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Chapter 5 

Group theory 

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises 

 
5.1 (a) E, σh, 2C3, 2S3, 3C2, 3σv; 

 
 (b) E, C2, σv, σ'v;  
 
(c) E, 2C6, 2C3, C2, 3C2', 3C2", i,  2S3, 2S6, 3C2, σh, 3σd, 3σv.   
 

5.2 (a)  E, C2(z), C2(y), C2(x), i, σ(xy), σ(xz), σ(yz);  
 
(b) E, C2, i, σh; 
 
(c) E, C2, i, σh. 
 

5.3 (a) D3h, (b) C2v, (c) D6h. 
 

5.4 (a) D2h, (b) C2h, (c) C2h.   
 

5.5    (a)   H2O: E, C2, 2v; hence 2 v.C  

  (b) CO2: E, C, C2  C, h; hence hD  

  (c) C2H4: E, C2, 22C    C2, h; hence 2hD  

  (d)  cis-ClHCCHCl: E, C2, 2v; hence 2vC  

5.6    (a) trans-ClHCCHCl: E, C2, h; hence 2hC  

(b) Benzene: E, C6, 26 ,C   h; hence 6hD  

(c) Naphthalene: E, C2, 22 ,C   h; hence 2hD  
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(d) CHClFBr: E; hence 1C  

(e) B(OH)3: E, C3, h; hence 3hC  

Exercise: Classify chlorobenzene, anthracene, H2O2, S8 

 5.7 (a) PF5 (pentagonal pyramid), corannulene C20H10,  
 

(b) all cis-C5H5F5 (planar), (c) Fe(C5H5)2 (staggered). 
 

5.8 Td: CH4; Oh: SF6;  I: C60. 
 

5.9 (a) The group multiplication table for Cs is as follows: 

First: E σ 

Second:   

E E σ 

σ σ E 

 
(b) The group multiplication table for D2 is as follows: 
 

First: E C2(z) C2(y) C2(x) 

Second:     

E E C2(z) C2(y) C2(x) 

C2(z) C2(z) E C2(x) C2(y) 

C2(y) C2(y) C2(x) E C2(z) 

C2(x) C2(x) C2(y)  C2(z) E 

 

5.10 We need to confirm that (RS)T  R(ST) for all elements R, S and T that appear in the 

group multiplication table for C2v in Example 5.2. 
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 (EC2)v  C2v  v    E(C2v) 

 (EC2) v    C2 v    v  E(C2 v )   

 (Ev)C2  vC2  v    E(vC2) 

 (Ev) v    v v    C2  E(v v )   

 (E V 2)C    V  C2  V  E( V  C2) 

 (E v v)    v  v  C2  E( v  v) 

 (C2v)E  vE    v    C2(vE) 

 (C2v) v    v v     E  C2(v v )   

 (C2 v )E    vE  v  C2( v )E   

 2 v v( )C     vv  E  C2( v v )   

 v v( )E     C2E  C2  v( v )E   

 v v 2( )C     C2C2  E  v v 2( )C   

Since the elements commute in the group C2v, if (RS)T  R(ST), then (SR)T  S(RT). For 

example:  

v v 2( )C    (v v )  C2  v( v  C2)  v(C2 v )    (vC2) v    v  (vC2) 

Exercise: Confirm that the elements in the C3v group multiplication table of Table 5.2 

multiply associatively. 
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5.11 Write f  (H1sA, H1sB, O2s, O2px, O2py, O2pz); then Ef  f  f1; hence D(E)  1, the 6 

 6 unit matrix. 

 C2f  (H1sB, H1sA, O2s, O2px, O2py, O2pz) 

   f 

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
  
 
 
 

  fD(C2) 

 vf  (H1sB, H1sA, O2s, O2px, O2py, O2pz) 

   f 

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 

  fD(v) 

 v   f  (H1sA, H1sB, O2s, O2px, O2py, O2pz) 

   f 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
  
 
 
 

  fD v( )   

Exercise: Replace the p-orbitals by d-orbitals, and find the matrix representation. 

5.12 
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 D(C2)D(C2)  

0 1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

   
   
   
   
       
    
   
   

 

   

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 

  D(E); reproducing 2
2C   E 

 D(v)D(C2)  

0 1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

   
   
   
   
      
    
   
   

 

   

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
  
 
 
 

  D v( );   reproducing vC2  v   

Exercise: Confirm these multiplications for the representatives constructed using d-

orbitals. 

