrm{W}}^{\ominus})/V_{\mathrm{W}}$	Definition	3	
	$\Psi = P - \Pi + \rho_{\rm w} g h$		4	

TOPIC 4A The thermodynamic background

Property	Equation	Comment	Equation number
Gibbs energy of reaction	$\Delta_{\rm r}G = (c\mu_{\rm C} + d\mu_{\rm D}) - (a\mu_{\rm A} + b\mu_{\rm B})$	Evaluated at a specific stage of the reaction	1c
Condition for equilibrium	$\Delta_{\rm r}G=0$	Constant temperature, pressure	2
Standard Gibbs energy of reaction	$\begin{split} \Delta_{t}G^{\ominus} &= \{cG_{\mathrm{m}}^{\ominus}(\mathbf{C}) + dG_{\mathrm{m}}^{\ominus}(\mathbf{D})\} \\ &- \{aG_{\mathrm{m}}^{\ominus}(\mathbf{A}) + bG_{\mathrm{m}}^{\ominus}(\mathbf{B})\} \end{split}$	Definition	4b
Reaction quotient	$Q = a_{\rm C}^c a_{\rm D}^d / a_{\rm A}^a a_{\rm B}^b$	Definition	6
Reaction Gibbs energy	$\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\Theta} + RT \ln Q$		7
Equilibrium constant	$K = Q_{\text{equilibrium}} = (a_{\text{C}}^{c} a_{\text{D}}^{d} / a_{\text{A}}^{a} a_{\text{B}}^{b})_{\text{equilibrium}}$	Definition	8
Thermodynamic relation	$\Delta_{\rm r}G^{\ominus} = -RT\ln K$		9
Condition for <i>K</i> becoming >1	$T = \Delta_{\rm r} H^{\Theta} / \Delta_{\rm r} S^{\Theta}$	For an endothermic reaction	10

^{*} The definitions refer to a reaction of the form a A + b B \rightarrow c C + d D.

TOPIC 4B The standard reaction Gibbs energy

Property	Equation	Comment	Equation number
Standard Gibbs energy of reaction	$\Delta_{\mathrm{r}}G^{\ominus} = \sum_{\mathrm{Products}} v G_{\mathrm{m}}^{\ominus} - \sum_{\mathrm{Reactants}} v G_{\mathrm{m}}^{\ominus}$	Definition	2
	$\Delta_{\rm r}G^{\ominus} = \sum_{\rm Products} v \Delta_{\rm f}G^{\ominus} - \sum_{\rm Reactants} v \Delta_{\rm f}G^{\ominus}$	Implementation	4
Relation between standards	$\Delta_{\rm r}G^{\ominus\prime} = \Delta_{\rm r}G^{\ominus} + 7\nu RT \ln 10$	For reactants + $v H_3O^+ \rightarrow \text{products}$	5
Relation between equilibrium constants	$K' = K \times 10^{-7v}$	For reactants + $v H_3O^+ \rightleftharpoons products$	7

^{*} Quantities without a prime refer to conventional (thermodynamic) standard states; those with a prime refer to biochemical standard states (pH = 7).

TOPIC 4C The response of equilibria to the conditions

Property	Equation	Comment	Equation number
van 't Hoff equation	$\ln K_2 = \ln K_1 + (\Delta_r H^{\Theta}/R)(1/T_1 - 1/T_2)$	Integrated form	3

TOPIC 4E Proton transfer equilibria

Property	Equation	Comment	Equation number
рН	$pH = -log_{10} \ a_{H_3O^+}$	Definition	2
Acidity constant	$K_{\rm a}=a_{{\rm H}_{\rm s}{ m O}^*}a_{{ m A}^-}/a_{{ m HA}}$	Definition	3a
	$pK_{a} = -\log_{10} K_{a}$		4
Basicity constant	$K_{\rm b} = a_{\rm HB^+} a_{\rm OH^-} / a_{\rm B}$	Definition	5a
Relation between constants	$pK_a + pK_b = pK_w$	Conjugate acid/base pair	7b
Autoprotolysis	$pH + pOH = pK_w$		8
pH of amphiprotic salt	$pH = \frac{1}{2}(pK_{a1} + pK_{a2})$	Approximate relation	9
Fraction deprotonated	$f_{ m deprotonated} = { m [A^-]}_{ m at\ equilibrium} / { m [HA]}_{ m as\ prepared}$	Definition	10a
Fraction protonated	$f_{\text{protonated}} = [\text{HB}^+]_{\text{at equilibrium}} / [\text{B}]_{\text{as prepared}}$	Definition	10b

^{*} For ideal solutions, replace $a_{\rm J}$ by [J]/ c^{\ominus} .

