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Chapter 8 

An introduction to molecular structure 

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises 

8.1 Substitution of the trial wavefunction ψψN  into eqn 8.2, and using eqn 8.1b, yields 
 

 

 
 

Since the nuclear wavefunction does not depend on electronic coordinates whereas  
 
the electronic wavefunction depends (parametrically) on nuclear coordinates, we can  
 
write 

 
 

 
 

Consider the term TNψψN.  
 

 

 
 

where we have used the definition of W in the equation following eqn 8.4. We  
 
therefore obtain  

 
 

 
 

which is eqn 8.4. 
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8.2  The Schrödinger equation for the total wavefunction Ψ of the hydrogen molecule-ion  
 

is  
 

 
 

where the laplacian  in the first (second) term is with respect to electronic (nuclear)  
 
coordinates and the potential energy V is given by  

 

 
 

The Schrödinger equation for the electronic wavefunction ψ, within the Born- 
 
Oppenheimer approximation, is  

 
  

 
 

and that for the nuclear wavefunction ψN is 
 

 

 
 
8.3  The secular determinant is given in Section 8.3(a), immediately preceding eqn 8.16.  
 

Expanding the determinant yields 
 

 
 

Therefore  
 

 
 

with roots 
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To find the coefficients cA and cB, we use eqn 8.14. For energy E−,  
 

 

 

 

 

 
 

and requiring that the wavefunction cA(χA – χB) be normalized yields: 
 

 

 

 

 
Similarly for energy E+,  

 

 

 

 

 
 

and requiring that the wavefunction cA(χA + χB) be normalized yields: 
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8.4  First,  since each electron is in a σ-orbital, λ1 =  λ2 = 0, so Λ = 0, corresponding to a  
term.  

 
Second, with regard to the overall parity of the state, since g × u = u, the term must be 
u parity.   
 
Third,  if the two electrons have opposite spins, the term has S  = 0 and is a singlet 
(multiplicity of 1); if the two electrons have the same spins, the term has S  = 0 and is  
 
 
a triplet (multiplicity of 3).  
 
Finally, each  σ-orbital has a character of +1 under reflection in a plane that contains 
the internuclear axis and since (+1) × (+1) = +1, the term includes a right superscript 
of +.  
 
As a result, the terms that arise are 

u
3

u
1 Σ and Σ . 

 
8.5 
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where ψ+ and  ψ−  are defined in eqns 8.24(a) and 8.24(b) and the spin states σ− and σ+  

 

are defined in Section 7.11. Note that there are three possible σ+ states corresponding to  
 
values of MS  of +1, 0 or −1.  

 

 8.6 The question refers to the orbital part of c11  c33 which we denote  . Noting, and 

therefore ignoring,  the spin factors that are common to 1 and 3, we obtain, denoting  

     a  χA, b  χB, and 1  ,2/)( ba   2  ]2/)( ba   

   c11(1)1(2)  c32(1)2(2) 

   2
1 c1{a(1)  b(1)}{a(2)  b(2)}  2

1 c3{a(1)  b(1)}{a(2)  b(2)}  
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   2
1 c1{a(1)a(2)  b(1)b(2)  a(1)b(2)  b(1)a(2)} 

      2
1 c3{a(1)a(2)  b(1)b(2)  a(1)b(2)  b(1)a(2)} 

   2
1 (c1  c3){a(1)a(2)  b(1)b(2)}  2

1 (c1  c3){a(1)b(2)  b(1)a(2)} 

as in eqn 8.30. 

8.7  Expansion of the secular determinant in eqn 8.32 and setting the overlap S to zero  
 
yields 

 

 
 

which produces the following quadratic energy for the energy: 
 

 
 

The roots to the above equation are  
 

 

 

 

 
 

When the two orbitals have greatly differing energies, |αA – αB| >> β, and using the  
 
approximation (1 + x)1/2 = 1 + ½x, we obtain  

 

 

 
  

With αB greater than αA, we have the roots 
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as in eqn 8.33. 
 

 8.8 Refer to Fig. 8.18 of the text. 

(a) 2C  : g
14

u
2

u
2
g ,1π*1σ1σ  

(b) 
2C  : u

23
u

2
u

2
g ,1π*1σ1σ   

(c) 
2C  : g

21
g

4
u

2
u

2
g ,2σ1π*1σ1σ  

(d) 
2N  : g

21
g

4
u

2
u

2
g ,2σ1π*1σ1σ  

(e) 
2N  : 2 2 4 2 1 2

g u u g g g
* *1σ 1σ 1π 2σ 1π ,     

(f) 
2F  : 2 2 4 2 3 2

g u u g g g
* *1σ 1σ 1π 2σ 1π ,     

(g) 
2Ne  : 2 2 4 2 4 1 2

g u u g g u u
* * *1σ 1σ 1π 2σ 1π 2σ ,     

where the superscript * indicates an antibonding molecular orbital. 