5.13   Denote s1 + s2 as s' and s1 − s2 as s". Since  
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	ሺs',	s",	O2s,	O2p௫,	O2p௬,O2p௭ሻ	ൌ	ሺsଵ, sଶ,O2s,	O2p௫,	O2p௬,O2p௭ሻ	 

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

 

 the matrix c is given by  

ࢉ ൌ

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

 

 
 

 
              with an inverse given by  
 

ଵିࢉ      ൌ 	

1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

 

 
5.14   The representatives for C2 and σv in the basis (H1sA, H1sB, O2s, O2px, O2py, O2pz) are  

 
given in Exercise 5.11 and denoted D(C2) and D(σv), respectively. The  
 
representatives in the new basis are given by c−1 D(C2)c and c−1 D(σv)c: 
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ଶሻܥᇱሺࡰ ൌ

1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
  
 
 
 

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

ൌ

1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
   
 
  
 
 
 

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

ൌ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
  
 
 
 
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vሻߪᇱሺࡰ ൌ

1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
 

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

ൌ

1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

ൌ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

 

 
 
 

5.15 H has the full symmetry of the system [definition of symmetry operation], and so it is a 

basis for A1 or the equivalent totally symmetric irreducible representation. Therefore, 

H spans    if  spans  and  spans . But    contains A1 only if   . 

Therefore, the integral vanishes when  and  belong to different symmetry species. 

Exercise: Under what circumstances may a molecule possess a permanent electric 

dipole moment? 

 

5.16 The point group of a regular tetrahedron is Td: three-dimensional irreducible 

representations are allowed; therefore the maximum degeneracy is 3. (Accidental 

degeneracies could increase this number.) 
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Exercise: What is the maximum degeneracy of molecular obitals of (a) benzene, (b) 

anthracene, (c) an icosahedral molecule? 

5.17 (C120)  3
2sin(   120)/sin 60  0; (E)  3 

(v)  1      [because py  py, px  px, pz  pz] 

The characters for (E, 2C3, 3v) are therefore (3,0,1). Therefore, the orbitals span 

1A E.  

Exercise: What symmetry species would be spanned if the p-orbitals were replaced by 

(a) f-orbitals, (b) g-orbitals? 

5.18 Carbon dioxide is of point group Dh. The initial wavefunction is assumed to be of 

symmetry u
  (or A2u); from the character table in Resource section 1, z spans u

  (or 

A1u). By inspection of the character table, 

A2u  A1u  A2g 

Therefore, the symmetry of the excited state must be g 2g(or A ).  

Exercise: Repeat for y-polarized radiation. 

5.19 We need to show that there is a symmetry transformation of the group that transforms  
 

C3
+ into C3

−.There are three C2 rotation axes in the point group D3, each of which is its  
 

own inverse. For any of these C2 axes, the joint operation C2
−1 C3

+ C2 yields C3
−. 

Problems 

 5.1 The sums of the diagonal elements in the matrices in Exercise 5.11 are 

(E)  6, (C2)  0, (v)  2,  v( )    4 

Use eqn 5.22 in the form 
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al  (1/4){6(l)(E)  0  2(l)(v)  4(l)
v( )}   

Then 

a(A1)  1
4 {6  0  2  4}  3 a(A2)  1

4 {6  0  2  4}  0 

a(B1)  1
4 {6  0  2  4}  1 a(B2)  1

4 {6  0  2  4}  2 

Hence, the reduction is into 1 1 23A B 2B   

Draw up the following Table: 

 H1sA H1sB O2s O2px O2py O2pz 

E H1sA H1sB O2s   O2px   O2py O2pz 

C2 H1sB H1sA O2s O2px O2py O2pz 

v H1sB H1sA O2s   O2px O2py O2pz 

v   H1sA H1sB O2s O2px   O2py O2pz 

Form f(A1) by using p(A1)  1(A )1
4 ( ) .

R

R R  From column 1, 

f(A1)  1
4 {H1sA  H1sB  H1sB  H1sA}  1

2 {H1sA  H1sB} 

From column 2, find the same. From column 3, f(A1)  O2s, from columns 4 and 5 

obtain 0. From column 6, f(A1)  O2pz. Hence 

1(A ) 1
A B2{ (H1 H1 ),O2s,O2p }zs s f  

Form f(B1): only column 4 gives a non-zero quantity. 

