Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 6
Techniques of approximation

All the following material © P.W. Atkins and R.S. Friedman.

Exercises
6.1 The first-order WKB wavefunction is given in eqn 6.6 in classically allowed regions (note
here that £ >V since a and x are positive). With p(x) given by eqn 6.1b,
p(x) = {2m[E —V()]}/? = (2ma)/*x

The first-order WKB wavefunction is

X 1
1 1 C 2ma)zx?
Y(x) = T sin gf(Zma)fxdx +6|= T sin ( 22
(2ma)xz 0 (2ma)*x2
C maql/2
:ﬁsin ([ﬁ] X2+6)
(2ma)ax2z

6.2 The energies of a two-level system are given by eqn 6.15. Therefore, with all energies in

cm ' units,

E; = 2(5000 + 10000) + /(10000 — 5000)% + 4 X 500

yielding £+ =10 049.51 cm ™' and E-=4950.49 cm .
6.3 The wavefunction for the ground-state harmonic oscillator is given by

a \1/2

Yo = (7) e

The first-order energy correction, eqn 6.24, is
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b
a a
E(El) = (1/’0|H(1)|¢0) =) f axe™ " dx = 2 atrl/? (1 - e_(ZZbZ)
0

6.4 The second-order energy correction is given in eqn 6.30. Here, H") = g and H* = 0. The

ground-state wavefunction is given by

a 1/2 2.2
Yo(x) = (W) e ® X /2

and the v = 1 wavefunction by
2a3 12 2,2
— - 2
Pi(x) = <W> xe~ ¥ x"/

Since the wavefunctions are real, Hm(l) =H, 0(1); the denominator of the v =1 contribution

to E@is (0+ %) ho — (1 + ') hw = —ho. The matrix element Ho ™ is

e 3\1/2 1/2,,2
H(l) _ a( a )1/2 e—a2X2/2 2a xe_azxz/zdx _ a2 / a 1 _ a
01 Til/2 /2 \2q2 21/211/2
0

Therefore, the contribution to E? fromv =1 is

2

HYHSG a2x< 1 ) a

E§0>_E1(0>‘ﬁ —hw) ~ ho

6.5 As discussed in Section 6.3, to know the energy correct to order 2 + 1 in the
perturbation, it is sufficient to know the wavefunctions only to nth order in the
perturbation. Therefore, if the perturbed wavefunction is known to second order, the
energy is accurately known to 5™ order.

6.6 Following Example 6.5 in the text, we need to decide which matrix elements <s |y | n >
are non-zero. The function for a s-orbital (/= 0) is a component of the basis for 2 and y

is likewise a component of the basis for 'Y, Because I'? x 1V =" by eqn 5.51, we can
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infer that only p-orbitals can be mixed into the ground state. Furthermore, because the
perturbation is in the y-direction, only p, can be mixed.

6.7 The optimum form of the wavefunction corresponds to a minimum in the Rayleigh ratio.
Therefore, we seek the value of & such that the derivative of the Rayleigh ratio with

respect to k vanishes.

dk\ 2m a m a

d <h2k2 thHk> _%k_heRy _

and therefore

_ mhcRy  2ZmmcRy
"~ h%2a,  ha,

6.8 Use the Hellmann-Feynman theorem, eqn 6.48.

dE
FT (0H/aP) = (x?)

6.9 The probability of finding the system in state 2 for a degenerate two-level system is given
by eqn 6.64. Therefore, we should use this formula to find the time for which a

perturbation should be applied to result in P,(¢f) = 1/3, and then immediately extinguish

the perturbation:
sin?|V|t = =
SO
_arcsiny/1/3
o

The perturbation should be applied for this amount of time and then removed.
6.10 The transition rate to a continuum of states is given by Fermi’s golden rule, eqn 6.84.
The molecular density of states here is

2.50 x 10*

= =167 x10%?!
1.50 X 10-18] J

Pm
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Fermi’s golden rule then yields

