Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 2

Linear motion and the harmonic
oscillator

All the following material © P.W. Atkins and R.S. Friedman.

Exercises

2.1 For the energy in (a) use E = eV.
(a) k=(2meev/h})"? =(5.123 x 10° m ") x (V/Volt)".
() V=10V;k=5123x10°m "' =5.123 nm™';

wx) = A exp{5.123 i(x/nm)}, A = 1/L"?, L — .

i) v=10kV; k=5.123 x 10" m' = 0.5123 pm™";
p

wx) =4 expi0.5123 i(x/pm)}

b) Because p = (1.0 g) x (10 ms ) =1.0x 102 kgms ',
( p g g

k=p/hleqn 2.7] = 9.48 x 10> m™'; hence

wx) = A exp{9.48i x 10*! (x/m)}

Exercise: What value of V is needed to accelerate an electron so that its wavelength is
equal to its Compton wavelength?
2.2 In each case |y(x) 2= 4* aconstant (4° = 1/L; L — o)

2.3 Substituting eqn 2.5 for y in eqn 2.4 yields:

h? d2 . . h?k? . .
_%E(Aelkx-l‘ Be—lkx) — - (Aelkx-l- Be—lkx)

confirming that the wavefunction is an eigenfunction with eigenvalue 4*%*/2m. The
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relation between & and E given in eqn 2.5 then follows. Similar substitution of eqn 2.6 for

w in eqn 2.4 yields:
hz dz 21,2
oIt (Ccoskx + Dsinkx) = o (Ccoskx + Dsinkx)

and the wavefunction is seen to satisfy eqn 2.4.

2.4 The flux density for the wavefunction A4 sinkx is, using eqn 2.11,

. 1 (hk . hk
J (Asinkx) = v (TA*smkxAcoskx + —_AsmkxA*coskx) =0

2.5  Use the expression as given in the brief illustration in Section 2.7 for the penetration
depth 1/x:

1 h

x {am(y - E)}”

1.055x107*Js
{2x9.109x 10 kg x (2.0 eV — £)x1.602x 10 J/eV |'*
=4.0x10""m

Solving for the kinetic energy yields £=1.76 eV.

2.6 The transmission probability is given in eqn 2.26. Using the Worksheet entitled Equation
2.26 on the text’s website and setting
m = m (so that m/m=1)
E =Vy=2.0eV (so that E/Ey, = Vi/Ey = 0.073499)
£=1.0x10"m™" (so that B/(1/ag) = 0.529177)
yields T =6.361 x 10"

2.7 wi=(2/L)"” sin(4mx/L) = 0 when x = 0,4L,1L,2L,L, of which the central three are

nodes.
Exercise: Repeat the question for n = 6.

2.8 To show that the n = 1 and »n = 2 wavefunctions for a particle in a box are
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orthogonal, we must evaluate the integral

L

f 2 (T[x) 2 (21Tx)d —0
LSlIl I LSlIl I X =

0]

The integral can be evaluated using mathematical software or standard integration tables
and does indeed vanish.
2.9 The wavefunction for a particle in a geometrically square two-dimensional box of length

L is given by (see eqn 2.35)

2 . (mmx) . (n,my
X,y)=—sin sin
Vo, (5:7)= 7 ( 7 j ( 7

(a) Nodes correspond to points where the wavefunction passes through zero. For (i)

ny =2, np = 1, this occurs at points (x,y) such that x = L/2. For (ii)) ny =3, n, =2,
this occurs at points (x,)) such that x = L/3 or 2L/3 and at points (x,y) such that y
=L/2.

(b) Maxima in the probability densities occur where y* is maximized. For (i) n; =2,

ny = 1, this occurs at points (x,y) such that x = L/4 or 3L/4 and y = L/2. For (ii) n,

= 3, np = 2, this occurs at points (x,y) such that x = L/6, L/2 or 5L/6 and y = L/4 or
3L/4.

2.10 The energy of a particle in a three-dimensional cubic box is given by:

W (nl n: nl
gy ZQ{L_Z+L_22+L_32 n, =1,2,... n, =1,2,... ny =1,2,...

The lowest energy level corresponds to (n; = n2 = n3 = 1) and equals 34%/8mL?*. Three

times this energy, that is 94%/8mL?, can be achieved with the following sets of
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2.11

2.12

AE =

quantum numbers:

(l’l1:2,l’l2:2,l’l3=l)
(n1=2,n2=1,n3=2)
(n1=1,n2=2,n3=2)

Therefore the degeneracy of the energy level is 3.

