Chapter 4
Angular momentum

All the following material © P.W. Atkins and R.S. Friedman.

Exercises
4.1 Since [, = zp, — xp-and . = xp,, — ypx, one commutator is [/, [.] = [zpx — xp-, xp, — yp«].
Since in any representation, the operators x, y, z all commute and similarly the operators

Dx» Dy, p- all commute, this commutator is

[y, L] = (zpxxpy— Xpszpy) — (xppy = ppyXX) ~ (2VpaPx = Papazy) + (PP~ PDXY)
Since, again in any representation, y commutes with p, and p., x commutes with p, and p.,

and z commutes with p, and p,, the above expression simplifies to

[y, L] = —zpy[x.px] =0 — O + yp:[x,py]
In both the (a) position representation and (b) the momentum representation, [x,p,] = i/ so
[, L] = ih(=zp, + yp:) = ikl
Similarly,
[z L] = Depy = yp yp=— 2Dy
= (pypz—yppy) = Oypp=— P=YY) ~ (X2py0y— Py0X2) + (VZDDy — PabyYZ)
=p:Lyp] =0 = 0+ zpfyp)]
= ih(—xp: + zp,) = ihl,
4.2 (L, -] =[L, I, — i) = [, L) —i[L, 1] = ikl — i(—iAly) = A(il,— 1) = —hi-
[+, -] = [l + 1l I, — i) = L, L) —i[Ls, L] + (L), L] — [, 1))
= —i(ial,) + i(=ikl,) = 2hl,

4.3  Using eqns 4.23 and 4.29:
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(@)

1
1.13,3) = (3x 4 —3 X 4)7h|3,4) =0

1 —
1_13,3) = (3 x4 —3 x2)7h|3,2) = V6 A|3,2)

(b)

1 —

1.13,-3)=(3x 4 — -3 x—2)2h|3,-2) = V6r|3,-2)
1

1_13,-3)=(3X4——3 X —4)Zh|3,—-4) =0

4.4 Using eqns 4.20 and 4.21:
(@)
j213.2) = (3 x 4)A?(3,2) = 12#%]3,2)

j=13,2) = 2h3,2)

(b)
jl1L,—1) = (1 x 2)A*[1, —1) = 2R*[1,-1)

J11, =1} = —hl1,-1)

4.5 (a) For [ =4, permitted values of m;are 0, £1, +2, +3, +4.
(b) For [=5/2, permitted values of m;are £1/2,+3/2, £5/2.
4.6 Two operators A and B are each other’s Hermitian conjugate if
{alAlb) = (b|Bla)

To confirm that s+ and s- are each other’s Hermitian conjugate, we note the following

(using eqn 4.34 and the orthonormality of the states a and f):

{als.|a) = Bls.la) = (Bls |B) = (als_la) = Lls_If) ={als_|f}) =0
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The only non-zero matrix elements are

{a|s.1By= h

(Bls_la) = h
Therefore, since 7 is real,
{als. 1By = Bls_la)

and s, and s- are each other’s Hermitian conjugate.

4.7 (a) The matrix element is
(1,0(j,11,0) = 0 X R{1,0]1,0) =0
(b) The matrix element is

(1,11j.11,0) = (L,1|[V1ix 2 —0 x 1h|1,1) = V2*
4.8 An electron has a spin angular momentum quantum number s = %2 and a quantum number
for the z-component of m;= +1/2 (« state) or my= —1/2 (f state). In general, the magnitude
of the angular momentum is given by {s(s + 1)}""*% and the z-component is mh.

Therefore, for both (a) the a state and (b) the f state, the magnitude of the spin angular

momentum is

11\, V3 e
1—(—*1) h=—h=9133x10"%]s
242 2

and for the z-component: (3) /2 =5.273 x 10° Js, (b) —=h/2 ==5.273 x 107 Js.

4.9 The three components of j are j. =i+ jox, Jjy = /1y + j2ys J- = j1- + j2-. We have shown in eqn
4.38 one of the commutation relations of eqn 4.7, namely [Jy, j,] = i%j.. The other two
commutation relations are confirmed as follows:

izl = Uy + Jovidaz + Jaz] = Uadaz] + Uawrdaz] + lizyrdaz] + Uiz dios]
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4.10

411

412

Uzl = Uz + Jozdix + Jaxd = Urzrdr] + Uszdoe] + Uazrdaed + Uszzsdze]

