Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 1
The foundations of quantum mechanics

All the following material © P.W. Atkins and R.S. Friedman.

Exercises

1.1 (a) [(f+ g)dx =[ fdx + | gdx; linear.
(b) (F+ )" = + g2 nonlinear.
(€) f(x+a)+gx+a)=f(x+a)+g(x+a); lincar.
(d) f(=x) + g(=x) =f (=x) + g(-x); linear.
Exercise: Repeat the exercise for (a) differentiation, (b) exponentiation.
1.2 (a) (d/dx)e™ = ae™; €™ is an eigenfunction, eigenvalue a.
(d/dx)e™ = 2axe™ = 2a{xe™}; ™ not an e.f.
(d/dx)x =1; x not an e.f.
(d/dx)x* = 2x; x* not an e.f.
(d/dx)(ax + b) = a; ax + b not an e.f.
(d/dx)sin x = cos x; sin x not an e.f.
(b) (d¥/dx?)e™ = a’e™; e is an eigenfunction, eigenvalue a*.
(d¥/dx®)e™ = 2ae™ + 4a*x*e™; ™ not an e.f.
(dz/dxz)x =0=0x;xisane.f;e.v.1is 0.
(d¥/dx*)x* =2; x* not an e.f.
(d¥/dx})(ax + b) =0 = O(ax + b); ax + b is an e.f; e.v. is 0.

2 PN . . . .
(d°/dx")sin x = —sin x; sin x is an e.f.; e.v. is —1.

Col p.1



Atkins & Friedman: Molecular Quantum Mechanics 5e

Exercise: Find the operator of which e™ is an eigenfunction. Find the eigenfunction of

the operator ‘multiplication by x*’.

1.3

(m|4 + 1B|n) = (m|A|n) + i(m|B|n)
= (n|d|m)* + i{n|B|m)* [4, B hermitian, eqn 1.26]

= {(nld|m) = i(n|Blm)} * = (n|ld — iB|m)*.

Hence, A — iB is the hermitian conjugate of 4 + iB (and A4 + iB is not self-conjugate,
another term for hermitian).

Exercise: Confirm that x + (d/dx) and x — (d/dx) are hermitian conjugates.

1.4 If the maximum uncertainty in the position x of the electron is Ax, the minimum

uncertainty in the momentum p, will be given by AxAp, = %h. Since the electron is

confined to the linear box, Ax = 0.10 nm. Therefore

h

Apy = -
P A

~1.055x107* Js
2x0.10x107° m

=53x10"kgms™'

(a) Since p, = m.v, the uncertainty in the velocity is

Av=Ap./m.
=(53x 10" kgms )/(9.109 38 x 107" kg)

=58x10°ms”!
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(b) Since, Ex = p)%/Zme

AEx = (Ap)*12me
=(53x 10" kgms (2 x9.109 38 x 107! kg)

=15x107"7

Exercise: If the length of the box is doubled to 0.20 nm, what are the minimum
uncertainties? If a proton is confined to a linear box of length 0.20 nm, what are the

minimum uncertainties?

1.5

Use the integral
6

J.xz sin axdx = 1x° + (1/4a3){% sin(2ax) — ax cos(2ax) — a’x” sin(2ax)}

(= (IL) [ 3 sin® (e /L)dx = L 1P {1 - 3/ 20°7%))

= L107{1- (387}

Since the particle is equally likely to be found in the right-hand side of the box
(between L/2 and L) and in the left-hand side of the box (between 0 and L/2), the

average value < x> = L/2 for all values of n. Therefore,

Axn: {<x2>n_ <x>i}1/2 — {%Lz_(l/znzTCZ)Lz_ %LZ}I/Z

= (L/23){1=(6/n*n*)}"?

Ax, = (L/243){1-(3/2n%)}"?

As for the momentum, the intuitive solution is {(p), = 0 because the wavefunction is a

standing wave. The elegant solution is
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(p) = (n|p|n) = (n|p|ny* [hermiticity] = (n|p*|n) = ~(n|p|n)[p* = —p].

