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   (6)1/2
1s 1s 1s

1s 1s 1s

1s 1s 1s

(1) (1) (1)

(2) (2) (2)

(3) (3) (3)

  

  

  

  
  
  

 

   (6)1/2

1s 1s 1s

1s 1s 1s

1s 1s 1s

1s 1s 1s

1s 1s 1s

1s 1s 1s

(1) (2) (3)

(2) (3) (1)

(1) (2) (3)

(1) (2) (3)

(2) (3) (1)

(1) (2) (3)

  

  

  

  

  

  

  

  

  

  

  

  

 
 
 
  
 
 
  
  

  (6)1/2 × 0  0 

Exercise: Write the HF ground-state wavefunction Q0 for the He ion and give 

examples of singly excited, doubly excited, and triply excited Slater determinants. 

9.3  In the first brief illustration in Section 9.3, the Roothaan equations are presented in  
 
matrix form and one line of the resulting expansion is given. The remaining three lines  
 
of the expansion are  

 
'AAܿAσܨ ൅	ܨABܿBσ'	 ൌ 	 'σܵAAܿAσߝ ൅	ߝσܵABܿBσ' 

 
BAܿAσܨ ൅	ܨBBܿBσ ൌ 	 σ'ܵBAܿAσߝ ൅	ߝσ'ܵBBܿBσ 

 
'BAܿAσܨ ൅	ܨBBܿBσ'	 ൌ 	 'σ'ܵBAܿAσߝ ൅  'σ'ܵBBܿBσߝ	

 
 
9.4  Proceed as in the brief illustration development for FAB.  
 

AAܨ ൌ 	݄AA ൅	 AܲA ቄሺAA|AAሻ െ
ଵ
ଶ
ሺAA|AAሻቅ ൅ AܲB ቄሺAA|ABሻ െ

ଵ
ଶ
ሺAA|BAሻቅ

൅ BܲA ቄሺAB|AAሻ െ
ଵ
ଶ
ሺAB|AAሻቅ ൅ BܲB ቄሺAB|ABሻ െ

ଵ
ଶ
ሺAB|BAሻቅ

ൌ 	݄AA ൅	 AܲA ቄ
ଵ
ଶ
ሺAA|AAሻ ൅ 		

ଵ
ଶ
ሺAB|ABሻቅ ൅ AܲB ቄ

ଵ
ଶ
ሺAA|ABሻ ൅ ଵ

ଶ
ሺAB|AAሻቅ 

 

BAܨ ൌ 	݄BA ൅	 AܲA ቄሺBA|AAሻ െ
ଵ
ଶ
ሺBA|AAሻቅ ൅ AܲB ቄሺBA|ABሻ െ

ଵ
ଶ
ሺBA|BAሻቅ

൅ BܲA ቄሺBB|AAሻ െ
ଵ
ଶ
ሺBB|AAሻቅ ൅ BܲB ቄሺBB|ABሻ െ

ଵ
ଶ
ሺBB|BAሻቅ

ൌ 	݄BA ൅	 AܲAሼሺBA|AAሻሽ ൅ AܲBሼሺBB|AAሻሽ 
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BBܨ ൌ 	݄BB ൅	 AܲA ቄሺBA|BAሻ െ
ଵ
ଶ
ሺBA|ABሻቅ ൅ AܲB ቄሺBA|BBሻ െ

ଵ
ଶ
ሺBA|BBሻቅ

൅ BܲA ቄሺBB|BAሻ െ
ଵ
ଶ
ሺBB|ABሻቅ ൅ BܲB ቄሺBB|BBሻ െ

ଵ
ଶ
ሺBB|BBሻቅ

ൌ 	݄BB ൅	 AܲA ቄ
ଵ
ଶ
ሺBA|BAሻ ൅ 		

ଵ
ଶ
ሺBB|BBሻቅ ൅ AܲB ቄ

ଵ
ଶ
ሺBA|BBሻ ൅ ଵ

ଶ
ሺBB|BAሻቅ 

 

9.5 An Al atom has 13 electrons, so the normalization factor 

N  (13!)1/2  1.267 . . .  105 

A restricted HF wave function is   

N det
1 011s 1s 2s 2s 2p 2p2p(1) (2) (3) (4) (5) (6) (7)            
 

 

1 10 12p 3s 3s 3p2p 2p(8) (9) (10) (11) (12) (13)          
 

 

An unrestricted HF wavefunction is   

N det
1 011s 1s 2s 2s 2p 2p2p(1) (2) (3) (4) (5) (6) (7)            
 

 

1 10 12p 3s 3s 3p2p 2p(8) (9) (10) (11) (12) (13)          
 

 

Exercise: Give an example of a restricted and an unrestricted Hartree–Fock 

wavefunction for a sodium atom. Show that the RHF wavefunction is an eigenfunction 

of S2 and evaluate its eigenvalue. 