Exercise: Predict the ground configurations of Na2, S2 and HCl and decide which terms 

lie lowest. 

8.9  We use the results of Exercise 8.8; only the molecular orbitals formed from the n  2 

atomic orbitals need be considered since the lower energy molecular orbitals (from n  

1 atomic orbitals) are completely filled and thus have equal number of bonding and 

antibonding electrons. In Exercise 8.8, the antibonding molecular orbitals are 

designated with a * superscript. 

(a) C2: bond order  2
1 (6  2)  2 HOMO = 1πu; LUMO = 2σg 
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(b) 
2C : bond order  2

1 (5  2)  1.5 HOMO = 1πu; LUMO = 2σg 

(c) 
2C : bond order  2

1 (7  2)  2.5 HOMO = 2σg; LUMO = 1πg 

(d) 
2N : bond order  2

1 (7  2)  2.5 HOMO = 2σg; LUMO = 1πg 

(e) 
2N : bond order  2

1 (8  3)  2.5 HOMO = 1πg; LUMO = 2σu 

(f) 
2F : bond order  2

1 (8  5)  1.5 HOMO = 1πg; LUMO = 2σu 

(g) 
2Ne : bond order  2

1 (8  7)  0.5 HOMO = 2σu; LUMO = 3σg 

Exercise: Find the bond orders of the dications 2
2C  and 2

2F  as well as the dianions 

2
2C  and .F2

2
  

 

8.10  The secular determinant for the cyclopropenyl radical is  
 

 
 

Expanding the determinant results in the following cubic equation: 
 

 
 

which, with x = α –E, can be written as  
 

 

 
 

Therefore, roots are x = β, β, −2β. The energy levels are E = α – β, α – β, α + 2β. The  
 
total π-electron energy is 2(α + 2β) + (α – β) = 3α + 3β and the delocalization energy  
 
is  

 

 
and the radical is not predicted to be stable. 
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8.11 The Hückel molecular orbital energy level diagram for benzene is shown in Fig. 8.30 of 

the text. Whereas benzene has six -electrons, its cation has five and its dianion has 

eight. To compute the delocalization energy, recall that each -electron in an 

unconjugated system contributes an energy of   . 

(a) The benzene cation has a ground-state electron configuration     

2 3
2u 1ga e  and a total -electron energy of 2(  2)  3(  )  5  7. Therefore the 

delocalization energy is 

5  7  5(  )  2 

(b) The benzene dianion has a ground-state electron configuration    

2 4 2
2u 1g 2ua e e  and a total -electron energy of 2(  2)  4(  )  2(  )  8  6. 

Therefore the delocalization energy is 

8  6  8(  )  2 

 and the dianion is predicted to be unstable. 

Exercise: Repeat the problem for 
44HC  and .HC 2

44
  

8.12  
Complex Number unpaired 

electrons 

STOT Multiplicity  

d4 2 1 3 

d5 1 ½ 2 

d6 0 0 1 

d7 1 ½ 2 

 
 
8.13 
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Complex Number unpaired 

electrons 

STOT Multiplicity  

d4 4 2 5 

d5 5 5/2 6 

 
8.14 (a) In a tetrahedral environment (symmetry group Td), the d-orbitals span E(dz2, dx2y2) 

and T2(dxy, dxz, dyz). [Refer to the Td character table; dxy  xy etc.] 

Exercise: Determine which symmetry species are spanned by the f-orbitals in a 

tetrahedral complex. 

(b) See Problem 5.16(b) in Chapter 5. The symmetry species spanned by f-orbitals in  
 
the rotational subgroup T are A + 2T. 
 

8.15  From Section 8.11, we have the following two equations:  

   (a) uk(x)  Aei(k)x  Bei(k)x 

(b) uk(x)  Ce(ik)x  De(ik)x 

Differentiation of the above equatioins produces  

(a) )(xuk   iA(  k)ei(k)x  iB(  k)ei(k)x 

(b) )(xuk   C(  ik)e(ik)x  D(  ik)e(ik)x 

The conditions uk(a)  uk(b) and )()( buau kk    then lead to the four statements in 

Section 8.11 of the text, and hence to the determinant in eqn 8.44. For the equivalence 

to eqn 8.45, use symbolic algebra software. 