TOPIC 4F Buffer solutions

Property	Equation	Comment	Equation number
Henderson-Hasselbalch equation	$pH = pK_a - \log_{10}([acid]/[base])$	Ideal solution; [acid] and [base] little changed from 'as prepared'.	1

TOPIC 4G Ligand binding equilibria

Property	Equation	Comment	Equation number
Fractional saturation	$f = N_{\text{bound}}/N_{\text{p}}$	Definition	1a
	$f = [L]/(K_{\rm d}c^{\ominus} + [L])$	One ligand type	1b
Scatchard equation	$f/[L] = 1/K_{\rm d}c^{\Theta} - f/K_{\rm d}c^{\Theta}$		2
Relation between equilibrium constants	$K_{\rm d} = \hat{K}_{\rm d}/N_{\rm sites}$	For first ligand binding	4
Microscopic binding	$\hat{f} = [L]/(\hat{K}_{d}c^{\ominus} + [L])$		5a
	$f=N_{ m sites}\hat{f}$		5b
Measure of cooperativity	$g = \Delta_{\text{bind}} G^{\ominus}(L' \text{ to PL}) - \Delta_{\text{bind}} G^{\ominus}(L' \text{ to P})$	g = g'	7
	$g' = \Delta_{\text{bind}} G^{\ominus}(\text{L to PL'}) - \Delta_{\text{bind}} G^{\ominus}(\text{L to P})$		
Multisite binding	$\ln\{f/(n-f)\} = n\ln([L]/c^{\Theta}) - \ln K_{d}$		9
Polydentate binding	$K_{\mathrm{d}}(\mathrm{L}-\mathrm{L}') = K_{\mathrm{d}}(\mathrm{L})K_{\mathrm{d}}(\mathrm{L}')$	Independent centres	10

TOPIC 5A Ion transport across membranes

Property	Equation	Comment	Equation number
Activity coefficient	$\log_{10} \gamma = -Az^2 I^{1/2}$	Limiting law	3
Ionic strength	$I = \frac{1}{2} \sum_{i} z_i^2 c_i / c^{\circ}$	Definition	4
Extended Debye-Huckel equation	$\log_{10} \gamma^{\prime} = -Az^2 I^{1/2} / (1 + BI^{1/2})$		5a
Davies equation	$\log_{10} \gamma = -Az^2 I^{1/2} / (1 + BI^{1/2}) + CI$	Empirical constants	5b
Electrochemical potential	$\mu_{\rm J} = \mu_{\rm J}^{\circ} + RT \ln a_{\rm J} + z_{\rm J} F \phi$	Definition	8
Permeability coefficient	$P_{\rm J} = D_{\rm J} K_{\rm J} / L$	Definition	15

TOPIC 5B Electron transfer reactions

Property	Equation	Comment	Equation number
Relation between the cell potential and $\Delta_{\rm r} G$	$-vFE_{ m cell} = \Delta_{ m r}G$	Reversible conditions	2
Standard cell potential	$E_{ m cell}^\circ = -\Delta_{ m r} G^\circ / v F$	Definition	3a
Nernst equation	$E_{\rm cell} = E_{\rm cell}^{\circ} - (RT/\nu F) \ln Q$		3b
Equilibrium constant	$\ln K = vFE_{\text{cell}}^{\circ}/RT$		4
Electrode potentials	$E_{ m cell} = E_{ m R} - E_{ m L}$	Definition	5
Biochemical standard potential	$E^{\circ}'(\operatorname{Ox}/\operatorname{Red}) = E^{\circ}(\operatorname{Ox}/\operatorname{Red}) - 7\nu_{p}RT(\ln 10)/\nu F$		6
Equilibrium constant	$\ln K_1 = v\{E^{\circ}(A_{ox}/A_{red}) - E^{\circ}(B_{ox}/B_{red})\}F/RT$	Reaction 1	7a
	$\ln K_2 = v_a v_b \{ E^{\circ} (A_{ox}/A_{red}) - E^{\circ} (B_{ox}/B_{red}) \} F/RT$	Reaction 2	7b
Standard reaction entropy	$\Delta_{\rm r} S^{\circ} = v F \mathrm{d} E_{\rm cell}^{\circ} / \mathrm{d} T$		8
Standard reaction enthalpy	$\Delta_{\rm r} H^{\circ} = -v F(E_{\rm cell}^{\circ} - dE_{\rm cell}^{\circ}/dT)$		9