 9.6 A calculation using 20 (spatial) basis functions yields 40 different Hartree–Fock SCF 

spinorbitals. As a chlorine atom has 17 electrons, there will be 17 occupied and 23 

virtual orbitals. 

Exercise: In a Hartree–Fock SCF calculation on the chloride ion Cl using 25 (spatial) 

basis functions, how many virtual orbitals are determined? 

9.7  An f-type Gaussian orbital is one for which i + j + k = 3 for the integers (i, j, k) of eqn  
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9.20. There are therefore 10 f-type Gaussian orbitals with possibilities (0,0,3), (0,3,0),  
(3,0,0), (2,1,0), (2,0,1), (0,2,1), (1,2,0), (1,0,2), (0,1,2), (1,1,1). 

 
9.8  Using the notation of eqn (9.17) for the two-electron integral for the basis functions, we  

 
have  
 

ሺAA|BBሻ ൌ 	 ݆଴ නA*ሺ1ሻA*ሺ2ሻ
1
ଵଶݎ

Bሺ1ሻBሺ2ሻ d߬ଵd߬ଶ 

 
        With an s-type Gaussian orbital of the form 
 

݃ሺ࢘௜ሻ ൌ Neିఈ௥A೔
మ

 
 

for electron i on atomic nucleus A and a similar expression for atomic nucleus B, we  
 
then have  

 

ሺAA|BBሻ ൌ 	 ݆଴ܰସ නeିఈ௥Aభ
మ
eିఈ௥Aమ

మ 1
ଵଶݎ

eିఈ௥Bభ
మ
eିఈ௥Bమ

మ
d߬ଵd߬ଶ 

 
 
9.9  (a) For NH3:  
 

A minimal basis set uses one basis function to represent each hydrogen 1s- 
 
orbital, and one basis function each for the nitrogen 1s, 2s, 2px,  2py, 2pz. The total  
 
number of basis functions is 8. 
 
(b) For CH3Cl: 
 
A minimal basis set uses one basis function to represent each hydrogen 1s-orbital, one 

basis function for carbon 1s, one basis function for carbon 2s, three basis functions for 

the three carbon 2p-orbitals, one basis function for chlorine 1s, one basis function for 

chlorine 2s, three basis functions for chlorine 2p, one basis function for chlorine 3s, and 

three basis functions for chlorine 3p. The total number of basis functions is 3  1  5  

9  17. 

 
9.10  (a) A split-valence basis set uses two basis functions for each valence atomic orbital  

 
and one basis function for each inner-shell atomic orbital. Therefore the total number of  
 



Atkins & Friedman: Molecular Quantum Mechanics 5e 
 

 

C09   p. 5 

basis functions is 6 (for the three H 1s) + 1 (for the N 1s) + 2 (for the N 2s) + 6 (for the  
three N 2p) = 15. 
 
(b) A double-zeta (DZ) basis set replaces each basis set function in the minimal basis  
 
set by two basis function. Therefore, 8 (see Exercise 9.9a) is replaced by 16. In  
 
addition, for a DZP basis set, a set of three 2p-functions is added to each H atom  
 
(giving 9 more basis functions) and a set of six 3d-functions is added to the N atom.  
 
Therefore the total number of DZP basis set functions is 16 + 9 + 6 = 31. 

 
 
9.11 Ethanol has two carbon, six hydrogen and one oxygen atom. We draw up the following 

tables showing the number of primitives comprising each contracted Gaussian function 

and the atomic orbital being represented. 

(i) 6-31G 

Number of primitives comprising contracted 

Gaussian function 

Atomic orbital 

3 H1s 

1 H1s 

6 C1s 

3 C2s 

1 C2s 

3  3 3 C2p 

3  1 3 C2p 

6 O1s 

3 O2s 

1 O2s 

3  3 3 O2p 
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3  1 3 O2p 

 The total number of basis functions (contracted Gaussians) is 

6(1  1)  2(1  1  1  3  3)  1(1  1  1  3  3)  39 

 The total number of primitives is 

6(3  1)  2(6  3  1  3  3  3  1)  1(6  3  1  3  3  3  1)  90 

(ii) 6-31G* 

 To the 6-31G basis, we add six d-type polarization functions to each of the three 

non-hydrogen atoms. 