Problems 

 8.1 

 j/j0  (1/R) {1  (1  s)e2s},    s  R/a0,  j0  e2/40 

 k/j0  (1/a0){1  s}es,    S  {1 s  3
1 s2}es 
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 E  E1s  j0/R  (j  k)/(1  S)    [eqn 8.23a] 

 E  E1s  j0/R  (j  k)/(1  S)     [eqn 8.23b] 

 (E  E1s)/j0  (1/R)  

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 (E  E1s)(a0/j0)  
22
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21

3
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s

s s
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 (E  E1s)(a0/j0)  







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
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 (  E1s)(a0/j0)  [j  (j0/R)](a0/j0)    [eqn 8.20] 

   (1  s)(e2s/s) 

 (  E1sS)(a0/j0)  [k  (j0S/R)](a0/j0)    [eqn 8.21a] 

   (1  )
3

2 2s (es/s) 

The E  E1s values are plotted in Fig. 8.1; the  and  integrals are plotted in Fig. 8.2. 

The E curve has a minimum (the equilibium bond length) at R  130 pm (s  2.5) 

corresponding to E  E1s  1.22  103 j0 pm1. Because j0  2.31  1028 J m, we 

have   

19 1
1s 2.81 10  J (1.76 eV, 170 kJ mol )E E  

      

Therefore the dissociation energy (neglecting the zero-point vibrational energy) is 

170 kJ mol1. 
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Figure 8.1: The values of E  E1s calculated in Problem 8.1. 
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Figure 8.2: The dependence of the integrals  and  with distance (s  R/a0). 

 

Exercise: Plot the molecular potential energy curves for 3
2He  and estimate its bond 

length and dissociation energy if you find it to be stable. [s  ZR/a0] 

 

 8.4 

kf  (d2E/dR2)0  (1/ 2
0a )(d2E/dx2)0    [x  R/a0] 

The 0 indicates the minimum of the curve, which occurs at close to x  2.5 [Section 8.3, 

Fig. 8.12 of the text]. 

E  E1s  j0/xa0  










S

kj

1


    [eqn 8.23a] 
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   E1s  j0/xa0 x

xx

xx

xajxxaj








e)1(1

e)1)(/(}e)1(1){/(
2

3
1

00
2

00  

   E1s  















 



x

xx

xx

xxx

xa

j

e)1(1

e)1(}e)1(1){/1(1
2

3
1

2

0

0  

kf   2

2

3
0

0

d

d

xa

j








 {. . .} evaluated at x  2.5 

   0.061 884j0/
3
0a     [mathematical software second derivative evaluator] 

The vibrational frequency is therefore  

   f

1/ 21/ 2 2
k

3
H 0 H 0

2 0.061884

2π
  

   
   

e

m m a
 

   
1/ 22

2 2
0 0 e4 1/ 2 2

e H 0 e H 0

2 0.061884 0.35181
[ 4π / ]

( )
a m e

m m a m m a


 
  

 

ħ ħ
ħ  

   3.41  1014 s1 (  54.3 THz) 

8.7  The Hamiltonian for the hydrogen molecule is given in eqn 8.25a and can be written as  
 

 
where 

  

 

 

 
 

The ground-state energy is given by < Ψ(1,2) | H | Ψ(1,2) > where Ψ is the two-electron  
 
Slater determinant (eqn 7.42a) composed of the spinorbitals  
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where (see eqn 8.24a) A(i) = χA(i), B(i) = χB(i), N = {2(1 + S}−1/2 , and S =  < A | B >.  
 
The Slater-Condon rules appear in eqns 7.44 and 7.45.   

 

 
 

where the first term (Ω0) results because Ψ is normalized and independent of R. The  
 
second term develops as follows since the spin states α and β are normalized: 

 
 

 

 

 
 

Similarly, the third term develops as follows: 
 
 

 
 

Recognizing that many of the matrix elements are equal by symmetry, we obtain: 
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Using the definitions in eqns 8.28a-d, we obtain 
 

 

 
We now explore the final term and show that it vanishes: 

 

 
The first term on the right is proportional to < α(1) | β(1) > and the second term is  
 
proportional to < β(1) | α(1) > and since both of these vanish due to orthogonality of  
 
the spin states, the final term is zero. Therefore, upon collecting all terms: 

 
 

 
which is eqn 8.27. 