TOPIC 5C Electron transport chains

Property	Equation	Comment	Equation number
Reaction Gibbs energy	$\Delta_{r}G = -vF\{E(Ox_{2}/Red_{2}) - E(Ox_{1}/Red_{1})\}$	Matching electron numbers	1a
	$\Delta_{\rm r}G = -v_{\rm a}v_{\rm b}F\{E(B_{\rm ox}/B_{\rm red}) - E(A_{\rm ox}/A_{\rm red})\}$	Based on individual half-reactions	1b
Gibbs energy gradient	$\Delta G_{\rm m} = F\Delta\phi - RT(\ln 10)\Delta pH$		2b
Proton motive force	$\Delta p = -\Delta G_{\rm m}/F$	Definition	3a
	$\Delta p = (RT/F)(\ln 10)\Delta pH - \Delta \phi$		3b

TOPIC 6A Reaction rates

Property	Equation	Comment	Equation number
Instantaneous reaction rate	v(J) = d[J]/dt	Definition	1b
Unique rate	$v = (1/v_{J}) d[J]/dt $	Definition	Summary of 2
Reaction order	$\nu = k_{\rm r}[A]^x[B]^y \cdots$	<i>x</i> th-order in A, <i>y</i> th-order in B, and overall order $x + y + \cdots$	Summary of 4

TOPIC 6B The rate laws of single-step reactions

Property	Equation	Comment	Equation number
Concentration of reactant	$[A] = [A]_0 - k_r t \text{ for } k_r t \le [A]_0,$	Zeroth-order reaction	1b
	$[A] = 0 \text{ for } k_r t > [A]_0$		
	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - k_r t$	First-order reaction	3b
	$[\mathbf{A}] = [\mathbf{A}]_0 e^{-k_r t}$		3c
	$1/[A] = 1/[A]_0 + k_r t$	Second-order reaction	6b
	$[A] = [A]_0 / (1 + k_r t [A]_0)$		6c
Half-life	$t_{_{1/2}} = [A]_{_0}/2k_{_{ m r}}$	Zeroth-order reaction	In text
	$t_{1/2} = (\ln 2)/k_{\rm r}$	First-order reaction	4
	$t_{_{1/2}} = 1/k_{_{ m r}}[{{ m A}}]_{_0}$	Second-order reaction	7
Equilibrium constant	$K = k_{\rm r}/k_{\rm r}'$	First-order in both directions	11

TOPIC 6C The rate laws of multi-step reactions

Property	Equation	Comment	Equation number
$A \xrightarrow{k_{r,1}} I \xrightarrow{k_{r,2}} P$	$[A] = f_A(t)[A]_0, f_A(t) = e^{-k_{r,l}t}$		1a
	[I] = $f_1(t)$ [A] ₀ , $f_1(t) = (k_{r,1}/(k_{r,2} - k_{r,1}))(e^{-k_{r,1}t} - e^{-k_{r,2}t})$		1b
	$[P] = f_P(t)[A]_0, \qquad f_P(t) = 1 + (1/(k_{r,2} - k_{r,1}))(k_{r,i}e^{-k_{r,2}t} - k_{r,2}e^{-k_{r,i}t})$		1c
Time at which [I] is greatest	$t_{\text{max}} = (1/(k_{\text{r},2} - k_{\text{r},1})) \ln(k_{\text{r},2}/k_{\text{r},1})$		2
A and HA different reactivities	$1/k_{\rm r,eff} = 1/k_{\rm r,2} + [{\rm H_3O^+}]/K_{\rm a}k_{\rm r,2}$	A active	10a
	$1/k_{\rm r,eff} = 1/k_{\rm r,2} + K_{\rm a}/k_{\rm r,2}[{\rm H_3O^+}]$	HA active	10b
Kinetic control	$[P_2]/[P_1] = k_{r,2}/k_{r,1}$		11