 Total number of basis functions  39  3  6  57 

 Total number of primitives   90  3  6  108 

(iii) 6-31G** 

 To the 6-31G* basis, we add three p-type polarization functions to each of the six 

hydrogen atoms. 

 Total number of basis functions  57  6  3  75 

 Total number of primitives   108  6  3  126 

Exercise: Repeat the determination of the number of basis set functions in electronic 

structure calculations on 1,4-dibromobenzene, C6H4Br2. 

9.12 In a 6-31G** calculation on ethanol, we see from Problem 9.11 that there are 75 basis 

set functions. In addition, there are Ne  6  1  2  6  1  8  26 electrons. The total 

number of different Slater determinants is therefore 
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!1224!26

!150
26

1502

e


















N

M
  9.406 . . .  1028 

Exercise: Determine the total number of different Slater determinants that can be 

formed in a 6-31G** calculation on 1,4-dibromobenzene, C6H4Br2. 

9.13 Slater determinants (a), (b), (d), and (e) can all contribute to a wavefunction of 2S 

symmetry. Determinant (c) is of P symmetry and determinant (f) is of 4S symmetry. 

Exercise: Give examples of Slater determinants that can contribute to the ground-state 

wavefunction of magnesium. Be sure to include determinants that use 3p- and 3d-

orbitals. 

9.14 Slater determinants (a), (d), and (e) can contribute. Determinants (b) and (c) are of 

symmetry and (f) is of gerade symmetry. 

Exercise: Give examples of Slater determinants that can contribute to the g
3  ground-

state wavefunction of molecular oxygen. Include determinants that involve 3p- and 3d-

orbitals. 

9.15  The unwritten integrals arise from expansion of the integrand (the brief illustration in  
 
Section 9.9)  [A(1) – B(1)][A(2) – B(2)]1/r12) [A(1) + B(1)][A(2) + B(2)] and therefore  
 
the complete set of two-electron integrals is 

 
(AA|AA) + (AA|AB) + (AA|BA) + (AA|BB) – (AB|BA) – (AB|AA) – (AB|AB) –  
 
(AB|BB) – (BA|BA) – (BA|AB) – (BA|AA) – (BA|BB) + (BB|AA) + (BB|AB) +  
 
(BB|BA) + (BB|BB). 

  
9.16  In the brief illustration in Section 9.9, we showed that when MP2 is applied to  

 
molecular hydrogen in the minimal basis of two H1s orbitals, the (second-order)  
 
estimate of the correlation energy is  

 

଴ܧ
ሺଶሻ ൌ 	

ሼሺAA|AAሻ െ ሺAB|ABሻሽଶ

4൛ܧ൫1σg1σg൯ െ ሺ1σu1σuሻൟܧ
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If we define Q and ΔE as in the brief illustration in Section 9.10, we can write the  
 
above as 

 

଴ܧ
ሺଶሻ ൌ െ

ܳଶ

Δܧ
 

 
It should also be noted that in MPPT as discussed in Section 9.9, the HF energy is the  
 
sum of the zero-order energy and first order correction. As a result, 

 

଴ܧ
ሺଶሻ ൌ ܧ െ ቀܧ଴

ሺ଴ሻ ൅ ଴ܧ
ሺଵሻቁ ൌ ܧ െ	ܧHF 

 
In the coupled-cluster CCD method (see eqn 9.33), 

 

ܧ െ HFܧ ൌ 	 ଴ۧߖ|ଶܥܪ|଴ߖۦ ൌ ർߖ଴ቚܪቚߖଵσgଵσg
ଵσuଵσu඀ ݐ ൌ  ݐܳ

 
The equation for t is  

 
ଶݐܳ െ Δݐܧ െ ܳ ൌ 0 

 
with roots of  

 
 

ݐ ൌ
Δܧ േ ඥሺΔܧሻଶ ൅ 4ܳଶ

2Q
ൌ
Δܧ േ Δܧට1 ൅ 4ሺܳ/Δܧሻଶ

2Q
 

 
If Q << ΔE, we can use the approximation (1 + x)1/2 = 1 + x/2 which yields, taking the  
 
negative choice of the plus/minus, 

 
 

ݐ ൌ
Δܧ െ Δܧ ൬1 ൅ 2ܳଶ

ሼΔܧሽଶ൰

2ܳ
ൌ െ

ܳ
Δܧ

 

 
and therefore  

 
ܧ െ ுிܧ ൌ ݐܳ ൌ െܳଶ/Δܧ 

 
This matches the result from MP2. 