 

8.10 (a) CO : 122*21432, 1    [isoelectronic with N2]      

    Bond order = (8 − 2)/2 = 3   HOMO = 3σ; LUMO = 2π 

(b) NO : . . . 14322*1, 2    [isoelectronic with ]O2
       

 Bond order = (6 – 1)/2 = 2.5 HOMO = 2π; LUMO = 4σ 

where the * superscript indicates an antibonding molecular orbital. 

Exercise: Predict the ground configurations of (a) O2, (b) ,O2
  and (c) .O2

  

8.13  To construct the symmetry-adapted linear combinations (SALCs) for methane, we  
 

identify the four hydrogen atoms as equivalent atoms in the molecule and proceed to  
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form linear combinations of the atomic orbitals that belong to a specific symmetry  
 
species. In the case of a minimal basis set, we consider only 1s orbitals on the hydrogen  
 
atoms, denoting them sA, sB, sC, sD. We then follow the method set out in Example 5.9.  
 
The effect of the operations of the group Td (the point group for methane, h = 24) on the  
 
basis set of four hydrogen atomic orbitals is given in the following table: 

 
 

Operation in Td sA sB sC sD 

E sA sB sC sD 

C3
+ (one of 4 C3 axes) sA sC sD sB 

C3
− (one of 4 C3 axes) sA sD sB sC 

C3
+ (second) sD sB sA sC 

C3
− (second) sC sB sD sA 

C3
+ (third) sB sD sC sA 

C3
− (third) sD sA sC sB 

C3
+ (fourth) sC sA sB sD 

C3
− (fourth) sB sC sA sD 

C2 (one of 3 C2 axes) sB sA sD sC 

C2 (second) sC sD sA sB 

C2 (third) sD sC sB sA 

σd (one of six planes) sA sB sD sC 

σd (second) sA sD sC sB 

σd (third) sA sC sB sD 

σd (fourth) sD sB sC sA 

σd (fifth) sC sB sA sD 

σd (sixth) sB sA sC sD 
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S4
+ (one of 3 S4 axes) sC sD sB sA 

S4
− (one of 3 S4 axes) sD sC sA sB 

S4
+ (second) sB sD sA sC 

S4
− (second) sC sA sD sB 

S4
+ (third) sD sA sB sC 

S4
− (third) sB sC sD sA 

 
For the irreducible representation of symmetry species A1 (see the character table), d  = 1 and 
all χ(R) = 1. The first column therefore gives 
 

1/24 (6sA + 6sB + 6sC + 6sD)  = 1/4 (sA + sB + sC + sD)   
 
and all three other columns gives the same result. For the irreducible representation of 
symmetry species T2 (see the character table), d = 3 and the characters are (3, 0, −1, 1, −1). 
The first column therefore gives 
 
3/24 (3sA + 0 − sB – sC  − sD   + sA + sA + sA + sD  + sC + sB – sC  – sD  – sB  – sC – sD  – sB)  =  
3/24 (6sA − 2sB − 2sC − 2sD). 
 

The second column gives 
 
3/24 (3sB + 0 – sA – sD  − sC   + sB + sD + sC + sB  + sB + sA – sD  – sC  – sD – sA  – sA – sC)  =  
3/24 (6sB − 2sA − 2sC − 2sD). 
 

The third column gives 
 
3/24 (3sC + 0 – sD – sA  − sB   + sD + sC + sB + sC  + sA + sC – sB  – sA  – sA – sD  – sB – sD)  =  
3/24 (6sC − 2sA − 2sB − 2sD). 
 

The fourth column gives 
 
3/24 (3sD + 0 – sC – sB  − sA   + sC + sB + sD + sA  + sD + sD – sA  – sB  – sC – sB  – sC – sA)  =  
3/24 (6sD − 2sA − 2sB − 2sC). 
 
The four linear combinations are not linearly independent (the sum of all four is zero) but we 
can form three linear independent combinations using  

(result from columns 1 + 2), 
(result from columns 2 + 3),  
(result from columns 3 + 4).   

We therefore have the following SALCs, indicating also the atomic orbitals on the carbon 
atom (2s, 2px, 2py, 2pz) that have the correct symmetry to form molecular orbitals with the 
SALCs: 
 

A1: SALC = sA + sB + sC + sD; can overlap with C 2s 
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T2: SALCS = (i) sA + sB − sC − sD, (ii) sB + sC – sA − sD, (iii) sC + sD – sA – sB; 

 
 Each can overlap with carbon 2px, 2py, 2pz. 

