Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 5
Group theory

All the following material © P.W. Atkins and R.S. Friedman.

Exercises

5.1(a) E, on, 2Cs, 2S5, 3C,, 30y
(b) E, Cs, 0y, 03
(C) E,2Cs, 2C5, C3, 3Cy", 35", i, 283, 2S¢, 3Ca, 0w, 304, 30y.
5.2 (a) E, Cx(z2), Co(y), Ca(x), i, 6(xy), o(xz), o(yz);
(b) E, Cy, i, on;
(c) E, Cy, i, on.
5.3 (a) D3y, (b) Cyy, (C) Dgp.
5.4 (2) Doy, (b) Con, (c) Con,

5.5 (a) HyO:E, Gy, 20y; hence C,,.

(b) COz: E, Cw, Cy L Cs, op; hence %

(c) CHa: E, Cy, 2C5 L Cy, o; hence %

(d) ¢is-CIHC=CHCI: E, C,, 20y; hence %
5.6 (a) trans-CIHC=CHCI: E, C,, op; hence %

(b) Benzene: E, Cs, 6C}, on; hence %

(c) Naphthalene: E, C>, 2C}, on; hence D,

Co5 p. 1



Atkins & Friedman: Molecular Quantum Mechanics 5e

(d) CHCIFBr: E; hence C,
(e) B(OH)s: E, Cs, on; hence Gy,

Exercise: Classify chlorobenzene, anthracene, H,O,, Sg
5.7 (a) PFs (pentagonal pyramid), corannulene C,0Hj,
(b) all cis-CsHsFs (planar), (c) Fe(CsHs), (staggered).
5.8 Ty4: CHy; On: SFg; I: Cep.

5.9 (a) The group multiplication table for Csis as follows:

First: E o
Second:

E E o

o o E

(b) The group multiplication table for D, is as follows:

First: E Cx(2) C>(») Cs(x)
Second:

E E Cx(2) Co(v) Ca(x)
Gi(2) Ca(2) E Ca(x) G()
&1 Ga(y) Co(x) E Cy(2)
C(x) Ca(x) Ca(y) &16) E

5.10 We need to confirm that (RS)T = R(ST) for all elements R, S and T that appear in the

group multiplication table for C,, in Example 5.2.
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(ECz)O'V = CQGV = O'\', = E(CZUV)
(EG) o, =Cyo, =ov=E(Cyo))
(EO-V)CZ = GVCQ = O'\', = E(GVCZ)

(Eov)o, =ovo, =Cr=E(ov0o))

(EG{,)CZ O'{, C2= O'V:E(O'{/ Cz)

(Eoy)o,

o,ov=C=E(0, 0v)
(Co)E=0E = o, =Cy(oE)

(C2 O-v) 0\’/ O_\’/G; =E= CZ(O-V O-\I/)

(CQO'\',)E ovE = O'V:C2(O';)E
(Cyol)o, =ovoy=E=Cy0o,0,)

(0,00)E =CE=Cr=0(0LE)

(0,0,)C, =C:Gr=E=0y(0,C,)

Since the elements commute in the group Cyy, if (RS)T = R(ST), then (SR)T = S(RT). For

example:

(0.0,)C, =(ovo,) Cr= oo, ) = o(Cro)) =(aCr) o, = o, (0,Cr)

Exercise: Confirm that the elements in the Cs, group multiplication table of Table 5.2

multiply associatively.
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5.11 Write f = (HIsa, Hlsg, O2s, O2p,, O2p,, O2p.); then Ef = f = f1; hence D(E) = 1, the 6

x 6 unit matrix.

Cof = (H1sg, Hlsa, 02s, ~02p,, ~02p,, O2p.)

0100 00
100 0 0 0
001 0 00
—f — D(C»)
000 -1 0 0
000 0 -10
000 0 0 1]

ovf = (Hl1sg, Hlsa, O2s, O2p,, —O2p,, O2p.)

=fD(av)

S O O O = O
S O O O O
S O O = O O
oS o = O O O

S O O O
_ o O O O O

=

o) f=(Hlsa, Hlsg, O2s, -O2p,, O2p,, O2p.)