 
9.17  Equation 7.65 gives the expression for the ‘one-point’ electron density: 
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ሺ࢘ሻߩ ൌ 2෍߰௠∗

௠

ሺ࢘ሻ߰௠ሺ࢘ሻ 

If we use the molecular orbital ψA + ψB for ψm, then the density is given by  
 

ሺ࢘ሻߩ ൌ 2ሼ߰A
∗ሺ࢘ሻ ൅	߰B

∗ሺ࢘ሻሽሼ߰Aሺ࢘ሻ ൅ ߰Bሺ࢘ሻሽ
ൌ 2ሼ|߰Aሺ࢘ሻ|ଶ ൅ |߰Bሺ࢘ሻ|ଶ ൅ ߰A

∗ሺ࢘ሻ߰Bሺ࢘ሻ ൅ ߰Aሺ࢘ሻ߰B
∗ሺ࢘ሻሽ 

  
If the basis set functions are real, this becomes 

 
 

ሺ࢘ሻߩ ൌ 2ሼ߰A
ଶሺ࢘ሻ ൅ ߰B

ଶሺ࢘ሻ ൅ 2߰Aሺ࢘ሻ߰Bሺ࢘ሻሽ 
 
9.18  To compute the Hessian matrix, we need the second derivatives of the function. 
 

݂ ൌ sin ݔܽ cos  	ݕܾ
 

߲݂
ݔ߲

ൌ ܽ cos ݔܽ cos  	ݕܾ

 
߲ଶ݂
ଶݔ߲

ൌ 	െܽଶ sin ݔܽ cos  	ݕܾ

 
߲ଶ݂
ݕ߲ݔ߲

ൌ 	െܾܽ cos ݔܽ sin 	ݕܾ ൌ
߲ଶ݂
ݔ߲ݕ߲

	 

 
߲݂
ݕ߲

ൌ െܾ sin ݔܽ sin  	ݕܾ

 
߲ଶ݂
ଶݕ߲

ൌ 	െܾଶ sin ݔܽ cos  	ݕܾ

 
Therefore, the Hessian matrix is  

 

ࡴ ൌ ൬
െܽଶ sin ݔܽ cos 	ݕܾ െܾܽ cos ݔܽ sin 	ݕܾ
െܾܽ cos ݔܽ sin 	ݕܾ െܾଶ sin ݔܽ cos 	ݕܾ

൰ 

 
 
 
9.19  (a) MPPT and CC are not variational so (iv), (v) and (vi) can yield energies below 

the exact ground-state energy. 

 (b) Of the methods discussed in Chapter 9, full CI, MPPT, and CC are size-

consistent. Therefore, (i), (iii), and (vii) are not assured of being size-consistent. 
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Exercise: Discuss which of the two features, being variational or being size-

consistent, is a more important characteristic of an electronic structure calculation. 

 

9.20 A p-type GTO is given by 

 g100  Nxer
2
 

 100g

x




  er2 
− 2 N x2 er

2
 

   200000 2 gg   

Exercise: Consider a general Cartesian Gaussian gijk. Find expressions for both the first 

and second derivatives of gijk with respect to x in terms of other Gaussian functions. 

9.21  In the ZDO approximation, all two-electron integrals (ab|cd) vanish except those for  
 
which a = c and b = d. Therefore, the following integrals that appear in the solution of  
 
Exercise 9.4 vanish in the ZDO approximation: 

 
(AA|BB) = (AA|AB) = (AB|AA) = (BA|AA) = (BB|AA) = (BA|BB) = (BB|BA) = 0 

 
9.22  We begin with equation 9.58c and specifically consider a cis conformation of the  

 
quartet of atoms, for which the convention is the dihedral angle τ = 0. For small  
 
torsional displacements φ, cos(−φ) = cos φ = 1 – φ2/2. Therefore,  

 

torܧ ൌ 	෍ܣሾ1 ൅ cosሺ݊߬ െ ߮ሻሿ ൌ෍ܣሾ1 ൅ cosሺെ߮ሻሿ ൌ		෍ܣሾ1 ൅ cosሺ߮ሻሿ

ൌ	෍ܣሾ1 ൅ 1 െ ଵ
ଶ
߮ଶሿ ൌ	෍2ܣ െ෍ଵ

ଶ
ଶ߮ܣ  

 
The presence of the term of the form ½ Aφ2 indicates harmonic oscillation.  