 
Note that we can show that for all other irreducible representations (that is, A2, E, T1),  
 
no columns survive.  

 

8.16 In the allyl radical, each carbon atom contributes one p-orbital and one p-electron to the 

-electron framework. We follow the procedure of Example 8.4; the secular equation to 

solve is 

0

0

0







E

E

E





 

This expands to 

(  E)3  22(  E)  0 

or 

(  E)[(  E)2  22]  0 

which has the following three roots: 

E      E    2     E    2  

For the allyl radical, two electrons are in the lowest energy molecular orbital (of energy 

  )2  and one electron is in the molecular orbital of energy . The total -electron 

energy using the Hückel approximation is therefore 

2(  )2      223   
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Exercise: Estimate the delocalization energy for the allyl radical. Comment on its 

predicted stability. 

8.19 The basis p1, p2, p3, p4  pN, p5, p6 transforms as follows in C2v (write the C2 axis cutting 

through p1 and pN): 

 p1 p2 p3 pN p5 p6  

E p1 p2 p3 pN p5 p6   6 

C2 p1 p6 p5 pN p3 p2 2 

v   p1 p2 p3 pN p5 p6 6 

v p1 p6 p5 pN p3 p2   2 

The characters 6, 2, 6, 2 span 2A2  4B1. The unnormalized symmetry-adapted linear 

combinations are 

 (A2)  pA2
p2  p2  p6; (p2  p6)/2 when normalized 

 (A2)  pA2
p3  p3  p5; (p3  p5)/2 when normalized 

 (B1)  pB1
p1  p1; 

 (B1)  pB1
p2  p2  p6; (p2  p6)/2 when normalized 

 (B1)  pB1
p3  p3  p5; (p3  p5)/2 when normalized 

 (B1)  pB1
pN  pN 

The A2 determinant in the Hückel approximation involves the matrix elements 

2
1 p2  p6Hp2  p6  2

1 p3  p5Hp3  p5  C  

2
1 p2  p6Hp3  p5 2

1 {p2Hp3  p6Hp5  p6Hp3  p2Hp5} 
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   2
1 {    0  0}   

The A2 secular determinant is therefore 

E

E







  (  E)2  2  0;    consequently E     

The B1 determinant involves 

 p1Hp1   

 2
1 p2  p6Hp2  p6    2

1 p3  p5Hp3  p5 

 pNHpN  N    2
1  

 p1Hp2  p6/2  (  )/2  2 

 p1Hall others  0 

 2
1 p2  p6Hp3  p5  2

1 (  )   

 p2  p6HpN/2  0 

 p3  p5HpN/2  CN2  2 

The determinant itself is therefore 

E

E

E

E













2
1200

20

02

002

 

 (  E)3(  2
1   E)  2 (  E)22  (  E)(  2

1   E)2 

  22(  E)(  2
1   E)  44  0 

Write (  E)/  x; then solve 
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x3(x  )2
1   2x2  x(x  )2

1   2x(x  )2
1   4  0 

or 

x4  3
2
1 x   5x2  x2

3   4  0 

The roots of this equation (determined numerically) are 

x  0.8410,    1.9337,    1.1672,    2.1074 

so, in this approximation, the energies of the B1 orbitals lie at 

E    1.9337,   0.8410,   1.1672,   2.1074 

The -electron energy is therefore 

E  2(  2.1074)  2(  )  2(  1.1672)  6  8.5492 

The delocalization energy is  
 
  Edeloc = 6αC + 8.5492β – {5αC + αN + 6β} = 2.0492β 

Exercise: Find the Hückel molecular orbitals energies of pyrazine using the same set of 

approximations. 

8.22 The Clebsch–Gordan series for f2(l  3) is 

3  3  6  5      0 

so f2  I, H, G, F, D, P, S. As the orbitals are equivalent, I must be 1I [Pauli principle], 

and so the permitted terms for the free ion are 

1I, 3H, 1G, 3F, 1D, 3P, 1S 
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[either note that terms alternate in general, or else evaluate the symmetrized and anti-

symmetrized direct products]. 