TOPIC 6D The values of rate constants

Property	Equation	Comment	Equation number
Activation and diffusion control	$k_{\rm r} = k_{\rm a} k_{\rm d} / (k_{\rm d}' + k_{\rm a})$		1
Diffusion control	$k_{\rm r} = k_{\rm d}$	$k_{\rm a} >> k_{\rm d}'$	2a
Activation control	$k_{\rm r} = k_{\rm a} k_{\rm d} / k_{\rm d}'$	$k_{\scriptscriptstyle m a} << k_{\scriptscriptstyle m d}'$	2b
Temperature coefficient	$Q_{10}(T) = \nu(T + 10 \text{ K})/\nu(T)$	Definition	4a
	$Q_{10}(T) = k_{\rm r}(T + 10 {\rm K})/k_{\rm r}(T)$	For reactions with rate law $v = k_{\rm r}[{\rm A}]^{\rm x}[{\rm B}]^{\rm y}$	4b
Arrhenius law	$\ln k_{\rm r} = \ln A - E_{\rm a}/RT$	General form	5b
	$k_{\rm r} = A {\rm e}^{-E_{\rm a}/RT}$	Alternative form	5c
Temperature coefficient and activation energy	$\ln Q_{10}(T) = (E_a/RT)\{1 - T/(T + 10 \text{ K})\}$	For reactions that follow the Arrhenius law	6b
Eyring equation	$k_{\rm a} = \kappa (kT/h)K^{\ddagger}$	Transition-state theory	8
Activation Gibbs energy	$\Delta^{\ddagger}G^{\ominus} = -RT \ln K^{\ddagger}$	Definition	9a
Activation enthalpy and entropy	$\Delta^{\ddagger}G^{\ominus} = \Delta^{\ddagger}H^{\ominus} - T\Delta^{\ddagger}S^{\ominus}$	Definition	9b
Kinetic isotope effect	$k_{\rm r}({\rm H})/k_{\rm r}({\rm D}) = {\rm e}^{\delta E/RT}$	$E_{\rm a}$ is increased to $E_{\rm a} + \delta E$	11
Kinetic salt effect	$\log_{10} k_{a} = \log_{10} k_{a}^{o} + 2Az_{A}z_{B}I^{1/2}$	Dilute solution (low ionic strength)	12

TOPIC 7A Enzyme action

Property	Equation	Comment	Equation number
Molar rate	$v_{\mathrm{m}} = \mathrm{d}n_{\mathrm{p}}/\mathrm{d}t$	Definition; $v_{\rm m} = V v$	1a
Specific rate	$v_{ m s} = v_{ m m}/m_{ m E}$	Definition	1c
Specific activity	$a_{\rm s} = v_{\rm s,max}$	Definition	1d
	$a_{\rm s} = v_{\rm max}/M[{\rm E}]_{\rm total}$		1e
Michaelis constant	$K_{\rm M} = (k_{\rm r,1}' + k_{\rm r,2})/k_{\rm r,1}$	Definition	2
Michaelis-Menten equation	$v = v_{\text{max}}[S]/(K_{\text{M}} + [S])$		5a
Lineweaver–Burk equation	$1/\nu = 1/\nu_{\text{max}} + K_{\text{M}}/\nu_{\text{max}}[S]$		6
Fractional rate	$ u/ u_{ m max} = f_{{ m ES}_1 { m S}_2}$	Ternary complex mechanism	9
Turnover frequency	$k_{\mathrm{cat}} = k_{\mathrm{r,2}} = v_{\mathrm{max}}/[\mathrm{E}]_{\mathrm{total}}$	Michaelis–Menten model, $k_{\text{cat}} = Ma_{\text{s}}$	14
Catalytic efficiency	$\eta = k_{ m cat}/K_{ m M}$	Michaelis-Menten model	15

TOPIC 7B Enzyme inhibition

Property	Equation	Comment	Equation number
Inhibition parameters	$\begin{split} &\nu_{\rm max}^{\rm inhibited} = \nu_{\rm max}/(1+[{\rm I}]/K_{\rm d,ESI}) \\ &K_{\rm M}^{\rm inhibited} = \{(1+[{\rm I}]/K_{\rm d,EI})/(1+[{\rm I}]/K_{\rm d,ESI})\}K_{\rm M} \end{split}$	Definition; pre-equilibrium approximation	1
Rate with inhibition	$v = v_{\text{max}}^{\text{inhibited}}[S]/(K_{\text{M}}^{\text{inhibited}} + [S])$	Definition; pre-equilibrium approximation	2a
Lineweaver–Burk equation with inhibition	$1/\nu = 1/\nu_{\text{max}}^{\text{inhibited}} + (K_{\text{M}}^{\text{inhibited}}/\nu_{\text{max}}^{\text{inhibited}}) \times 1/[S]$		2b
	y-intercept = $(1 + [I]/K_{d,ESI})/\nu_{max}$ slope = $(1 + [I]/K_{d,EI})K_{M}/\nu_{max}$		2c