=D (o))

©c o 0o o o ~
I R =)
©c o o —~ o o
|
—
o - o o o o
- o o © © ©

Exercise: Replace the p-orbitals by d-orbitals, and find the matrix representation.

5.12

CO5 p.4



Atkins & Friedman: Molecular Quantum Mechanics 5e

010 0 0 O|jlO1 0 0 0 O
1 00 0 0 0|1 00 0 0 O
D(C)D(C) = 001 0 0 O0[jOOO1T 0 0 O

000 -1 0 O0||O OO -1 0 O
000 O -1 0{jO OO 0 -10
000 0 0 1j]/0 00 0 0 1]
(1 0 0 0 0 O]

010 00O
= 00 1000 = D(E); reproducing C22 =FE
0001 0O

000 O0T1O0

100 0 0 0 1]

[0 1.0 0 0 0][0 1 0 0 0 O]

1 000 O Off1 00 O 0 O
0010 O 0fflOO1T 0 0 O

D(av)D(C2) =

0001 O 0(|lOOO0O -1 00
0000 -1 0(lOOO0O O0 -10
0000 0 1jJ]0O 00 0 0 1]

1 0 0 0 0 O]

01 0 0 0O
= 001000 =D (o), reproducing ovC> = o
000 -1 0O v Y
000 0 10

00 0 0 0 I}

Exercise: Confirm these multiplications for the representatives constructed using d-
orbitals.

5.13 Denote s; + spas s'and s; — spas s". Since
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1 1 00 00
1 -1 0 0 00
(s',s",02s,02p,, 02p,,02p,) = (s4,52,02s, 02p,, 02p,,02p,) 0 0 1000
0 0 01 00
0 0 0010
0 0 00 01
the matrix C is given by ) _
1 1 0 0 0 0]
1 -1 0 0 00O
100 1.0 00
““looo100
0 0 0010
10 0 0 0 0 1]
with an inverse given by
/2 1/2 0 0 0 0]
1/2 -1/2 0 0 0 O
1= 0 0 1 00O
0 0 01 00
0 0 0010
0 0 00 0 1]

5.14 The representatives for C; and oy in the basis (H1sa, Hlsg O2s, O2p, O2p,. O2p;) are
given in Exercise 5.11 and denoted D(C») and D(ay), respectively. The

representatives in the new basis are given by ¢ ' D(Cy)c and ¢ ' D(a)C:
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0
0

0
0

0 0 O

-1

0 0

0

-1 0 0
-1

0 0 O
0 0 0 O

0

0

0 0 0 O

o 0o 0 o O —
o 0o o0 o —~ o
o o o —~ o o
o o —~ o o o
I
_ = I S S S < S
— 7T o o o o
o o o o —~ o
—_—_ 0 O O O
| R < I )
I 1
— —
coc oo T e 470000
Scoo T oo —— 9o o oo
oo -0 oo oo oo o —~
10000000001_0
S - o o o o _
_ o oo T oo
o 0o 0 o O —
o o —~ o o o
R N i e R
o O
OOOlOO/UOOOO
—
|
o o —~ o o o
~
(@\| N
N o o o o
~ o ooo =7
1_ L
PR Il
—_—_ O O O O
p— p—

D'(C)
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[1/2 1/2 0 0 0 0][o0 1 0 0 0 OJ][1 1 0 0 0 O]
1/2 =1/2 0 0 0 0f/1 0 0 0 0 Of/1 -1 0 0 0 O
D’(JV)=0 0 1 00 O0[l0OO0O10 0 0[O O 1000
0 0 01 00[[00O0OT1 0 0/[0OO1O0O0
0 0 001 0[/[000O-10/[0 O OO0T1O0
0 0 000 1/[000O0 O 1[][0O O 00O 1
[1/2 1/2 0 0 0 O|[1 1 0 0 0 0]
~1/2 1/2 0 0 0 O[[{1 -1 0 0 0 O
{0 0o 100 0ff0 O 1000
10 0 01 0 0[|]0 0 01 0O
0 0 00 -10[l0 0O 0010
0 0 00 0 1J[0 0 00 0 1]
1 0 0 0 0 0]
0 -1 00 0 0
oo 100 0
100 01 0 0
00 00 -10
00 00 0 1]

5.15 H has the full symmetry of the system [definition of symmetry operation], and so it is a

5.16

basis for A; or the equivalent totally symmetric irreducible representation. Therefore,
WHyspans ' x I'if ' spans I’ and y spans I'. But I'" x I" contains A; only if [" =T,
Therefore, the integral vanishes when ' and w belong to different symmetry species.