For the second part, use eqn 5.47b: 

(C)  



2
1

2
1

sin

])sin[( L
 

with   0(E), 2/3(C3), (C2), /2(C4), ).(π 2C  Draw up the following Table: 

Term E C3 C2 C4 2C   Decomposition 

I 13 1 1 1 1 A1  A2  E  T1  2T2 

H 11 1 1 1 1 E  2T1  T2 

G 9 0 1 1 1 A1  E  T1  T2 

F 7 1 1 1 1 A2  T1  T2 

D 5 1 1 1 1 E  T2 

P 3 0 1 1 1 T1 

S 1 1 1 1 1 A1 

For the decompositions use 

 al  (1/h)
c

l cccg )()()( )(      [eqn 5.23] 

   (1/24) {(l)(E)(E)  8(l)(C3)(C3)  3(l)(C2)(C2) 

    6(l)(C4)(C4)  6(l)( 2C  ) 2( )}C   

in conjuction with the O character table. The multiplicities carry over. Therefore: 

 1I  2
1

1
11

2
1

1
1 T2TEAA   
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 3H  2
3

1
33 TT2E   

 1G  2
1

1
11

1
1 TTEA   

 3F  2
3

1
3

2
3 TTA   

 1D  2
11 TE   

 3P  3
1T  

 1S  1
1A  

Exercise: What terms does a g2 configuration give rise to (a) in a free atom, (b) an 

octahedral complex? 

8.25 Once again, it is helpful to have a model of the tetrahedral system labelled with the 

orbitals. Use the same cube as in Problem 8.24, but labelled as in Fig. 8.11.  
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Figure 8.11: A representation of the s-orbital basis in a tetrahedral complex. 

The s-orbital linear combinations can be constructed as follows. Consider s1; under the 

operations of the group (Fig. 8.12) it transforms as follows: 

 

Figure 8.12: The operations of the group Td. 

 

R E aC
3  bC

3  cC
3  dC

3  aC
3  bC

3  cC
3  dC

3  aC2  bC2  cC2  

Rs1 s1 s3 s2 s1 s3 s4 s4 s1 s2 s3 s4 s2 

R a
d  b

d  c
d  d

d  e
d  f

d  aS4  bS4  cS4  aS 
4  bS 

4  cS 
4  

Rs1 s1 s2 s4 s1 s1 s3 s4 s3 s3 s2 s2 s4 

Application of the projection operators to s1 then leads to: 

 pA1
s1  (1/24){s1  s3  s2      s3  s2  s4} 
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   (1/4){s1  s2  s3  s4} 

 pT2
s1  (1/4){3s1  s2  s3  s4} 

 pT2
s2  (1/4){3s2  s3  s4  s1}    [by symmetry] 

 pT2
s3  (1/4){3s3  s4  s1  s2} 

 pT2
s4  (1/4){3s4  s1  s2  s3} 

Ignoring normalization, we take the following linear combinations (chosen, Fig. 8.13, 

so as to have the symmetries of px, py, pz): 

2

42313T1T

14323T2T

43212T1T

T

22

22

22













ssssspsp

ssssspsp

ssssspsp

 

 

Figure 8.13: The symmetry-adapted linear combinations of s-orbitals of T2 symmetry. 

The p-orbital basis (Fig. 8.14) transforms under the operations of the group (T) as 

illustrated by the following behaviour of p1: 
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Figure 8.14: The p-orbital basis in a tetrahedral molecule. 

 

R E aC3  bC3  cC3  dC3  aC
3  bC

3  cC
3  dC

3  aC2  bC2  cC2  

Rp1 p1 3p  
2p  1p  3p  4p  4p  1p  2p  p3 p4 p2 

R a
d  b

d  c
d  d

d  e
d  f

d  aS4  bS4  cS4  aS 
4  bS 

4  cS 
4  

Rp1 1p  2p  4p  p1 1p  p3 p4 3p  4p  p2 2p  3p  

Since we have taken the p-orbital basis, which spans A1  E  2T2, there will be A1  T2 

components (corresponding to the s-basis, as in the first part of the Problem) as well as 
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E  T1  T2 components. We shall construct only the E p-orbital combinations. The 

projection operator gives 

pEp1  (2/24){2p1  3 2 1 3 4 4 1 2p p p p p p p p                2p3  2p4  2p2} 

The remaining pEpj may be constructed similarly. 

Exercise: Find the remaining E, T1, and T2 symmetry-adapted combinations. 

8.28 The plots corresponding to Fig. 8.43 of the text but with (a)   , (b)   2 are shown 

in Fig. 8.16. The allowed solutions lie within the tinted band. Evaluate the function for 

a range of values of , 0    .π2
1  

.  

Figure 8.16: The determination of the bands of allowed energies for    and   2. 

 


