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Chapter 10 

Molecular rotations and vibrations 

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises 

10.1 The rates of stimulated and spontaneous emission are given by eqns 6.87 and 6.90: 
 

fܹ→i
stim ൌ 				ߩfiܤ	 fܹ→i

spont ൌ  fiܣ	
 
where ρ  is the energy density of radiation states and is given by the Planck distribution.  
 
Therefore, the ratio of the rates is (using eqn 6.92b and noting that Bfi = Bif): 
 

fܹ←i
stim

fܹ←i
spont ൌ 	

ߩfiܤ
fiܣ

ൌ 	
1

e௛జ/௞் െ 1
 

  
where ν is the transition frequency. In terms of the transition wavelength, the ratio is  
 

fܹ←i
stim

fܹ←i
spont ൌ

1
e௛௖/ఒ௞் െ 1

 

 
and at 298 K,  
 

(a) for λ = 0.10 nm:  ratio = 1/(e483 000 – 1) 
 

(b) for λ = 10 nm:  ratio = 1/(e4 830 – 1) 
 

(c) for λ = 6000 nm:  ratio = 1/(e480.5 – 1) 
 

10.2 Begin with eqn 10.7:  
 

ሻݐሺߤ ൌ 	ݐ߱	ሻE଴ cosݐሺߙ2 	
	
If the polarizability of the molecule α changes between αmin and αmax at a frequency ωint as a  
 
result of its rotation or vibration, we can write 
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ሻݐሺߙ ൌ ߙ	 ൅	ଵ
ଶ
	Δߙ	cos	߱intݐ 

 
where α is the mean polarizability and Δα = αmax − αmin. Since  
 

cos (A + B) = cos A cos B − sin A sin B 
 

 cos (A − B) = cos A cos B + sin A sin B 
 
we note that  
 

cos (ω + ωint)t +  cos (ω − ωint)t 
 

=  cos ωt cos ωintt  − sin ωt sin ωintt  + cos ωt cos ωintt  + sin ωt sin ωintt   
 
= 2 cos ωt cos ωintt   
 

and therefore   
 

ሻݐሺߤ ൌ 	ݐ߱	cos	ሻE଴ݐሺߙ2
	

ൌ ݐ߱	cos	E଴ߙ2 ൅ Δߙ	E଴	cos	߱intݐ	cos	߱ݐ 
 

ൌ ݐ߱	cos	E଴ߙ2 ൅	
భ
మ
	Δߙ	E଴ሾcos (ω + ωint)t +  cos (ω − ωint)t] 

 
which is eqn 10.8. 

		
 
10.3 The centre of mass is where mARA  mBRB, where RA is the distance from atom A of mass 

mA to the centre of mass, RB is the distance from atom B of mass mB to the centre of mass, 

and RA  RB  R. Therefore mARA  mB(R − RA) and  

 RA = mBR/(mA + mB) and RB = R − RA = mAR/(mA + mB) 

   The moment of inertia is then 

 I  2
BB

2
AA RmRm   

    mA{mB/(mA  mB)}2R2  mB{mA/(mA  mB)}2R2 

    {mA mB/(mA  mB)}R2  R2,      mA mB/(mA  mB) 
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10.4 (a) 1H2: 

 I  2
1 m(1H)R2  2

1   1.0078 mu  (75.09 pm)2 

  4.718  1048 kg m2 [1 mu  1.660 56  1027 kg, or use m  me  mp] 

(b) 2H2: 

I  2
1 m(2H)R2  9.429  1048 kg m2 

(c) 1H35Cl: 

I  








 )Cl()H(

)Cl()H(
351

351

mm

mm
 R2  2.644  1047 kg m2 

Exercise: Find the moments of inertia of H2O about three perpendicular axes. 

 
10.5 Refer to Fig. 10.1. 

I  4mBR2 [only atoms  a, b, c, d contribute for the axis shown; all axes are equivalent] 

Exercise: Repeat the question for an AB5 trigonal bipyramid with bond lengths Rax, Req. 
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For each value of J, values of both K  and MJ  extend in steps of 1 from –J to +J. 
 