= ihjy, + 0+ 0+ ihj,, = ikj,

A system with two sources of angular momentum, j; = 1 and j, = 3/2 can give rise to
total angular momenta, using eqn 4.42, j = 5/2, 3/2, 1/2. States can be specified as
either
ljymyg: fampad or |jyjaiim;)
[imj1; jomp> states are |1,1; 3/2,3/2>,|1,0; 3/2,3/2>, |1,—1; 3/2,3/2>,
[1,1; 3/2,1/2>,|1,0; 3/2,1/2>, [1,—1; 3/2,1/2>,
11,1; 3/2,-1/2>,|1,0; 3/2,—1/2>,|1,-1; 3/2,-1/2>,
11,1; 3/2,-3/2>, |1,0; 3/2,-3/2>, |1,-1; 3/2,-3/2>
[fij2; jm> states are |1, 3/2; 5/2, 5/2>, |1, 3/2; 5/2, 3/2>, |1, 3/2; 5/2, 1/2>,
[1,3/2;5/2,-1/2>, |1, 3/2; 5/2, =3/2>, |1, 3/2; 5/2, =5/2>,
11,3/2;3/2,3/2>,|1, 3/2; 3/2, 1/2>, |1, 3/2; 3/2, —1/2>,
11,3/2;3/2,-3/2>,|1, 3/2; 1/2, 1/2>,|1, 3/2; 1/2, —=1/2>
For a p-electron, / =1 and s = 1/2. We can construct the state |j, m;> from the
uncoupled states |/,m;;s,m> using the vector coupling coefficients of Resource

section 2:

1172, 1/2>= (2/3)"?|1,1;1/2,-1/2> — (1/3)"2]1,0;1/2,+1/2>

Couple the three spin angular momenta s; = '2, 52 =%, 53 = "2. Coupling of s; and s,
yields angular momenta of 1 and 0. Now couple each of these values with s3.
Permitted values from coupling s; and 1 are 3/2 and 1/2, Permitted values from

coupling s3 and 0 are 1/2. So the net result is 3/2, 1/2 (twice).
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Problems

41 (a)

1, 1,] = (W/i)’[X(0/0z) — 2(8/dy), z(8ldx) — x(8/0z)]  [eqn 4.5]
= (W) {[(0/8z), 2(8/6x)] + [2(8/8y), x(8/02)]}
= (W) [(0/0z), 2)(8/0x) + x[z, (8/62))(8/6y)}

[(0/0z), z] = (0/0z)z — z(0/0z) = 1 + z(0/0z) — z(0/0z) = 1
Therefore,

[, 1] = (B/AY* {p(0/ox) — x(0/dy)} = —(h/i)l.  [eqn 4.6]

=ihl,

(b)

[, L]=[yp-— ZDy, ZPx — XP:]

= y[p- z]p« +py[z, p:)x

Therefore,
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[, L] = (—?j {=yp. +p,x}

Exercise: Evaluate [/,, /] in the position representation

4.4
] ok
IxI=11 1 I
I 1, 1
= IA (Zylz - lzly) - j (lxlz - Zzlx) + kA (lxly — Zylx)
inl= i (inl) + j (inl)+ K (iAl)

Hence, equating both sides term by term reproduces the commutation rules, eqn 4.7.
Exercise: Show that if |; x I; =ikl and |, x |, =iAl,, then | x | = iAl, where | = |; + |5,
but only if [/14, L] =0 for all g, ¢’

4.7 (a)

(b)
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4.10

4.13

2
0 1
s2=sf+s2+s22: lﬁ
d 2 1 0

The eigenvalues of s> are therefore %ﬁz : hence, identifying these with s(s + 1)h”
identified s = 1.

Exercise: Confirm that the following matrices constitute a representation of an angular

momentum with / = 1.

010 0 -1 0 10 0
L=N2)|1 0 1],,=@/ND[1 0 -1|,2.=[0 0 0
01 0 01 0 0 0 -I

Suppose [/, [,] = —1hL, [. = [ + il,; then
(L., L]=hl, [, L]=-hl,and [[", [ | = -2hl,
Then, following the development that led to eqn 4.17,

LLIL my = {LL + [L, L1}, m) = {11, — RL |1, m)

= {lumh — ALY m) = (m — DALl m)

Consequently, L |/, m) oc |[, m — 1) and L_|/, m) oc |I, m + 1); therefore [, is a lowering
operator and /_ is a raising operator.
Exercise: Find a matrix representation of these /, and /, ‘angular momenta’

corresponding to L = 1 (draw on the matrices in the Exercise to Problem 4.7).
In each case / =1 and p, = (p- —p+)/\/§ , Py =(p-+p+) (i/\/z). Thenp; — |1, 1), p- >

[1,—1) and p, — |1, 0) in the notation |/, m;). The [ label will be omitted henceforth.
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(@)