Exercise: Under what circumstances may a molecule possess a permanent electric

dipole moment?

The point group of a regular tetrahedron is T7jy: three-dimensional irreducible

representations are allowed; therefore the maximum degeneracy is 3. (Accidental

degeneracies could increase this number.)

Co5 p.8



Atkins & Friedman: Molecular Quantum Mechanics 5e

5.17

5.18

Exercise: What is the maximum degeneracy of molecular obitals of (a) benzene, (b)

anthracene, (C) an icosahedral molecule?

2(Ciage) = sin(% x 120°)/sin 60° = 0; Y (E) =3

(o) =1 [because py = —py, Px = Px, P- = P:]

The characters for (E, 2Cs, 3oy) are therefore (3,0,1). Therefore, the orbitals span

A, +E.

Exercise: What symmetry species would be spanned if the p-orbitals were replaced by
(a) f-orbitals, (b) g-orbitals?

Carbon dioxide is of point group Dy, The initial wavefunction is assumed to be of
symmetry Y (or A,,); from the character table in Resource section 1, z spans 2. (or

Ajy). By inspection of the character table,

Agy x Ay = Azg

Therefore, the symmetry of the excited state must be Z, (or A,, ).

Exercise: Repeat for y-polarized radiation.

5.19 We need to show that there is a symmetry transformation of the group that transforms

C;"into C5 .There are three C, rotation axes in the point group D3, each of which is its

own inverse. For any of these C; axes, the joint operation Cz_] G C, yields C5 .

Problems

5.1

The sums of the diagonal elements in the matrices in Exercise 5.11 are

HE) =6, 1(C2) =0, x(cv) =2, (o)) =4

Use eqn 5.22 in the form
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ar= (U4 {6°(E) + 0+ 27%(&) + 44" (5))}

Then

a(A) =1 {6+0+2+4} =3a(A)=1{6+0-2-4}=0

a(B1)=%{6—0+2—4}=1a(B2)=%{6—0—2+4}=2

Hence, the reduction is into 3A; + B, + 2B,

Draw up the following Table:

Hlsp Hlsp 02s O2p, O2p, O2p;
Hlsp Hlsp 02s O2p, O2p, O2p;
Hlsp Hlsa 02s -02p, -O2p, O2p.
Hlisg Hlsp 0O2s O2p, -O2p, O2p.
Hlsa Hlsg 0O2s -02p, O2p, O2p;

FomfAl) by using P(A') = %Z ;((Al)(R)R. From column 1,
R

/A= 1 (Hlss + Hisp + Hlsp + Hlsa} = 3 {Hlss + Hlsp}

From column 2, find the same. From column 3, fA‘) = 02s, from columns 4 and 5

obtain 0. From column 6, fAl) = O2p.. Hence

f (Ap) = {% (HlSA + HISB)7 Ozsn Ozpz}

Form f®V: only column 4 gives a non-zero quantity.

f®) =02p
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Form f&: columns 3,4,6 give zero; columns 1,2, and 5 give

f (%) = (L (Hlsy —Hls, ),02p,, }

Only £ and £®* involve linear combinations; the matrix of coefficients (Section

5.6) is therefore given by

{%(HISA + Hlsg), %(HISB —Hlsa), O2s, O2py, O2p,, O2p.}

L 10000
110000
00 1000
= {H1sa, Hlsg, O2s, O2p,, O2p,, O2p.
{Hlsx, Hlsp Px, V2Py p}000100
00 0010
0 0 0 0 0 1]
Consequently,
L -1 00 0 0] 1 1.0 0 0 0]
11 0000 -1 100 00
c_[0 0 1000 |0 01000
1o 0o 01 0 0f 10 001 00
0 0 0010 0 000T10
0 0 0 0 0 1] 10 0000 1