TOPIC 7C Diffusion in biological systems

Property	Equation	Comment	Equation number
Flux	$J = N/A\Delta t$	Definition	1a
Fick's first law	$J = -Ddc/dx J_{m} = -Ddc_{m}/dx$		2
Diffusion equation	$\partial c/\partial t = D\partial^2 c/\partial x^2$	In one dimension	3
Diffusion coefficient	$D = D_0 e^{-E_a/RT}$	Activated process	5
Stokes-Einstein relation	D = kT/f	f is the frictional coefficient	6
Frictional force	$\mathcal{F} = fs$		7
Stokes' law	$f = 6\pi\eta a$	<i>a</i> is the hydrodynamic radius	-
Mean square distance	$\langle r^2 \rangle^{1/2} = (6Dt)^{1/2}$	Random walk in 3D	8
Einstein-Smoluchowski equation	$D = d^2/2\tau$		9
Drift speed	$s = ez \mathcal{E}/f$	In an electric field ${\cal E}$	10a
Electrophoretic mobility	$s = u\mathcal{E}$	Definition	10b
	$u = ez/6\pi\eta a$	Assuming Stokes' law	10c
Partition constant	$\kappa = [A]_{\text{outer}}/[A]_{\text{bulk}}$	Definition	13
Diffusion flux	$J_{\rm m} = (\kappa D/L)[{\rm A}]_{\rm bulk}$	Linear gradient	14a
Net diffusion flux	$J_{\rm m} = (D/L)(\kappa_{\rm outer}[{\bf A}]_{\rm bulk,outer} - \kappa_{\rm inner}[{\bf A}]_{\rm bulk,inner})$		14b
	$J_{\rm m} = P_{\rm A}({\rm [A]}_{\rm bulk,outer} - {\rm [A]}_{\rm bulk,inner})$	Assumes $\kappa_{\text{outer}} = \kappa_{\text{inner}}$	14c
Facilitated flux	$J_{\rm m} = J_{\rm m,max}[A]_{\rm bulk}/([A]_{\rm bulk} + K_{\rm d})$		15

TOPIC 7D Electron transfer

Property	Equation	Comment	Equation number
Gibbs energy of activation	$\Delta^{\ddagger}G^{\circ} = (\Delta_{\text{reorg}}G^{\circ} + \Delta_{\text{r}}G^{\circ})^{2}/4\Delta_{\text{reorg}}G^{\circ}$	$D + A \rightarrow D^+ + A^-$	3
Rate constant	$k_{\rm r} = \kappa (kT/h) {\rm e}^{-\beta r} {\rm e}^{-\Delta^{\natural} G /RT}$	Transition-state theory	4
Experimental test	$\ln k_{\rm r} = -\beta r + {\rm constant}$	For molecules with a fixed r	5
Marcus cross-relation	$k_{\rm r,et} = (k_{\rm r,DD} k_{\rm r,AA} K_{\rm DA})^{1/2}$	Assumes $Z_{\mathrm{DA}}/(Z_{\mathrm{DD}}Z_{\mathrm{AA}})^{1/2} \approx 1$	7

TOPIC 8A The principles of quantum theory

Property	Equation	Comment	Equation number
Bohr frequency condition	$\Delta E = h v$	h is Planck's constant	1
de Broglie relation	$\lambda = h/p$		3
Schrödinger equation	$-(\hbar^2/2m)(\mathrm{d}^2\psi/\mathrm{d}x^2) + V\psi = E\psi$	$\hbar = h/2\pi$	4a
	$\hat{H}\psi = E\psi$	\hat{H} is an operator	4b
Position-momentum uncertainty relation	$\Delta p \Delta x \ge \frac{1}{2} \hbar$		5

TOPIC 8B The quantum mechanics of motion

Property	Equation*	Comment	Equation number
Particle in a box			
Energy	$E_n = n^2 (h^2 / 8mL^2)$	One dimension	la
Wavefunction	$\psi_n(x) = (2/L)^{1/2} \sin(n\pi x/L)$		1c
Angular momentum	J = pr	In 2D	7
Rotation in 2D	$E_{m_l} = m_l^2 \hbar^2 / 2I$		10
Rotation in 3D	•		
Energy	$E_{l,m_l} = l(l+1)\hbar^2/2I$		12
Angular momentum	$J = \{l(l+1)\}^{1/2} \hbar$		13a
z-Component	$J_z = m_l \hbar$		13b
Hooke's law	Restoring force = $-k_{\rm f}x$		14a
Parabolic potential energy	$V(x) = \frac{1}{2}k_{\rm f}x^2$		14b
Harmonic oscillator	$E_{\nu} = (\nu + \frac{1}{2})h\nu, \nu = (1/2\pi)(k_{\rm f}/m)^{1/2}$		15

 $^{^{\}star}$ For allowed values of the quantum numbers, see the preceding table.