(J, K, MJ) ܨ෨ ൌ ܬሺܬ෨ܤ ൅ 1ሻ ൅ ൫ܣሚ െ	ܤ෨൯ܭଶ	ሺcmିଵሻ 
(0,0,0) 0 

(1,±1,±1), (1, ±1,0) 7.321 
(1,0,±1), (1,0,0) 1.954 

(2,±2,±2), (2,±2,±1), (2,±2,0) 27.330 
(2,±1,±2), (2,±1,±1), (2,±1,0) 11.229 

(2,0,±2), (2,0,±1), (2,0,0) 5.862 
(3,±3,±3), (3,±3,±2), (3,±3,±1), (3,±3,0) 60.027 
(3,±2,±3), (3,±2,±2), (3,±2,±1), (3,±2,0) 33.192 
(3,±1,±3), (3,±1,±2), (3,±1,±1), (3,±1,0) 17.091 

(3,0,±3), (3,0,±2), (3,0,±1), (3,0,0) 11.724 
 
10.8  Polar molecules may show a pure rotational microwave absorption spectrum. Therefore,  
 
(c),  (d),  and (e). 
 
10.9  The line separation is E/hc  2B. Then, as ܤ෨   ħ/4cI, we have (with IR2)     

     ෤  E/hc  ħ/2cI  ħ/2cR2ߥ

Therefore, 

 R  {ħ/2c	ߥ෥}1/2 

   162 pm    [  0.999 86 mu  1.6603  1027 kg, E/hc  12.8 cm1] 

 

10.10  For 2H127I,   1.9826 mu. As ߥ෤   1/ the line separation will be 0.5043  (12.8 cm1)  

6.46 cm1. 

Exercise: The bond length of 1H2H is 74.136 pm. At what wavenumbers would it absorb 

if its rotational transitions were active? 

 
10.11  Rotational Raman transitions obey the selection rule ΔJ = ±2 for linear molecules. From  
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the discussion in Section 10.5, with ߥ෤଴ the wavenumber of the incident radiation (that is, the  
 
Rayleigh line), the wavenumbers of the Stokes and anti-Stokes lines relative to and closest to the  
 
Rayleigh line are: 
 
 Stokes lines: ߥ෤௃ െ		ߥ෤଴ ൌ െ4ܤ෨	ሺܬ ൅ 3/2ሻ				ܬ ൌ 0, 1, 2 
 

Anti-Stokes lines: ߥ෤௃ െ		ߥ෤଴ ൌ ܬሺ	෨ܤ4 െ 1/2ሻ				ܬ ൌ 2, 3, 4 
 
Since ܤ෨ ൌ 10.4400	cmିଵ, the relative wavenumbers are: 
 
 Stokes: J = 0  −62.64 cm−1 

  J  = 1 −104.4 cm−1 

  J  = 2 −146.16 cm−1 

 

Anti-Stokes:    J = 0  +62.64 cm−1 

   J  = 1 +104.4 cm−1 

   J  = 2 +146.16 cm−1 
 
10.12  The rotational wavenumbers for a linear rotor, including the effects of centrifugal  
 
distortion, are given by eqn 10.21: 
 

෨ܨ ൌ ܬሺܬ෨ܤ	 ൅ 1ሻ െ	ܦ෩ܬଶሺܬ ൅ 1ሻଶ  
 

The rotational wavenumbers for the states involved in the rotational Raman transitions in  
 
Exercise 10.11 are 
 
 J = 0 ܨ෨ ൌ 0   J = 1 ܨ෨ ൌ ෨ܤ2 െ  ෩ܦ4
 
 J = 2 ܨ෨ ൌ ෨ܤ6 െ ෨ܨ ෩ J = 3ܦ36 ൌ ෨ܤ12 െ  ෩ܦ144
 

J = 4 ܨ෨ ൌ ෨ܤ20 െ  ෩ܦ400
 
The three Stokes lines closest to the Rayleigh line and their wavenumbers are: 
 