Therefore since (p) = —(p), (p) = 0.

The straightforward solution is:

(PYn = (Wi)2/L) j: sin(nmx / L)(d / dx) sin(nme / L)dx

= (2h/AL)(nT/L) IOL sin(nmx/ L)cos(nnx/ L)dx =0

Also, note that

(p*)n = 2mE, = n*h*/AL*

Thus, Api= PP — (p)a}"? =(p*),* = nhi2L
Therefore:

A Ap, = (LI2~3){1 = (6/n*n?)y *(nh/2L)

= (/43 {1 = (6/* 1)} Ph = (nm /31— (6/n>m* ) > (1] 2)

AoAps = 2 r/N3) {1 = (327 A(1/2) = 3.3406(h/2) > h/2

as required. As n increases, the uncertainty product Ax,Ap, increases.
Exercise: Repeat the calculation for the mixed state y; cos S+ ys sin f.
What value of f minimizes the uncertainty product?
1.6 To use the Born interpretation to find the probability, we need to first normalize the

wavefunction, y(x) = Ne . Normalization requires that
® ok (P A2 -4xq.
-[o w ¥y dx _.[0 Ne "dx =1

which yields N = 2. The probability of finding the particle at a distance x > 1 is given by
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1.7

1.8

1.9

Probability = le(Ze_zx)zdx

-4
=€

Exercise: Suppose that the particle is now described by the unnormalized wavefunction

w(x) = e . Between 0 and what other distance is the probability of finding the particle

equal to 1 ?

Use eqn 1.44. Since . = (4/i)(0/04), V(#) = V, a constant, and H = (1/2mr?) 122 + 7
[H, L] = (12m )12, L] + [V, L] = 0 {[V, I.] o« dVIdg= 0},

Hence, (d/df){l.)=0

Exercise: Find the equation of motion for the expectation value of /, for a particle on a
vertical ring in a uniform gravitational field. Examine the equations for small
displacements from the lowest point.

The most probable location is given by the value of x corresponding to the maximum

(or maxima) of | Mz; write this location x.. In the present case

| ‘//12 — N2x2 efxz/l"2

(d/dx)| = N {2xe™™ = 2(3/THe ™™ = 0 at x = x.

Hence, 1 — x2/T*=0, s0 x, =+

Exercise: Evaluate N for the wavefunction. Consider then another excited state wave-

function {2(x/T")* — 1}e™"*"*, and locate x..
Base the answer on |y4* = (b*/n)e >”". The probability densities are
(a) [W0)f = b’/ = 1/(53 pm)’m =2.1 x 10°° pm>

(b) |y(r=1/b, 6, p* = (b’/m)e > =2.9 x 10" pm ™

col p.5



Atkins & Friedman: Molecular Quantum Mechanics 5e

[The values of #and ¢ do not matter because i is spherically symmetrical.] The

probabilities are given by
P - J‘VOll.lIl’lCll/zc{Z- ~ | l// |2 5V

because |y’ is virtually constant over the small volume of integration 6V = 1 pm’.
Hence:
() P=[p(0) oV =2.1x10";

(b) P=|y(1/b, 6, )|V =29 x 10"

Problems
11 (a)
(pxy oc {sin(mx/L) ‘% sin(mx/L))
oc (sin(mx/L)|cos(mx/L)) = 0
(b)

(p2y=2m(T)=2mE [V=0] [seeeqn 2.30]

2
:2m[ L 2] [for n = 1] = h*/AL*
8mL

Alternatively, integrate explicitly.
Exercise: Evaluate (2) ( p2 ), (b) ( p).
14 (a) [4,B]=AB—BA=—(BA—-AB)=—[B, 4]

(b) [Am, An] :AmA}’l _AnAm :AWH-}’I _Am+n — 0
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(©)

[4%, B] = AAB — BAA = ABA + (AAB — ABA) — ABA + (ABA — BAA)

= A[A, B] + [4, B]A

(d)

[4, [B, C]] + [B, [C, A]] + [C, [4, B]]
=(ABC — ACB — BCA + CBA) + (BCA — BAC — CAB + ACB)

+(CAB — CBA — ABC + BAC) =0

Exercise: Express [4%, B*], [4°, B], and [4, [B, [C, [D, E]]]] in terms of individual

commutators.