W = 2nh|V|2py = 2m(1.055x10734]s)(4.50 X 1012s71)2(1.67 x 1022]~1)
= 224 x 1051

6.11 Use the lifetime broadening relation, eqn 6.97.

_ R _L0SSXI0Ts
PTSE T T192x10-24) S

Problems

6.1 First consider exp(+iSi(x)/%). Noting that

d (iS) _ idS (iS)
ax CP\H) TR e P\

we obtain upon substitution of exp(+iS+(x)/%) into eqn 6.1:

pe d2s (iS) . (i d.S‘)2 (iS) L2 (iS) o
nde P\n) T ) P\R)fT P EP\R) T
After factoring out the common term of exp(+iS:(x)/%), we obtain

428 <ds)2+ 2 _ o
M3 dx P =

which is eqn 6.3 for S;. Next consider exp(—iS-(x)/%). Noting that

d (—iS) _ -i dS (—iS)
x P\ ) TR e P\ h

we obtain upon substitution of exp(—iS-(x)/%) into eqn 6.1:

2 -i d2s (—iS) N (-i dS)2 (—iS) 2 (—iS) _o
7 a2 P\ ndx) TP PexpP i) =

After factoring out the common term of exp(—iS-(x)/%), we obtain

which is eqn 6.3 for S_.
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6.4 We begin with eqn 6.13 applied to the wavefunction w_ and corresponding energy F_.
Therefore, from eqn 6.17a and eqn 6.15,
¢ =cos(

c; =sin

1 1
R OO
E_E,_A@ + ES )2d

©) _ o0} 21"
d:K@ —Q,)+4WHF}

Substitution into eqn 6.13 yields, with H;; = El(o), Hy = Ez(o), and Hyy = Hy = | H12(1)| e

1 .
=CO0s Z(El(o) - EZ(O) + d) + sin¢ |H1(;) e? =0

2

cos (|H1(;)

. 1
ip | o 0) _ (0 —
e +251n((E2 E; +d) 0
Multiplication of the first of the equations by sin {"and the second of the equations by

cos ¢ produces

1 .
5 cos {sin Z(El(o) - EZ(O) + d) + sin? ¢ |H1(;) |e1‘P =0

. 1
cos 2{|H1(? e'? + > sin { cos ((EZ(O) —E® ¢+ d) =0
Subtracting the top equation from the bottom equation and using the trigonometric
identities
cos 2{ = cos?{ —sin?¢

sin 2{ = 2sin{ cos{
yields

. 1

cos 2(|H1(;) e'¢ + Esin 2¢ (EZ(O) — El(o)) =0

and therefore, since tan 2¢ = sin 2¢/ cos 2¢,
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-2 |H1(§) el?

tan2{ = ————
(0) (0)
Ez - E1

If we now let ¢ =7 so that ¢ =—1, we obtain eqn 6.17b.

6.7 H=—(h*2m)(d*/dx®) + mgx
H? = —(r*2m)(d*dx*); H" = mgx

E" = (0|H"|0) = mg (x)= L mgL

The first-order correction disregards the adjustment of the location of the particle in the

gravitational field, so £ is the potential energy of a particle at its average height (%L).

For m = me,

EVIL=1mg=447x10""Jm"

6.10 The first-order correction to the energy is given by eqn 6.24:
E = (0|H"|0)

where the state |0) is the ground-state harmonic oscillator wavefunction of Section 2.14:

o 172 ke 1/4
—o2x2/2
X)=|—=| e a=|—
wo(x) (nl/zj (hzj

and the perturbation hamiltonian is

HY = ax® + bx*
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The following standard integrals will be useful:

© 2
Ix3ecxdx=—

We also use the result that if the function f{x) in the integrand is an even function of x,

then
0 0
[ feode=[" fxdx
and if the function is odd, then
0 )
[" reode==[" f(x)dx

(a) The anharmonic perturbation is present for all values of x.

(b) The anharmonic perturbation is only present during bond expansion so H"

vanishes for x < 0.

Co6 p.7



Atkins & Friedman: Molecular Quantum Mechanics 5e

o O 22
E(()l) = [n”z jj; e (ax® +bx*)dx

a a 3bn'’?
= TP 20(4+ 8’

a 3b
2a3nl/2 + 8a4

(c) The anharmonic perturbation is only present during bond compression so HY

vanishes for x > 0.

1/2

E(()l) = [ @ JJ:O e (ax3 +bx4)dx

T
( a ) a 3bn'?
i vy R 5
T 2a 8a
a 3b

Exercise: Repeat the problem for the v = 1 harmonic oscillator wavefunction.