1(B ) O2pxf  
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Form f(B2): columns 3,4,6 give zero; columns 1,2, and 5 give 

2(B ) 1
B A2{ (H1s H1s ),O2p }y f  

Only 1 2(A ) (B )
1 1andf f  involve linear combinations; the matrix of coefficients (Section 

5.6) is therefore given by 

 { 2
1 (H1sA  H1sB), 2

1 (H1sB  H1sA), O2s, O2px, O2py, O2pz} 

  {H1sA, H1sB, O2s, O2px, O2py, O2pz} 

1 1
2 2
1 1
2 2

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
  

 

Consequently, 

c  

1 1
2 2
1 1
2 2

0 0 0 0

0 0 0 0

0 0 1 0 0 0
,

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
  

    c1  

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
  
 
 
 
 
 
 

 

Then, from eqn 5.7b, showing only the H1s-combinations: 

 D(E)  
1 1
2 2
1 1
2 2

1 1 1 0 1 0

1 1 0 1 0 1

      
            

 

 D(C2)  
1 1
2 2
1 1
2 2

1 1 0 1 1 0

1 1 1 0 0 1

      
             
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 D(v)  
1 1
2 2
1 1
2 2

1 1 0 1 1 0

1 1 1 0 0 1

      
             

 

 D v( )    
1 1
2 2
1 1
2 2

1 1 1 0 1 0

1 1 0 1 0 1

      
            

 

Because these matrices are diagonal (and therefore also block-diagonal), and the 

remainder of D(R) are already diagonal, the entire representation is (block-) diagonal. 

Exercise: Consider a representation using the basis (px, py, pz) on each atom in a C2v 

AB2 molecule. Find the representatives, the symmetry-adapted combinations, and the 

block-diagonal representations. 

 

5.4 

 D( 3C (A))D( 3C  (A)) 

  

1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 0 0 0 1

     
     
     
     
     
     

  D(E) 

 D 4(S  (AC))D 3(C (B)) 

  

0 0 0 1 0 0 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 1 0 0 0

     
     
     
     
     
     

  D 4(S  (CD)) 

 D 4(S  (AC))D( 3C  (C)) 

  

0 0 0 1 0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0 1 0

     
     
     
     
     
     

  D(d(AB)) 
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Exercise: Check three of the group multiplications for the representation developed in 

the  Exercise accompanying problem 5.2. 

  

 

 5.7 (a) (A2)  (B1)  (B2) 

  (1, 1, 1, 1)  (1, 1, 1, 1)  (1, 1, 1, 1)  (1, 1, 1, 1)  (A1) 

 therefore, 2 1 2 1A B B A    in C2v 

(b) (A1)  (A2)  (E) 

  (1, 1, 1)  (1, 1, 1)  (2, 1, 0)  (2, 1, 0)  (E); 

 therefore, 1 2A A E E    in C3v 

(c) (B2)  (E1)  (1, 1, 1, 1, 1, 1)  (2, 2, 1, 1, 0, 0) 

  (2, 2, 1, 1, 0, 0)  (E2) 

 therefore, 2 1 2B E E   in C6v 

(d) (E1)  (E1)  (2, 2 cos , 0)  (2, 2 cos , 0) 

  (4, 4 cos2, 0) (4, 2  2 cos 2, 0) 

  (A1)  (A2)  (E2) 

 therefore, 1 1 1 2 2E E A A E     in Cv 

 (Alternatively:         ) 

(e) (T1)  (T2)  (E) 

  (3, 0, 1, 1, 1)  (3, 0, 1, 1, 1)  (2, 1, 2, 0, 0)  (18, 0, 2, 0, 0) 

 Decompose this using al  (1/24){18(l)(E)  6(l)(C2)} [eqn 5.23]. 

 a(A1)  (1/24){18  6}  1      a(A2)  (1/24){18  6}  1 
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 a(E)  (1/24){36  12}  2 

 a(T1)  (1/24){54  6}  2      a(T2)  (1/24){54  6}  2 

Therefore, 

1 2 1 2 1 2T T E A A 2E 2T 2T  in O        

Exercise: Analyse the following direct products: E  E  A2 in C3v, A2u  E1u in D6h, 

and 2 2
1g 2 g uT T E   in Oh. 

5.10 (a)  

  2
1 1 2a b b  : A1  A1  B1  B2  B1  B2  A2; 

1 3
2 2A  and A  may arise. 

(b) (i) a2e : A2  E  E; 1 3E and E  may arise. 

 (ii) e2 : E  E  A1  [A2]  E; 1 3 1
1 2A , A , E  may arise. 

(c) (i) a2e : A2  E  E; 1 3E and E  may arise. 

 (ii) et1 : E  T1  T1  T2; 
1 3 1 3

1 1 2 2T , T , T , and T  may arise. 

 (iii) t1t2 : T1  T2  A2  E  T1  T2; 
1 3 1 3 1 3 1 3

2 2 1 1 2 2A , A , E, E, T , T , T , and T  may 

arise. 

 (iv) 2
1t  : T1  T1  A1  E  [T1]  T2; 

1 1 3 1
1 1 2A , E, T ,  and T  may arise. 