(Palllpy) = (V2) {1 = AL = 1) + |1}

= (W2){-1E = 1) = (UL} = (/2){=h - hj

= —ih
(b) Pallslpy) = W2) {1 = (U} LA - 1) +[1)} =0
(c)
(palblps) = (1/20)(1/~2 YOI = 1) 4] = 1) = 1)}
= (1/2i52 ) {(O)L.] = 1) +(OJL-|1)}
= (12iN2){aV2 + 82} =—in
(d)
(polLdpy) = (1/2)(/ N2 )OI(L + L) {] = 1) + 1)}
= (242 ) {(OIL| = 1) + KOl 1)}
=(@i2V2){hV2 + 82} =in
(e)

(P:ALdpsy = (172)(1/N2 ) 0)(L + 1) 4] = 1y — 1)}
= (1242){(0|L] — 1) = (O|L|1)} = 0

Exercise: Evaluate (p,|l_[p-), (pxy[p-), (Pxllil-|p-), and (dy)|/|d.:).

4.16

[, ] = A’[sin #0/06) + cot B cos #0/0¢), cos ¢0/06) — cot Bsin ¢ (0/09)]

= h*{[sin KB/06), cot Osin ¢ (6/04)]
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+ [cot @ cos K0/0¢), cos K0/00)] — [cot B cos ¢0/0¢), cot Bsin ¢ (0/0¢)]

+ [sin @/00), cos ¢ (2/00)]}

[sin ¥ 0/06), cos H0/00)] =0

[sin 0/06), cot @sin K0/0p)]
= sin #0/06) cot Gsin 0O/0¢) — cot Gsin HO/0¢) sin ¢0/06)
= sin” 0 cot GO6)(8/0¢) + sin’ ¢ cot AE*/0604)
— cot @sin #0 sin o) (8/d6) — cot Osin> H5°/060¢)

= — sin’¢ cosec> A 6/0¢) — cot Osin ¢ cos K/00)

[cot Bcos HO/0¢), cos K0/06)]
= cot @ cos #0/0¢@) cos #0/00) — cos #0/06) cot B cos HO/0¢)
= cot Ocos O cos ¢od)(6/00) + cot O cos>H*/d¢00)
— cos’ O cot AO)(0/0¢) — cos’ ¢ cot X060 P)

= — cot @ cos ¢sin K0/00) + cos g cosec” /O )

[cot B cos HO/O¢), cot Osin H0/0¢)]
= cot’dcos K0/04), sin H0/04)]
= cot’O{cos HO/0¢) sin HO/0¢) — sin H/DP) cos HO/Og)

= cot’O{cos” Ho/dg) + sin> (d/dP)} = cot” Ad/Dg)

[L, 1,] = h*{sin’ @ cosec’ A/d¢) + cot @sin ¢ cos K/DH)
+ cos’ ¢ cosec’ XD/dg) — cot B cos ¢sin H0/06) — cot’ Ad/OP)}
= h*{(sin’@ + cos’ g)cosec’ AD/DP) — cot* AD/0¢)}

= h’{cosec’ A0/0g) — cot’ A/0P)} = h*(0/04) = iAl.
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as required.

[@uzﬁ#-zﬂmmﬁnmf¢ﬁﬂmm&2
06 o¢p 00 o¢p

= —h*| e i+icot Hi ,e_i¢ i—icot Hi

00 o¢ 00 o

= -5 {e”’ i,e_w i} +| ' cot Gi,e_i"’ i

00 00 ol 00

- ewi,e_wi cot Gi —| i cot Hi,e_wico"ei
00 o¢ o¢ o9

= -1 {iei¢ cot Hi e Y i —ie7 i e’ cot Qi
o¢p 06 00 o¢

—ie'? i e cot Hi +ie " cot Hi e’ i
00 o¢p

op 90

+¢e'’ cot Qi e cot Qi —e Y cot 6’iei“j cot Qi
o¢ o¢ ol o¢

= K {cot Hﬁ +1 coseczé’i +1 coseczé’i
—cot Qi —2i cot? Hi
00 o¢

= —2i4*{cosec’d —cot” O} 9
o¢

=—mﬁ251
ol
=2hl,

Exercise: Evaluate [L, /] in this representation.

Co4 p. 10



4.19

A ~ ~

P K
jl ><j2: jlx jly jlz
j2x j2y jZZ

=i (1y2z = J1g2y) — J (e —jigne) + K 12y = J1y J2x)
=1 (agiy —jov1z) = 1 Gogtx —j2i2) + K Gagie —Jovi1y)
i ik

= |~Jax Ty | = —J2xJi

S Sy iz

Ixi=(i+)x(i+]2)
=hixjithxh+hxh+hxji=hxji+jax]
=1ihj, + ihj, = ihj
Exercise: Under what circumstances do j; and j, satisfy the vector relations set out in

eqn 4.9?