Then, from eqn 5.7b, showing only the H1s-combinations:

L (1 D)1 0 (L -5 (1 0
PE=1_0 )l Jl 1) )
, (1 00 1L -1 (1 0)
=10 b ol )7 o)
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(

=4 )0t

N1 o) (L -1
Yo 1)

D= o=

1
D' (o) = (_1

=
N |—
N—

Il
N\
O =
—_—

—

Because these matrices are diagonal (and therefore also block-diagonal), and the
remainder of D(R) are already diagonal, the entire representation is (block-) diagonal.
Exercise: Consider a representation using the basis (px, py, p-) on each atom in a Cy,
AB, molecule. Find the representatives, the symmetry-adapted combinations, and the

block-diagonal representations.

D(C5 (A)D(C5 (A))

100 O0|[t 00Ot 00O
000 1{l0 01 00100

= - = D(E)
01 00[[00o0 1] ]00T10

001 0[[01 00 ]000O0°711

D (S, (AC))D(C5 (B))

000 110 0 0 170 0 1 0

1 00 0//0 100/ 00071 )
= - = D(S; (CD))
010 0[[1 0000100

001 0[[001 0f |1 000

D (S, (AC))D(C5 (C))

000 110 1 0 0] [1 000

100 o0//oo0oO0T1| |01 00

= = = D(04a(AB))
010 0[[00 1 0l |000O0°1

001 0[[10o0oO0]]00T10
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Exercise: Check three of the group multiplications for the representation developed in

the Exercise accompanying problem 5.2.

5.7 (2) #(As) x #(B1) x 1(B)
=(1, 1,-1,-1) x (1,=1,1,-1) x (1, =1, =1, ) = (1, 1, 1, 1) = (Ay)

therefore, A, xB; xB, = A, in Gy,

(B) (A1) x 1(A2) x (E)
=(1,1, ) x(1, 1,-1)x (2,-1,0)= (2, -1, 0) = «(E);

therefore, A; xA, xE=E in Cs,

(c) By x pE)=(1,-1,1,-1,1,-1)x(2,-2,-1, 1,0, 0)
=(2,2,-1,-1,0,0) = y(E»)
therefore, B, xE,; =E, in Ce,

(d) H(Ep) x y(E1)=(2,2cos ¢, 0)x (2,2 cos ¢,0)
= (4, 4 cos’¢, 0) =(4, 2 + 2 cos 24, 0)

= (A1) + 1(A2) + (Eo)

therefore, E, xE, = A, + A, +E, in C.y

(Alternatively: TI x IT=X" + X7 + A)

(&) AT1) x x(T2) x Y(E)
—(3,0,-1,-1,1) x (3,0, -1, 1, =1) x (2, =1, 2, 0, 0) = (18, 0, 2, 0, 0)

Decompose this using a; = (1/24){18 (E) + 6 (C2)} [eqn 5.23].

a(A)=(124){18 +6} =1  a(Ay)=(1/24){18 +6} =1
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a(B) = (1/24){36 + 12} =2

a(Ty) = (1/24){54 - 6} =2 a(T,) =(1/24){54 -6} =2

Therefore,

T, xT,xE=A+A,+2E+2T, +2T, n O

Exercise: Analyse the following direct products: E x E x A, in Csy, Ay, x Epy in Dgp,
and leg X T22g x E, in O.
5.10 (a)
atbb, 1 A; x A; x B; x By=B; x By=A,; 'A, and *A, may arise.
(b) (i) ae:A;xE=E; 'Eand’E may arise.
(i) e :ExE=A+[A)]+E; 1A1 ,3A2,1 E may arise.
(c) (i) axe:A;xE=E; 'Eand’E may arise.

(i) et :Ex T =T, + Ty 'T,,’T,' T,, and *T, may arise.

(i) tit,: Ty x Ta= Ay +E+ Ty + Ty 'A, AL ECE! T, T, T, and °T, may

arise.

(iv) t12 Ty xTi=A+E+[T]+ Ty 1AI,IE,3 T,, and 1T2 may arise.