1.7 Find a normalization constant N such that eqn 1.18 is satisfied.

2 AR (2T T . ® 9 dbr
flwPdr =N [Tdg[ sinodo| e dr
= N*{2n} {2} j:rze-z’”dr = 47N> {2!/(2b)*}
= N*n/b’.

Hence N = (193/75)1/2 =1.5x10° m?>?

Consequently, y= (b*/m)"%e ™"

Exercise: w depends on Z as ¢ “". Find N for general Z.

1.10 (a) [1/x, py]; use the position representation.
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[1/x, pd =[x, (W/i)d/dx] = (A/) {x ' (d/d) — (d/dw)x "}
= (h/i) {x"(d/dx) — (dx"/dx) — x~'(d/dx)}
= —(h/)(dx"/dx) = (/x>
(b)
[1x, p2]=[x", —A*(d*/dx*)]

= 1 {x (d¥/dx?) — (d¥/dxP)x "

= —1* {x (d*/dx?) — (d/dx)[(dx"/dx) + x ' (d/dx)]}

= 1 {x N(d¥/dx?) — (d/dx)[—x 2 + x (d/dx)]}

= 1 {x (d¥/dx?) + (dx*/dx) + x2(d/dx)

—(dx/dx)(d/dx) — x7'(d¥/dx?)}
= 1 {-2x7 + 2x72(d/dx)}

= 21°/x° — 21X (i/h)pe = 20/ x*)(h —ixp.)

(©)

[xpy — YD, YP- — ZDy]
= [xpy, yp:1 — [xpy» 2Dy] — P, Y0:2] + [P, 2Dy
= x[pya yIp:—0 -0+ piy, py]Z

= x(=ih)p: + p(ih)z = in(zp, —xp.)

(d)
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[x*(8°/0y*), y(8/0x)]
= X*(8°10y*)(0/0x) — y(0/0x)x* (D0
= xX(8/ox) (v )y — (8/ox)x* (D 0y7)
= xX(3/ox)(0/dy) {1+ W(8/0y)} — {2x + xX(8/ox) }(6%/6)*)
= XX(0/6x) {2(8/dy) + W80V} — 2x(8°18y%) — X2 (Dlox)(6°16y7)
= 2x%(8/6x)(0/0y) — 2x(&*10y")

= 2x%(8%/0x0y) — 22D 16v7)

Exercise: Evaluate [x)(6%/0xdy), x(8%/0y°)].
1.13 Use the correspondence in Section 1.5.

(@)

T = p*/2m = —(h*/2m)(d*/dx?) in one dimension.

T =p*2m = —(B*2m){(&*/ox") + (8*1dy%) + (6°/6°)}

= —( #2m !Vz in three dimensions.

(b) 1/x — multiplication by (1/x)

() u= ZQ,. r, — multiplication by ZQl.rl.

(d)

L. = xp, — ypx = (/i) {x(0/0y) — ¥(0/0x)}

= (h/1)(0/0¢) for x =r cos ¢, y =r sin ¢

(e) &*=x*—(x)* > multiplication by {x* — (x)*}
» =p’ - (p) > (-7 (@/ox’) - ()}

Exercise: Devise operators for 1/, xp,, and .
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1.16 Take HW= x(6°¥/of%). Because H has the dimensions of energy, x must have the
dimensions of energy x time’, or ML”. Try ¥ = w#, with H an operator on x, not . The
equation separates into Hy = Ey, d?@/d¢* = (E/x)6. The latter admits solutions of the

form @ o cos(E/x)"?t. Then
[19/ dre [ly [ decos™(E/x)"t

which oscillates in time between 0 and 1; hence the total probability is not conserved.

1.19 (@)

el =(1+4+14+. )A+B+1B+..)
=1+A+B)+ 1A +24B+ B +. ..