The harmonic oscillator wavefunction is given in eqn 2.41. Nodes correspond to those
points x such that the Hermite polynomial H,(ax) vanishes. Using Table 2.1, we seek

values of z = ax such that 4z> — 2 = 0. This equation is satisfied by

and therefore x = a/N2 and x = —a/\2.
The energy levels of the harmonic oscillator are given by 2.40. The separation

between neighboring vibrational energy levels v and v +1 is given by

275 Nm™1
1.33 x 10~ Z5kg

k
hw = h Ef = 1.055 x 10~3%Js x = 4.797 x 10721]

Equating this with the photon energy /c//. yields a wavelength of 4.14 x 10° m and a

corresponding wavenumber of 1/(4.14 x 10 cm) =241 cm "

Problems

2.1 See Fig. 2.1.
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Wa\eﬁmctton

(a) Potential energy
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Figure 2.1: The wavefunction in the presence of various potentials.

Exercise: Sketch the general form of the wavefunction for a potential with two

parabolic wells separated and surrounded by regions of constant potential.

2.4 From eqns 2.12 and 2.13,
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W(x, 1) = [ ()W, (v.0)dk = AB[ " explike — ik*ht/ 2m}dk
W(x, 0) = 4B [ exp ikr}dk
(v, 0) =AB[ " expliky}
_ (4Blix) {ei(k+;Ak)x _ei(k—;Ak)x}
— (4Be*ix) {eim’“ - e‘im} = 24B(e™ sinL Akx)/x
P(x, 0)° = 44°B {sin( L Akx)/x}’

For normalization (to unity), write AB = N; then

[lwpdr =an? fw{sm(gmoc)/x}zdx = 2N?Ak Ijow(sinz/z)zdz [z =1 Akx]
= 2N’Akn = 1; hence N = (2Akm) 2
Therefore, ¥(x,0) = (2/Akm)"* (" sin L Akx)/x
[P(x, 0)° = (2/Akm)(sin L Akx/x)’
(0, 0)* = (2/Akm) lim (sin L Aexlx)® = (2/Akm)(L Akx/x)?
= (2/Akm)(AK/2)* = Ak/(2T)

We seek the value of x for which [¥(x, 0)]*/|¥(0, 0)f = 1; that is

{sinAAk)/x}> |
(Ak?

or
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sin%Akx_ 1

LAk 2

which is satisfied by %Akx =11.392 [solve numerically]. Hence the probability density

falls to one half its value at x = 0 when x = £2.784/Ak. From the uncertainty principle
ApAx > %h, so AkAx > %, and hence Ax > 0.5/Ak which is in accord with Ax = 2 x

2.784/Ak.

Exercise: Examine the properties of a Gaussian wavepacket in the same way.

2.7 Consider the zones set out in Fig. 2.5; impose the condition of continuity of yand ' at

each interface.

I Il I
© yy

A 4

0 L X

Fig 2.5 The zones of potential energy used in Problem 2.7.

v, =Ade™ +Be ™, k* =2mE/h’ o
wy =Ae* +Be™ k' =2m(E-V)/h’ 4

win = A"e™ [no particles incident from right]
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(1) A+ B=A4"+ 5, [from y4(0) = wi(0)]
2) At 4 Bt = gttt [from yii(L) = win(L)]
(3) kA-kB=kKA' -Kk'B, [from y{(0) =y (0)]
(4) kA" — kB'e ¥ = kq"e™ [from (L) = wi;(L)]
From (1) and (3):

A=10+pa+1Q-pBB=10-pa+L11+pB

From (2) and (4)
A" =4 ei(k’—k)L + B e—i(k’+k)L
7 A" = A ei(k’—k)L _B e—i(k’+k)L
SO
LA+ par =4 L1 - par=pre @O
Then

A"l {(1+ }/)2 o kL _ (1- 7/)2 eik’L} — 4y 4
A"A=2ye ™/ {2ycos KL —i(1 + y?)sin k'L}
The transmission coefficient (or tunnelling probability) is

P=|4"P/\A]* = |4"/4F

=4y /{4y* + (1 — y*Y’sin® KLY, y* = EE - V)

Exercise: Find the transmission coefficient for a particle incident on a rectangular dip

in the potential energy.
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2.10 Use the normalized wavefunctions in eqn 2.31:

Wy = (/L)' sin(nmx/L); also use

Isinz axdx = §x — (1/4a) sin 2ax

L 1
@ P,= IéL widx=(2/L) If)L sin’(nmx/L)dx = 1 for all

(b) P, = I8 y2dv = 2/L) [ sind(nmx/Lydx = 11— (2/ an)sin(L nm)}

Py =1 {1 - (2/m)} =0.090 85

(©

Po= [ y2de=2/ D[ sin® (nr / Lydx

1 1
EL—é'x EL—é'x

= (2/L){x — (L2mn)cos(nm)sin(2nmdx/L)}

= (2/L){éx — (=1)"(L/2mn)sin(2nmdx/L)}

Py =(2/L){ox + (L2m)sin(2rox/L)} = 4ox/L when ox/L << 1

Note that

lim P, = (a) $, (b) %, (c) 26¥/L

the last corresponding to a uniform distribution (the classical limit).
Exercise: Find P, (and P;) for the particle being in a short region of length dx centred

on the general point x.
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2.13 Use the wavefunction y;, = (2/L)1/ ? sin(nmx/L) and the integral

Ixsinz axdx = (1/4a”){a’x" - ax sin(2ax) — 1 cos(2ax)}

L 5 L .2
() = jo xy/ndx=(2/L)jo xsin®(nmx / L)dx

= (LI2n*7*) {n*1* — nm sin(2nm) — 1[cos(2nm) — 1]} = 1L

The result is also obvious, by symmetry.
Exercise: Evaluate {(x) when the particle is in the normalized mixed state y; cos £+

y, sin f. Account for its dependence on the parameter f.
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2.16 Refer to Fig. 2.8. Consider the case £ < V.

I II I

Figure 2.8: The zones of potential energy used in Problem 2.16.

wi=Ae ™ + Be™, K =2m(V - E)/h*
Wi = Ae® + B’e_”‘x, K = 2mE/n*
yin=A"e ™ + B"e", K =2m(V - E)/h*

Because y < « everywhere, 4 = 0, B” = 0 [consider x — —oo and x — oo respectively].

At the interfaces of the zones:
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5e

vi (0/yi(0)=-xA-B)(A+B)=k [4=0]
i (0)/yu(0) = ik(4' - B')(4' + B')
wi (D) yi(L) = ik(A'e™ — B'e™)/(4'e™ + B'e ™)
wi (L)Y yin(L) = —x(4"e”" — B"e*)/(4"e¢ ™ + B"e™) = —k

Because y//is continuous at each boundary,

(A" = BY(A' + B') = ik = ~itk=—iy [y=w/k]

A'e™ — B'e ™ )4’ + B'e ) = — ik = itk = iy
This pair of equations solves to
(1+ipd' =1 -ipB, (1-ipd'e™ =1 +ipBe™
It follows that

(1 — ) sin kL — 2y cos kL = 0, or tan kL = 2y/(1 — %)

Then, since
tan kL = 2 tan(§ kL)/[1 — tanz(% kL)], tan($kL)=y
Consequently,
cos(S kL) = 1/(1 + /) = nki(2m)'?
Therefore,

kL =2 arccos{hk/CmV)"*} +nn, n=0,1,. ..

But arccos z = %n — arcsin z, SO

co2 p. 12
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kL + 2 arcsin{ hk/CmV)"*} =nn, n=1,2,...
Solve this equation for & by plotting y = kL and
y=nn -2 arcsin( R’ K*2mV)"? forn=1,2,. ..

and finding the values of k at which the two lines coincide, and then form E, = h*k*/2m
for each value of n. This procedure is illustrated in Fig. 2.9 for the special case V' =
225R%/2ml>, so, with kL = z, y=zandy=nn -2 arcsin z/15, E, = Zf (h2/2mL2) with z,
the intersection value of n. (Because E < V, z < 15.) We findz=2.9, 5.9, 8.8, 11.7 for n
= 1,2, 3, 4; hence E/(h*/2mL*) = 8.4, 35,77, 137 forn=1, 2, 3, 4.

12

When V is large in the sense 2mV >> h’k*, arcsin(h*k*/2mV)"* ~ 0. Hence the equation

to solve is kL = nm. Consequently £, = n*h*/8mL? in accord with the infinitely deep

square-well solutions.
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Figure 2.9: The determination of allowed energies.