 (v) 2
2t  : T2  T2  A1  E  [T1]  T2; 

1 1 3 1
1 1 2A , E, T ,  and T  may arise. 

(d) (i) e2 : E  E  A1  [A2]  E; 1 3 1
1 2A , A ,  and E  may arise. 

 (ii) et1 : E  T1  T1  T2; 
1 3 1 3

1 1 2 2T , T , T , and T  may arise. 

 (iii) 2
2t  : T2  T2  A1  E  [T1]  T2; 

1 1 3 1
1 1 2A , E, T ,  and T  may arise. 
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Exercise: Classify the term that may arise from d2 in R3, 11 in Cv, 2 in Dh, 1 1
g 1ue t  

in Oh, and 2
1ge  in D6h. 

 

5.13 (a) In C2v translations span A1  B1  B2; hence a 2A1 term may make a transition to A1 

 2A1  2A1, B1  2A1  2B1, and B2  2A1  2B2 and a 2B1 term may make trantitions to 

A1  2B1  2B1, B1  2B1  2A1, and B2  2B1  2A2. In Dh, translations span u
   u. 

Therefore, because u g u
        and u  g

   u, transitions to 3
u
  and 3u are 

allowed. 

(b) In C2v rotations span A2  B1  B2. Then, because A1  (A2  B1  B2)  A2  B1  

B2, transitions to 2A2, 
2B1, and 2B2 are allowed for NO2. Because B1  (A2  B1  

B2)  B2  A1  A2, transitions to 2B2, 
2A1, and 2A2 are allowed for ClO2. In Dh, 

rotations transform as g
   g, and because g

   ( g
   g)  g

   g, 

transtions to 3
g
  and 3g are allowed in O2. 

Exercise: What electric and magnetic dipole transitions may take place from the E1g, 

E2u, and B2g terms of benzene? 

 

 

5.16   For an f orbital, l = 3. We calculate the characters from eqn 5.47b with l = 3.  (a)  
 

For a C3v environment, we only consider the symmetry operations E and C3 for which  
 
angles α can be identified. This is equivalent to working in the rotational subgroup C3.  
 
For E, α = 0 and χ = 7; for C3, α = 2π/3 and χ = 1. We now use eqn 5.23 with h = 6  
 
and find a(E) = 2. We can use h = 6 because the character for σv is zero for the  
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irreducible representation E. However, since the characters for  σv are nonzero for the  
 
irreducible representations A1 and A2,

 we must revert to using the rotational subgroup  
 
C3. In this case the angles are α = 0 for E, α = 2π/3 for C3 and α = 4π/3 for C3

2; this  
 
yields characters (7, 1, 1) for (E, C3, C3

2) and use of eqn 5.23 with h = 3 (the order of  
 
the group C3) yields a(A) = 3. Therefore, the symmetry species are 3A + 2E. (b) For a  
 
Td environment, we only consider the symmetry operations E, C2  and C3 for which  
 
angles α can be identified. Therefore we work in the rotational subgroup T. For E, α =  
 
0 and χ = 7; for C3, α = 2π/3 and χ = 1; for C3

2,  α = 4π/3 and χ = 1; and for C2, α = π  
 
and χ = −1. We now use eqn 5.23 with h = 12 (for group T)  and find a(A) = 1 and  
 
a(T) = 2. Therefore, the symmetry species are A + 2T. 
 
 

5.19 We have shown in Section 5.18 that the difference between two infinitesimal rotations  
 

is equivalent to a single infinitesimal rotation and that the reverse argument implies  
 
the angular momentum commutation rules. We show here that the commutation  
 
relation [lx, ly] = iħlz and the definition of angular momentum in terms of position and  
 
linear momentum operators implies the fundamental quantum mechanical  
 
commutation rule [q, pq] = iħ and, as a result, the latter commutation rule can be  
 
considered a manifestation of three-dimensional space. We begin by expanding [lx, ly]: 

 
[lx, ly] = [ypz – zpy, zpx – xpz]  
 
           = [ypz, zpx] − [ypz, xpz] − [zpy, zpx] + [zpy, xpz] 
 
           = ypzzpx – zpxypz – (ypzxpz – xpzypz) – (zpyzpx – zpxzpy) + (zpyxpz – xpzzpy) 
 
           = ypx[pz, z] – 0 – 0 + xpy[z, pz]  
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           = [z, pz]{xpy – ypx}  
 
Since lz = xpy – ypx, the relation [lx, ly] = iħlz immediately implies that [z, pz] = iħ, the  
 
fundamental quantum mechanical selection rule. 