 

Problems 

 9.1 We write the single Slater determinant as 

N det a(1)b(2) . . . z(Ne) 
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and show that N  (Ne!)
1/2 is the normalization factor. 

When we expand the Slater determinant, we get 


P

zbaP

zba

zba

zba

NPN

NNN

N )()2()1(

)()()(

)2()2()2(

)1()1()1(

e

eee


















 

where P allows for all permutations of electrons among the spinorbitals and P is either 

1 or 1, depending on whether the number of electron interchanges is even or odd. 

We require a normalized Slater determinant, so    

 1  
2

e

*
(1) (2) ( )P a b z

P

N P N   
 
 
 
   

      d)()2()1( e 







P

zbaP NP   

   N2   








P
zbaP NP )(*)2(*)1(* e   

      d)()2()1( e 







P

zbaP NP   

Each permutation operator P will give rise to a sum of eN ! products of spinorbitals. 

However, because the spinorbitals are orthonormal, we only have contributions to the 

integral when the permutation arising from [P gPPa(1)b(2) . . . z(Ne)]* is exactly the 

same permutation that arises from [P gPPa(1)b(2) . . . z(Ne)]. Therefore, there are 

Ne! contributions to the integral. In addition, because the spinorbitals are normalized, 

each of the Ne! contributions is exactly 1. (Note that 2
P   1.) For example, one of the 

Ne! contributions is 
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   d)()2()1()(*)2(*)1(* ee NN zbazba   

   nzzbbaa NN  d)()(*d)2()2(*d)1()1(* ee21   

  1  1    1  1 

Thus, 

1 N2  Ne! 

Choosing N as positive and real, we have 

N  (Ne!)
1/2 

Exercise: Show that the HF wavefunction Q0 and a singly excited Slater determinant 

are orthonormal. 

9.4  In a (4s)/[2s] contraction scheme, the most diffuse s-type primitive is left uncontracted. 

Therefore, the s-type Gaussian with exponent   0.123 317 is a single basis function. 

The remaining three primitives are used to form a single contracted Gaussian basis 

function of the form 

  


















)3615.13(06019.0

)30013.2(24134.0

)757453.0(49474.0





g

g

g

N  

where N is a constant so that  is properly normalized. 

Exercise: Determine the constant N such that the contracted basis function  is 

normalized. 

 

9.7  We need to show that 
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0 H p
aΦ   0 

where 0 is the HF ground-state wavefunction 

0  (Ne!)
1/2 det 12 . . . ab . . . ே౛   

and p
aΦ  is a singly excited determinant 

p
aΦ   (Ne!)

1/2 det 12 . . . pb . . . ே౛   

Using the Slater–Condon rule for two Slater determinants differing by only one 

spinorbital (see Problem 9.8), we have 

0 H p
aΦ   a(1) h1 p(1)   

i
piiaipia ]}][[]][{[   

We now show that a(1)f1p(1) and 0H p
aΦ  are equal, and we subsequently show 

that a(1)f1p(1)  0. 

 f1p(1)  pp(1)    [eqn 7.89] 

   h1p(1)   
i

pii KJ )1()}1()1({      [eqn 7.88b] 

    h1p(1)   
















i
pii r

j
)1(d)2()2(* 2

12

0  x  

      
















i
ipi r

j
)1(d)2()2(* 2

12

0  x      

Multiplication by )1(*a  and integration over x1 yields 

a(1)f1p(1)  a(1)h1p(1)   
i

piiaipia ]}|[]|{[   
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where we have used the notation of Further information 7.1 and Problem 9.8. We 

therefore have shown 

0H p
aΦ   a(1)f1p(1) 

In addition since 

f1p(1)  pp(1) 

we see that 

 a(1)f1p(1)  a(1)pp(1) 

   pa(1)p(1) 

   0 

because the spinorbitals are orthogonal. Therefore   

0 0p
aH       

as was to be proved. 