=1+ A+B)+ LA+BY +. ..
=1+(A+B)+ LA +AB+BA+B)+...

Therefore, ¢'e® = % only if AB = BA, which is so if [4, B] = 0.

(b) If [4, [4, B]] = [B, [4, B]] =0, then
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e =1+U+B)+ 1L +4B+B4A+B)
+(1/31)(A° + A*B + ABA + BAA + BBA + BAB + ABB + B*) + . ..
=1+(+B)+ 1> +24B+B%) - 1[4, B]
+(1/31)(4° +34°B+34B° + B') - L (4 + B)[4, B] +. ..
_ eAeBe_%[A’B]

Therefore, ¢'e® = ¢"%¢/ where =14, B]/2.

Exercise: Find expressions for cos 4 cos B and cos A4 sin B, where A and B are

operators such that
[4, [4, B]] = [B, [4, B]] = 0

(Use cos 4 = L (e +e™), etc.)

1.22 (d/de)(Q) = (i/ A)Y([H, Q) [eqn 1.44].

For a harmonic oscillator, H = pf 2m + %kf x*, and

[H,x]=[p}/2m,x] =G h /m)p,  [Problem 1.11]
[H, p] =1 kex?, pd =il kex [Problem 1.11]

(d/dn)(x) = (I m)(p,) 5 (d/dD)px) = —kp x)

Therefore
(d*/df)x) = (1/m)(d/dt)(p.) = —( kelm)(x)

The solution of (d*/df)(x) = —( ke/m)(x) is

Col p. 11



Atkins & Friedman: Molecular Quantum Mechanics 5e

(x) =A cos @t + B sin ok, @ = ke /m

(p) = m(d/de)(x) = —Amo sin wt + Bmo cos wt

which is the classical trajectory.
Exercise: Find the equation of motion of the expectation values of x and p for a quartic

oscillator (V o x*).

1.25 (=1 *2m)(d*P/dx%) + V()Y =1 h (5W/01).

(a) Try ¥ = m(x)A1), then

(~h2myy "0+ VeyyO=ih w dadt

—(R*2m)(w " w) + V() — ik (d@ldr) (1/6) =0
By the same argument as that in Section 1.14, (-4 2/2171)(1//"/ y) = & a constant; hence
w"=-Qme h)y (1.1)
14 (d@dr) (1/6) — V(t) = &, the same constant; hence
(d/df)In =+ V(t)/i h (1.2)

(b) Equation (1) has the solution w=Ae™ + Be™™, k= 2me/ %)
Equation (2) has the solution In 8 (¢) =1n 8(0) — (i/ /) | f) {e+ (0} dt

Therefore, on absorbing In £ (0) into 4 and B,

¥ = y(x) exp % i(e /M)t —(i/h) jO‘V(t)dz}
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Let ¥(¢) = V cos a, then | f) V(6)dt = (V/ ) sin ax, so

W = y(x)exp{—i(gh)t — i(V/ h ) sin ot}

The behaviour of the real and imaginary parts of ¥ (essentially the functions cos(7

= yY(x)(cos ¢—1isin @), p= &t/h + (V/ h @) sin at.

+ sin 7) and sin( 7 + sin 7)) is shown in Fig. 1.1. The dotted line is cos(7 + sin 7) and

the full line is sin( 7 + sin 7).

0.5

SIN(T + Sin T) ~

0 \__
COS(T + SN T)~
—0.5
=)
0 15 20

Figure 1.1: The real (dotted line) and imaginary (full line) components of V.

(c) Note that [¥* = | p(x)|*, and so it is stationary.
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Exercise: Consider the form of W for an exponentially switched cosine potential

energy, V() =V (1 - e_’/T) cos at, for various switching rates.

1.28 Fromeqn 1.44,

d{x) i

wra E([H.x])

The commutator has been evaluated in Problem 1.11(b):

h
H =—
([H,2]) = —p
and therefore
d(x) _ (px)
de m

which is eqn 1.47.
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