TOPIC 8C Atomic orbitals

Property	Equation	Comment	Equation number
Energy levels	$E_{n,l,m_l} = -Z^2 \mathcal{R} / n^2$	Independent of l , m_l	2
Wavefunctions	$\psi_{n,l,m_l}(r,\theta,\phi) = \psi_{l,m_l}(\theta,\phi)\psi_{n,l}(r)$		3
Radial distribution function	$P(r) = 4\pi r^2 \psi^2$	For s orbitals	6

TOPIC 9B Molecular orbital theory: diatomic molecules

Property	Equation	Comment	Equation number
Linear combination	$\psi = c_{A} \psi_{A} + c_{B} \psi_{B}$	$c_{\rm A}^2 = c_{\rm B}^2$ in a homonuclear diatomic molecule	1a
Overlap integral	$S = \int \psi_{\rm A} \psi_{\rm B} d\tau$	Integration over all space	2
Bond order	$b=\frac{1}{2}(n-n^*)$	Definition	4

TOPIC 10A Molecular interactions

Property	Equation	Comment	Equation number
Coulomb potential energy	$E_{\mathrm{p}} = Q_{\mathrm{l}}Q_{\mathrm{2}}/4\pi\varepsilon r$	$\varepsilon = \varepsilon_{\mathrm{r}} \varepsilon_{\mathrm{0}}$	1b
Dipole moment and electronegativity	$\mu/D \approx \Delta \chi$	Pauling electronegativities	2
Charge-dipole interaction	$E_{\rm p} = -(\mu_1 Q_2 / 4\pi \varepsilon_0 r^2) \cos \theta$	Orientation as in (7)	4b
Dipole-dipole interaction	$E_{\rm p} = (\mu_1 \mu_2 / 4\pi \varepsilon_0 r^3)(1 - 3\cos^2 \theta)$	Orientation as in (8)	5
	$E_{\rm p} = -2\mu_{\rm l}^2\mu_{\rm l}^2/3(4\pi\varepsilon_{\rm 0})^2kTr^6$	Rotating molecules	6
Polarizability	$\mu = \alpha \mathcal{E}$	Definition	7
Polarizability volume	$\alpha' = \alpha/4\pi\varepsilon_0$	Definition	8
Dipole-induced-dipole interaction	$E_{ m p} = -\mu_{ m l}^2lpha_{ m 2}'/4\piarepsilon_0 r^6$		9
London formula	$E_{\rm p} = -\frac{3}{2} (\alpha_1' \alpha_2' / r^6) I_1 I_2 / (I_1 + I_2)$	Dispersion interaction	10a
Lennard-Jones (12,6) potential energy	$E_{\rm p} = -A/r^6 + B/r^{12}$	$A = 4\varepsilon\sigma^6$ and $B = 4\varepsilon\sigma^{12}$	12

TOPIC 10B Macromolecular structure

Property	Equation	Equation number
Distribution of ends	$f(r) = 4\pi (a/\pi^{1/2})^3 r^2 e^{-a^2 r^2}, \ a = (3/2Nl^2)^{1/2}$	1
Contour length	$R_{\rm c} = Nl$	2
Root mean square separation	$R_{ m rms}=N^{1/2}l$	3
Radius of gyration	$R_{\rm g} = (N/6)^{1/2} l$	4
Conformational entropy	$\Delta S = -\frac{1}{2} Nk \ln\{(1+v)^{1+\nu} (1-v)^{1-\nu}\}, \ v = \delta L/R_c$	5a

^{*} All the entries refer to a fully flexible three-dimensional chain with N links of length $l\!.$