Exercise: Show that hamiltonian matrix elements between 0 and triply excited 

determinants are identically zero. 

9.10 (a) The ground-state electron configuration of the diatomic molecule C2 is (Section 8.6) 

4
u

2
u

2
g

2
u

2
g 1π2σ2σ1σ1σ  

where 1g and 1u arise from carbon 1s atomic orbitals and 2g, 2u, and 1u arise 

from valence shell atomic orbitals. (In Chapter 8, only valence electrons are considered 

and the numbering of the molecular orbitals is different.) 
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 Inactive orbitals: 1g and 1u 

 Active orbitals: 2g, 2u, 1u, 3g, 3u, and 1g 

 Virtual orbitals: 4g, 4u . . . arising from n  3, . . . atomic orbitals 

(b) There are 4 inactive electrons (in inactive orbitals) and 8 active electrons (in 

active orbitals).  

(c) In a restricted active-space (RAS) SCF calculation, the set of active orbitals is 

further divided into orbital subsets I, II, and III. Subset I could consist of the 2g and 

2u orbitals, with a minimum of two electrons in the subset. Subset II could consist of 

the 1u, 3g and 1g orbitals. Subset III could consist of the 3u orbital with a 

maximum of two electrons. The total number of electrons in the three subsets is held 

fixed at 8. 

Exercise: With the above distribution of  and  molecular orbitals into active, 

inactive, and virtual orbitals, what is the number of Slater determinants that would be 

used in the CASSCF calculation? 

 

9.13  In the meta-generalized gradient approximation of DFT,  
 

߬ሺ࢘ሻ ൌ
԰ଶ

2݉e
෍߰׏௜

∗ሺ࢘ሻ ∙ ௜ሺ࢘ሻ߰׏
௜

 
 

 

where the sum is over occupied orbitals. That such an expression represents a kinetic  

energy density follows from its integration by parts (∫u dv = uv − ∫v du):  
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න߬ሺ࢘ሻd࢘ ൌ
԰ଶ

2݉e
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௜
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where we have used the fact that ψ vanishes at the boundaries so the first term in the  
 
middle line above vanishes when evaluated at the limits of integration. 

  

9.16 For this problem and the next three problems in this chapter, all electronic structure 

computations were performed using the software package GAMESS. All ground-state 

energies are reported in hartrees and all internuclear distances in ångströms (1 ångström 

 1010 m). 

(a) H2 RHF/6-31G: energy  1.1268 bond length  0.7299 

 F2 RHF/6-31G: energy  198.6461 bond length  1.4125 

(b) H2 RHF/6-31G**: energy  1.1313 bond length  0.7326 

 F2 RHF/6-31G**: energy  198.6778 bond length  1.3449 

Exercise: Use electronic structure software to compute the energies of the separated 

atom limits (H  H and F  F) and, using these values and the above results, calculate 

the bond dissociation energies of H2 and F2. Compare the computed dissociation 

energies and equilibrium bond distances to the experimental values. 

 

9.19 Electronic structure computations were performed using the software package 

GAMESS. All enthalpies of formation are reported in kcal mol1 (1 kcal  4.184 kJ) 

and all equilibrium bond lengths are in ångströms (1 ångström  1010 m). 

(a)(i) ethanol: AM1 
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 C–C distance  1.5116 

 C–O distance  1.4195 

 O–H distance  0.9637 

 (methyl group) C–H distances  1.1161, 1.1161, 1.1153 

 (methylene group) C–H distances  1.1237, 1.1237 

 Enthalpy of formation  62.6632 

(a)(ii) ethanol: PM3 

 C–C distance  1.5179 

 C–O distance  1.4095 

 O–H distance  0.9472 

 (methyl group) C–H distances  1.0978, 1.0979, 1.0971 

 (methylene group) C–H distances  1.1080, 1.1079 

 Ethalpy of formation  56.8549 

(b)(i) 1,4-dichlorobenzene: AM1 

 C–C distance  1.3899 

 C–Cl distance  3.0890 

 C–H distance  2.5011 

 Enthalpy of formation  7.9737 

(b)(ii) 1,4-dichlorobenzene: PM3 

 C–C distance  1.3799 

 C–Cl distance  3.0648 

 C–H distance  2.4938 

 Enthalpy of formation  10.1113 
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Exercise: Compare the computed enthalpies of formation and equilibrium bond 

distances to the experimental values. 

 

 