6.13 (a) xyp spans B; x A} =Bj in Cyy; hence B, states are admixed.
(b) L.y spans B, x A = B, in Cyy; hence B, states are admixed.

Exercise: : The symmetry of the ground state of ClO, is “B;. What symmetry species of

excited states are admixed?

6.16 H" = esin’g

Form the secular determinant by using
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HY), = (e2m) [ e im0 (e + e~ 2)dgl(-4)

— (&/87) J‘Z“ (eI | Gi2omiem)s _ o ositni-m)by g 4
0

= ~(M) S mr2 + Sgon-2 = 20y}
Consequently,
Hl(,ll) =76 Hfll),—l =35, Hl(,l—)l =-3% HEII),I =-3¢
Sl,l = S_1,_1 = 1; Sl,—l = S—l,l =0
O 16-E —¢ | 2 1 )2
det |H — SE| = —le 1 E=(2g—E) (=4 =0
4 2

Consequently, £ = %g + %g = %g and %g. Find the coefficients from the secular

equations and |ci|” + |c2)* = 1 (or by intuition):

(%S—E)Cl _%SCZ =0 ¢% = _l/lil)/\/z
~jee +(e=E)e, = 0] [ g = (v, +y )2

For the first-order energies we have £ = %g and %5. If desired, check this as follows:

1) _ 1 Q) Q) @) My _ 1 1 _3
H3/4,3/4 = E(Hu +H—1,—1 _Hl,—l _H—1,1) = 3(5+35)—25

@) _ 1 Q) Q) ) @My _ 1 1 _
Hyjgyg =5Hy +HY (+H 2 +HY)) = 5(6—5¢8)=

1
1€

1) _ 1 Q) Q) Q) My _
H3yy =5 Hy —HY _(+H 2, —HY,) =0
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This calculation confirms that H" is diagonal in the ¢,,¢, basis, and that its
4 4
eigenvalues are %g and %5.

For the second-order energies we require the following matrix elements:

HY = (WD)~ 1)

m by

ANHY  =—(e/42) form =3
- - /ﬁ)Hfng = +(g/4\/§) for m; = =3, all others zero

HY | = (N2)HD, +HY )

AN2)H)  =—(e/42) form, =3
- Q! /\/E)Hg)’_l = —(5/4\/5) for m;, = -3, all others zero

EO = m,zhz/Zmr2 = mfA, with 4 = #%/2m#*

Both ¢ linear combinations correspond to [m/| = 1, and so for them £ = 4. For the ¢,
4

combination:

EO = S ARG, HY ) 0= 4]

m;#0

= |H3), 5/ (-8 A)+|HS), '/ (-84) =—£7/1284

For the ¢4 combination:

E¥= Z{Hl(/li,m,Hr(nl,).l/zt /(1_m,2)A}

m;#0

= [H{)) 5P (-8A)+ |H{}) 5/ /(-84) = —£7 /1284
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[The m; = 0 does not in fact make a contribution to the sum.] The energies to second

order are therefore

Eyy=A+36—*1284,E,,, = A+L+s-£*/1284

Exercise: Find the first- and second-order energy corrections for a particle subject to

HY = gsing.

6.19 First, normalize the linear combinations to 1:

[(@)dr =1 ](s, +50)"dr=1[(s] +52 +25,50)dr
=1 +SAC
j(a")zdr =1 —SAC
Therefore,

ajy = (sa+sc)/{2(1 + SAC)}I/z

a” =(sa—sc)/{2(1 - SAC)}I/z

Now construct the matrix elements of H:

j ajHa{dt

Il
]

[aHaydr = [(s, +S0)H(s, +50)de/2(1+ 8,

=(a+ /(1 +Sac)

J.a”Ha”dT =(a— /(1 =Sac)
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Ia{Haédr = j sgH (s, +s)dr/{20+ 8,1 = {2/(1 + Sac)}*p

[ajaidr = (2/(1 + 5x0)}"San  [San = Shc]