TOPIC 10C Conformational stability and molecular aggregation

Property	Equation	Comment	Equation number
Cooperativity modelling	$K_{\text{intra}}(i) = K_{\text{inter}} \{X\}_{\text{effective}} C_{\text{f}}^{i-1} / c^{\ominus}$		4
Gibbs-Helmholtz equation	$d(G/T)/dT = -H/T^2$		5
Surfactant packing parameter	$N_{ m s} = V_{ m tail}/A_{ m head}l_{ m tail}$	Definition	7

TOPIC 10D Computer-aided simulation

Property	Equation	Comment	Equation number
Contribution to the conformational energy	$E_{\rm p,stretch} = \frac{1}{2} k_{\rm f,stretch} (R - R_{\rm e})^2$	Bond stretching	1
	$E_{ m p,bend} = {1\over 2} k_{ m f,bend} (heta - heta_{ m e})^2$	Bond bending	2
	$E_{\text{p,torsion}} = \frac{1}{2} A \{ 1 + \cos\left(n\phi - \phi_0\right) \}$	Bond torsion	3
	$E_{ m p,electrostatic} = Q_{i}Q_{j}/4\piarepsilon r_{ij}, arepsilon = arepsilon_{ m r}arepsilon_{0}$	Electrostatic interactions	4
	$E_{ m p,Lennard-Jones} = -A_{ij}/r_{ij}^6 + B_{ij}/r_{ij}^{12}$	Dispersive and repulsive interactions	5
	$E_{\rm p,H-bond} = -C_{ij}/r_{ij}^{10} + D_{ij}/r_{ij}^{12}$	Hydrogen bonding	6

TOPIC 11A General features of spectroscopy

Property	Equation	Comment	Equation number
Beer-Lambert law	$I = I_0 10^{-\varepsilon[J]L}$	Uniform composition	3
Absorbance	$A = \log_{10}(I_0/I)$	Definition	4a
Transmittance	$T = I/I_0$	Definition	4b
Transition dipole moment	$oldsymbol{\mu}_{ ext{fi}} = \int \! \psi_{ ext{f}} oldsymbol{\mu} \psi_{ ext{i}} \mathrm{d} au$	Definition	9
Rate of stimulated absorption	$Rate = N_1 B_{1 \to u} I(v)$		10a
Rate of stimulated emission	$Rate = N_{\rm u} B_{\rm u \to i} I(\nu)$		10b
Relation between coefficients	$A_{u\to l} = (8\pi h v^3/c^3)B_{u\to l}, \ B_{u\to l} = B_{l\to u}$		11

TOPIC 11B Vibrational spectroscopy

Property	Equation	Comment	Equation number
Vibrational energy levels	$E_{\nu} = (\nu + \frac{1}{2})h\nu, \ \nu = 0, 1, 2, \dots$	Harmonic approximation	2a
	$v = (1/2\pi)(k_{\rm f}/\mu)^{1/2}, \ \mu = m_{\rm A}m_{\rm B}/(m_{\rm A}+m_{\rm B})$		2b
Selection rule	$\Delta \nu = \pm 1$		3
Number of normal modes	$N_{\rm vib} = 3N - 6$	Nonlinear molecules	5
	$N_{\rm vib} = 3N - 5$	Linear molecules	

TOPIC 11D Photoactivation and its consequences

Property	Equation	Comment	Equation number
Primary quantum yield	$\phi_{\scriptscriptstyle m E} = N_{\scriptscriptstyle m E}/N_{ m photonsabsorbed}$	E denotes an event [definition]	1
	$\phi_{\scriptscriptstyle m E} = u_{\scriptscriptstyle m E,induced}/I_{ m abs}$	Implementation	3
Fluorescence lifetime	$ au_{ ext{F,0}} = 1/(k_{ ext{F}} + k_{ ext{ISC}} + k_{ ext{IC}})$	No quencher	6
	$\tau_{F,Q} = 1/(k_F + k_{ISC} + k_{IC} + k_Q[Q])$	With quencher	9b
Fluorescence quantum yield	$\phi_{\text{F,0}} = k_{\text{F}}/(k_{\text{F}} + k_{\text{ISC}} + k_{\text{IC}})$	No quencher	7
	$\phi_{F,Q} = k_F / (k_F + k_{ISC} + k_{IC} + k_Q[Q])$	With quencher	9a
Concentration dependence of quenching	$\phi_{\text{F,0}}/\phi_{\text{F,Q}} = 1 + \tau_{\text{F,0}} k_{\text{Q}}[Q]$	Stern-Volmer equation	10a
Energy transfer efficiency	$\eta_{\scriptscriptstyle m T} = 1 - \phi_{\scriptscriptstyle m F,Q}/\phi_{\scriptscriptstyle m F,0}$	Definition	11
	$\eta_{\rm T} = R_0^6 / (R_0^6 + R^6)$	Förster theory	12