Exercise: First consider the special case V' = 6h%/2mL*, and find the allowed solutions.

Then repeat the calculation for an unsymmetrical well in which the potential energy

rises to V on the left and to 4/ on the right.

W (n? n? W n?
1 2 2

where A = L/L,. Therefore, if 1 is an integer, the states (n;, 1) and (An,, ni/4) are

degenerate.

(b) The states related by the relation in (a) are doubly degenerate.
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2.22 The Schrodinger equation is
—(B’2m)(d* pldx®) + Lk y=Ey

172

Substitute y = (me/h)"*x with & = k¢ /m; then ' — y*y=—Ay, with A =E/L hewand

‘/// — d2 !///dyz

—2/2.,

Substitute eqn 2.41: = N,H,e

(X (He??) - P He " = —AH, e >

Use
(/) He*?) = (H) -2y H| - H, +y’H,)e>"
=y H! -2vH,-2yH! — H,+y*H,)e>"* [given]
= (’H,— (2v+ D)H,}e”*"?
Then

OPH, — (2v +D)H, - VH e = —AH e

soA=2v+1,0rE= 3 Q2v+)ho=(v+ §)ho, as required.

2.25 (a)
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A [ .2
@+ 1) = NeaNoa > [ Ho yH, (e dy - [y = ax]
= @ "Nealo | H {5 H oy +vH, e dy  [Table 2.1]

=3 NNy fw Hle™ 2dy [orthogonality]

= LNy N 227 (v + 1)
a2 2" (v+1)! 1

= = v+1)"?
2 a2 2" v+ DY 2a @+D

(b)
(v +2|x2|v> =N,oN,a> J.jo Hv+2y2Hve_y2dy
_ 0 )
= 3NV+2NV_|.7va+2y{%Hv+1 + Vval}e 7 dy
= a*3NV+2NVEOwHV+2{iHV+2 +3vH, +TvH, + vsz_z}e_yzdy
_ 1,73 C o2 :
= 7 NN, J: H; ,e™" dy [orthogonality]

= 107N, oNom?2"%(v +2)! [Table 2.1]

3 a_37'£1/22V+2(v+2)!
4427722 (v+2)la 2m?

=la?{(v+2)(v+ 1)}

Exercise: Evaluate (v +3 |x3|v> in the same way.

2.28 According to classical mechanics, the turning point x;, occurs when all the energy of the

oscillator is potential energy and its kinetic energy is zero. This equality occurs when

E_l

-1 2E)1/2

2 —
kexép, or X = (k—f
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Since we are only considering the stretching of the harmonic oscillator beyond the
classical turning point, we only choose the positive square root for x;,. The probability
P of finding the ground-state harmonic oscillator stretched beyond a displacement x;,
is given by:
P= f Y2 dx
Xtp

Using eqn 2.41 and the Hermite polynomial Hin Table 2.1, we obtain:

o)

P=—v [e@g
=7z | e X

Xtp
The turning point can be expressed in terms of «, using (i) the definition of o in eqn
2.41 and (ii) the ground-state energy E = Yliw = Yhi(kgm)"?. This results in Xp = 1/a.
Now introduce the variable y = ax so that dy = adx, y* = o’x* and Yip=oxyp = 1. The

above integral then becomes, in terms of the variable y:

The above integral is related to the error function given in the Problem, and using the

value of erf 1 given:

P=—5 [l e dy=-(1—erf1) = (1 -08427)

ml/2

The probability is 7.865 x 1072,

2.31 The wavefunction y(x) is given as a sum of normalized particle-in-a-box eigenfunctions
uiu(x). Therefore, according to quantum mechanical postulate 3’, a single measurement

of the energy yields a single outcome which is one of the eigenvalues £, (associated
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with the eigenfunction i, appearing in the expansion of ). The probability of
obtaining £, is |c,,|2 where ¢, is the coefficient of 1, in the expansion.
(a) When the energy of the particle is measured, possible outcomes are

n? 9h* 25h°
E, = > E3= 2 57 2
8mL 8mL 8mL

(b) The probability of obtaining each result is

lei = (173" =1/9 for E,
les* = (i/3)F=1/9  for E3

lesP = [(7/9)*P=7/9  for Es
(c) The expectation value is the weighted sum of the possible eigenvalues:

185h°

E,+1E =—0
39T i

1p 1
g B+

Exercise: If the linear momentum of the particle described above were measured, what

would we expect to find?
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