Hence, the 2 x 2 secular determinant is

a—E (B-ESap)N2
J(1+840)
det |H — ES| =
(B-ESpp)V2 ( a+y )_ E
| NATS) 1+Sxc

Set V= (SAc/SAB),B; then with SAB =0(.723 and SAC = 0345,

a-F 1.219(p -0.723E
det |1 - £ =‘ (B~0.7230) ‘

1.219(8-0.723E) (a+0.4778)/1.345—E

=0.223E% + (1.7943—- 1.7440)E

+(0.355af+ 0.744 0" — 1.486/5)
Therefore, we must solve
E? +(8.0458—7.821 2)E + (1.592a8+ 3.336 & — 6.664/8) = 0
Write E/a = ¢and f/a = A; then

& +(8.0450—7.821)e+ (1.5921 + 3.336 — 6.6641%) = 0

e=3911-4.0231+ ﬁ22.845x12 —33.0524+ 11.956}

which can be plotted as a function of A4, Fig. 6.2. (The result from Problem 6.18, ¢=1 £

A2, is also shown.)
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Figure 6.2: The energies calculated in Problem 6.19. The straight lines are the energies
calculated in Problem 6.18.

Exercise: Include overlap in the Exercise attached to Problem 6.18.

6.22

¢r (1) = (1/ih) j;Hg”(t)ei“’ﬁ’dt [eqn 6.71]

cap(f) = (1/in)(2p.lez|1s) f; E(1)e' ™ dt [H(t) = — 1. E(f) = ezE(0)]
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6.25

Set E(?) = y#; note that w15 = %thH/h = (31/2)cRyu. For simplicity of notation, write @

= Wp,1s

exlt) = Helin)2pdal1s) 0’ el de

= (ey/in)2p-Iz|1s){(liw)e'™ + (1/ &) (e — 1)}

|czp(t)|2 = (ey/h)*(2p.z|18Y*(2/@*) {1 — cos wt — wt sin wt + % o'ty

Exercise: Find |czp(t)|2 in the case where the perturbation is turned on quadratically (&

oc tz).

We use eqn 6.87 for the rate of stimulated emission, taking the value of B from eqn 6.88
and the density of states of the radiation field from eqn 6.92b. The transition dipole
moment is calculated by using the hydrogen orbitals R,,/Y;,, where the radial functions
are listed in Table 3.4 and the spherical harmonics in Table 3.2; the transition frequency
vis obtained from the energies in eqn 3.66. For the rate of spontaneous emission, use
the relation between 4 and B in eqn 6.93.

First consider the transition dipole moment £z, for the 3p, — 2s transition.

33 %210
= _eJ. l//_;akpz ZW2sdT == 56 ed

=—1.769eay = —1.500 x 107 C m

Since the lower (2s) state of the atom is spherically symmetrical, the contributions for

3p», 3p, and 3p. are identical. Therefore

i = |l + | + e =3 x 3.131e’ag =6.752 x 107° C* m’
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6.28

The Einstein coefficient of stimulated emission is

2
B= |“—|2 =1.143 x 102 ' m3s2
6,11

The frequency of the transition (with R the Rydberg constant) is

v= (iz—iz) cR=4.567 x 10'* Hz
2 3

and so it follows that

%

3
C

A B=6728x10" s

At 1000 K and for the transition frequency,

3 3
Prad = % = 1.782x 102 J Hz ' m™
e p—
It then follows that the rate of stimulated emission is B = 2.036 x 1072 s whereas
that of spontaneous emission is 4 = 6.728 x 10" s
Exercise: Find the dependence on atomic number of the rates of stimulated and

spontaneous emission for the 3p — 2s transition in hydrogenic atoms at 1000 K.

We use eqn 6.97 to estimate the lifetime 7 from the full width at half maximum, which
we denote A. The latter is converted from a wavenumber to an energy in joules by

multiplication by /c; the full width as an energy in joules is then identified with OF.

7 1

(GE)  2mch
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(a) 7=(2n x2.9979 x 10" ems™ x 0.010 cm™) ' =5.3 x 107'° s = 530 ps

(b) 7=(2n x2.9979 x 10" ems ™' x 1.5 ecm™) ' =3.5x 102 s =3.5 ps

(€) 7=(2nx2.9979 x 10" cms ™' x40 ecm™) ' =13 x 10 s =130 fs

Exercise: What is the full width of the spectral peak if the lifetime of the upper state is

1.0 1s?
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