TOPIC 11E Nuclear magnetic resonance

Property	Equation	Comment	Equation number
Energy of nucleus in a magnetic field	$E_{m_I} = -\gamma_N \hbar \mathcal{B}_0 m_I$	$y_{\rm N}$ is the magnetogyric ratio	1
Nuclear magneton	$\mu_{ m \scriptscriptstyle N} = e\hbar/2m_{ m \scriptscriptstyle p}$	Definition	2a
Resonance condition	$hv = \gamma_N \hbar \mathcal{B}_0$, or $v = \gamma_N \mathcal{B}_0 / 2\pi$		6
Scalar spin-spin coupling	$E_{ m spin-spin} = h J m_{ m A} m_{ m X}$		10
Karplus equation	$^{3}J_{\rm HH} = A + B\cos\phi + C\cos2\phi$	Empirical	11
Enhancement parameter	$\eta = (I - I_0)/I_0$	NOE; definition	13

TOPIC 11F Electron paramagnetic resonance

Property	Equation	Comment	Equation number
Magnetic moment of electron	$\mu_z = \gamma_e s_z$, $\gamma_e = -g_e e/2m_e$	z-component	1
Energy of an electron in a magnetic field	$E_{m_s} = -\gamma_e \hbar \mathcal{B}_0 m_s$	Free electron	2
Bohr magneton	$\mu_{\scriptscriptstyle m B} = e\hbar/2m_{\scriptscriptstyle m e}$	Definition	3
Resonance condition	$hv = g \mu_{\scriptscriptstyle B} \mathcal{B}_{\scriptscriptstyle 0}$		7
McConnell equation	$a = Q\rho$	Empirical statement	11
Dipolar coupling energy	$E_{m_s(1),m_s(2)} = hDm_s(1)m_s(2),$ $hD = (\mu_0 \hbar^2 \gamma_c^2 / 4\pi r^3)(1 - 3\cos^2 \theta)$	Electrons aligned in z -direction	12

TOPIC 12A Scattering by individual molecules

Property	Equation	Comment	Equation number
Rayleigh ratio	$R(\theta) = (I(\theta)/I_0) \times r^2$	Definition	1
	$R(\theta) = KMc_{\text{mass}}$		3
Form factor	$P(\theta) \approx 1 - A \sin^2 \frac{1}{2} \theta$, $A = 16\pi^2 R_g^2 / 3\lambda^2$	$A \ll 1$	5a
Radius of gyration	$R_{\rm g} = \left((1/N) \sum_{i=1}^{N} r_i^2 \right)^{1/2}$	Definition in scattering theory	5b
Guinier approximation	$I(q) = I(0)e^{-\frac{1}{3}q^2R_g^2}$, $\ln\{I(q)/I(0)\} = -\frac{1}{3}q^2R_g^2$	$q = (4\pi/\lambda)\sin\tfrac{1}{2}\theta$	7
Intensity correlation function	$g_2(\tau) = \langle I(t)I(t+\tau)\rangle/\langle I(t)\rangle^2$	Definition	8

TOPIC 12B Cooperative scattering: X-ray diffraction

Property	Equation	Comment	Equation number
Separation of planes	$1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$	Orthorhombic lattice	1
Bragg's law	$\lambda = 2d\sin\theta$		2a
Structure factor	$F_{hkl} = \sum\limits_{j=1}^{N} f_{j} \mathrm{e}^{\mathrm{i}\phi_{hkl}(j)}$,	Definition	3
	$\phi_{hkl}(j) = 2\pi(hx_j + ky_j + lz_j)$		
Fourier synthesis of electron density	$\rho(\mathbf{r}) = (1/V) \sum_{h,k,l} F_{hkl} e^{-i\phi_{hkl}(\mathbf{r})}$	V is volume of unit cell	4b

TOPIC 13A Ultracentrifugation

Property	Equation	Comment	Equation number
Sedimentation constant	$S = s/r\omega^2$	Definition	1
	$S = (1 - \rho v_s) MD/RT$	Based on Stokes-Einstein equation	2
Equilibrium distribution	$\ln c(r) = \ln c(r_0) + \{(1 - \rho v_s)M\omega^2/2RT\}(r^2 - r_0^2)$		3