(V) 3 :ToxTy=A +E+[T]+Ty 'AE>T, and 'T, may arise.

(d) (i) €:ExE=A|+[A]+E; 'A,’A,, and 'E may arise.

(1) et; :ExT =T+ Ty 1T1,3T1,1 T,, and 3T2 may arise.

(i) t5:TyxTa=A;+E+[T\]+ Ty 'AE’ T, and 'T, may arise.
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Exercise: Classify the term that may arise from d*in Rs, o'nt’ in Cuy, 7% i0t Doghyy ei,t}u

in Oy, and elzg in Degp.

5.13 (a) In Cy, translations span A; + By + B;; hence a ’A, term may make a transition to A
20 _2 240 _2 2, _2 2 ..
x ‘A1 ="A4, B; x “A; ="B4, and B, x “A| = “B; and a “B; term may make trantitions to
A, x *B; =By, B, x °B; = %A}, and B, x *B; = ?A,. In D., translations span X! + 1,
Therefore, because X x I, =%, and IT, x z, =1L, transitions to ° >, and 31, are

allowed.

(b) In Cyy rotations span A; + By + B;. Then, because A x (A, +B; +By)=A,+ B +
B, transitions to 2A,, “By, and *B, are allowed for NO,. Because B; x (A2 +B; +
B,) =B, + A + A, transitions to 2B2, 2A1, and %A, are allowed for CIO,. In Do,
rotations transform as X, + Iy, and because X, x (X, +Ilg) =X +1II,,

transtions to > Z; and * I, are allowed in O».

Exercise: What electric and magnetic dipole transitions may take place from the £,

E>,, and By, terms of benzene?

5.16 For an f orbital, / = 3. We calculate the characters from eqn 5.47b with / = 3. (a)
For a (s, environment, we only consider the symmetry operations £ and Cs for which
angles a can be identified. This is equivalent to working in the rotational subgroup Cs.
For £, a =0 and y = 7; for C3, a = 2n/3 and y = 1. We now use eqn 5.23 with 7 =6

and find a(E) = 2. We can use & = 6 because the character for oy is zero for the
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5.19

irreducible representation E. However, since the characters for oy, are nonzero for the
irreducible representations A; and A,, we must revert to using the rotational subgroup
Cs. In this case the angles are a = 0 for E, a = 21/3 for Csand o = 47/3 for Cs*; this
yields characters (7, 1, 1) for (E, G, C32) and use of eqn 5.23 with 4 = 3 (the order of
the group Cs) yields a(A) = 3. Therefore, the symmetry species are 3A + 2E. (b) For a
T4 environment, we only consider the symmetry operations £, C, and C; for which
angles a can be identified. Therefore we work in the rotational subgroup 7. For E, o =
0 and y =7; for C3, a =2m/3 and y = 1; for Cy%, a=4n/3 and y=1;and for C;,a==n
and y = —1. We now use eqn 5.23 with 2 =12 (for group 7) and find a(A) =1 and

a(T) = 2. Therefore, the symmetry species are A + 2T.

We have shown in Section 5.18 that the difference between two infinitesimal rotations
is equivalent to a single infinitesimal rotation and that the reverse argument implies
the angular momentum commutation rules. We show here that the commutation
relation [/, /,] = 1%/ and the definition of angular momentum in terms of position and
linear momentum operators implies the fundamental quantum mechanical
commutation rule [g, p,] = i% and, as a result, the latter commutation rule can be
considered a manifestation of three-dimensional space. We begin by expanding [/, /,]:
[, 1] = Dop=— 2py, 2px— xpz]

= p= 2px] = Dp= xp2] = [2py, 2pa] + [2py, xp2]

= YPZPx— ZpxYP=— (VPXPz— XPYP2) — (2Ps2Px— ZPpazpy) + (2pyXp-— Xp:zp))

= ypulpz 2] = 0= 0 +xp)|z, p-]
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= [z pllapy —ypx}
Since [. = xp,, — ypx, the relation [/, /] = i4l. immediately implies that [z, p.] = iA, the

fundamental quantum mechanical selection rule.
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