4.22 ji=1,j,=1 gives the states j = 2, 1. The state |j, m;) = |3, +2) is
i, mp; jo, mpp) = 11, + 15 3, +3).
Generate |3, +1) using j_ |%,%>=ﬁ\/§|%a+%> and

j— |%5%> = (jl—+j2—)|1a+1;%a+%>
= A2 |L,0;4, + Dy + AL+ 1L, 1)

2227 2

Therefore,
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A0 =J@273) 11,01, + b+ Ja73) (1,411, -1

Next, generate |— ——) by using
Jo13. 43y =24813,—3

and

Jo 134D = G+ ) (V73 1104+ b+ J173) [ L4 D)

= J2 /328,11, + Dy +[(2/3)a(1,0;1,- 1)
+JA1/3)V2A(1,0,1,-1y+0

= 2/B)a L~ + 1) + (V2 /43)]1,0,4,- 1)

Therefore,
_a__> \/(1/3 |1 925 2>+\/(2/3 |10525
We could generate | = ——) using j_ | %) or, more simply, by noting that there is

only one way to achieve this state since m; = m;, + m;,. Therefore,

The state |4,+3) is orthogonal to |3,+1) so we require

G+ L1340y = (a0, + | +b(L+ 5L, -1
{,/(2/3 ) 1L0;3,+ ) +1/3) [L,+1;4, -1 }

= J(2/3)a+/(1/3)b=0

Co4 p. 12



Therefore a = —/(1/3), b=1/(2/3) and

1L+ = —(173) [1,0,1,+ 1)+ J273) |1, +1; 1, -1

The remaining |— — ) may be generated using j_|+,+%) and yields

L= =173 [L0;3, - +—/(2/3) [L,-1;3,+3

For the matrix elements, write

| jm;) = Z c(jymy jomy | jm;) | jimy jomy )

mimy

Then

(j’,m;- | Jiz |j,mj> = z z c(jimy j,m; |j’m})c(j1mlj2m2 |jmj)<j1m1'j2m§ | iz | iy jammy )

.
mynty minty

= > > clmijymy | j'ml)e(ymy jymy | jm;)myh

T
mymy mint

5mlml mzmzﬁ Z c(jmy jymy | j'm; )C(Jlmlszz |]m ym

mnty

=5 Z c(jymy jomy ['m  )e(jymy jomy | jm;)my

mynty

Individual numerical values may now be obtained by substituting the coefficients.

Exercise: Repeat the procedure for j; =2, j, = %

4.25 Refer to Fig. 4.3.
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Figure 4.3: The construction used in Problem 4.25.

We shall interpret the question as requiring the angle between the spins projected onto

the xy-plane. The projection of a spin-1 vector (of length %\/5 ) onto the xy-plane,
given its projection of 1 onto the z-axis, is (3-1)""* =1/ 2. Similarly, the projection
of a spin-3 vector (of length %\/B ), with m, = +3,is (2 -3)"? = \/g Therefore, the

projection of the resultant of » and ¢ must account for +/3/2 —+/1/2. Consequently,

2L cos10=(3/2)2 —(1/2)"?

NG

or

J3-1 (J3-1)
2

cos%0=T,0=2arccosL J

The angle between b and c is therefore 137.06°, and that between a and ¢ (and a and b)

is one-half this angle, or 68.529°.
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For the second part, we shall calculate the actual inter-spin angle, 6, by noting that by

symmetry the angles between a, b, and c are all the same. Hence

S1+Sy+S3)-(S1+S2+S3 =S2+S2+S2 +281:S3+28S3+25 S,
1 2 3

_ 3 3 —-949
—3x4+3x2cos6’—4+zcos6’

Therefore,

Zcos @=2,s0 O =arccos(3), or 70.53°

Exercise: Show, by the second method, that for # spins, the angle between vectors is
70.53° in the state with maximum S and M for all n.

4.28

(v Jmljva; jmg)

= Z Z z z C:;’,.lmb’,.z ij,mj2 <j1m}1j2m;‘2 | jlmjljzmj2>

' '
mjl mjz mjl mjz

— %
- Z Z Z z C’"ﬁ’"}z ijlij 5’”}1’”,‘1 5’"}2’”,‘2

"
mjy My Mjy Mo

- 3T Gy = Gy P
- chmjlmjzcmjlmjz - |ij1mj2 |

Mjy mjs Mmjim;s

But {j\j2; jmjljij2; jm;) = 1, which completes the proof.
Exercise: Find a general expression for {jj»; jmj|ji-|jij2; jm;) and evaluate it for (G,

M|11.|G, My); see Problem 4.27.
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