 J = 0 → J = 2  ߥ෤௃ െ		ߥ෤଴ ൌ െ6ܤ෨ ൅ ෩ܦ36 ൌ െ62.6256	cmିଵ 
 
 J = 1 → J = 3  ߥ෤௃ െ		ߥ෤଴ ൌ െ10ܤ෨ ൅ ෩ܦ140 ൌ െ104.344	cmିଵ 
 
 J = 2 → J = 4  ߥ෤௃ െ		ߥ෤଴ ൌ െ14ܤ෨ ൅ ෩ܦ364 ൌ െ146.0144	cmିଵ 
 
The three anti-Stokes lines closest to the Rayleigh line and their wavenumbers are: 
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 J = 2 → J = 0  ߥ෤௃ െ		ߥ෤଴ ൌ ෨ܤ6 െ ෩ܦ36 ൌ ൅62.6256	cmିଵ 
 
 J = 3 → J = 1  ߥ෤௃ െ		ߥ෤଴ ൌ ෨ܤ10 െ ෩ܦ140 ൌ ൅104.344	cmିଵ 
 
 J = 4 → J = 2  ߥ෤௃ െ		ߥ෤଴ ൌ ෨ܤ14 െ ෩ܦ364 ൌ ൅146.0144	cmିଵ 
 
10.13 The lowest rotational level for a diatomic molecule is J  0 with zero rotational energy (i.e. 

no zero-point energy). However, for molecular hydrogen, as discussed in Section 10.6, 

there are two distinct forms: para-hydrogen (even J) and ortho-hydrogen (odd J). The 

conversion of ortho to para is very slow so as a sample of H2 at room temperature is 

cooled, the ortho-hydrogen settles into its lowest rotational state J  1; even at T  0, it 

cannot readily convert to para-hydrogen J  0. Thus, with the J  1 state having some 

population, there is an effective zero-point energy. 

Exercise: What can be said about zero-point rotational energy for dioxygen? 

 
10.14  The following table lists value of /mu for the species; to obtain absolute values use mu  

1.660 56  1027 kg; additional data will be found in Exercises 10.4 and 10.9. [Tables of 

nuclide masses are given in the Handbook of the American Institute of Physics, D.E. Gray 

(ed.), McGraw-Hill (1972).] Values of k are obtained from kf  2  42c2ߥ෤ଶ [  2, 

  cߥ෤]. 

 1H2 
1H19F 

1H35Cl 
1H81Br 

1H127I 

/mu 0.5039 0.9570 0.9796 0.9954 0.9999 

kf/(N m1) 574.9 965.7 516.3 411.5 313.8 
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10.15  For the effect of replacing 1H by 2H, assume that kf remains constant, and so form ߥ෤  

(1/2c)(kf/*)1/2, with * the reduced mass of the deuterated species. Draw up the 

following table: 

 2H1H 2H19F 
2H35Cl 

2H81Br 
2H127I 

*/mu 0.6717 1.8210 1.9044 1.9652 1.9826 

 ෤/cm1 3811 3000 2145 1885 1639ߥ

Exercise: In three dimensions the motion of the centre of mass separates from the internal 

motion, but rotations and vibrations separate only approximately. Demonstrate these 

features. 

 
10.16 To show an infrared absorption spectrum, a molecule must have a dipole moment that  
 
varies, at least transiently, with atomic displacements (that is, stretching and bending motions).  
 
Note that a molecule can be nonpolar but still be infrared active if there is at least one vibrational  
 
normal mode that induces, at least temporarily, a dipole moment in the molecule. Homonuclear  
 
diatomic molecules are infrared inactive; heteronuclear diatomic molecules are active. Therefore,  
 
(a), (c), and (d) can show infrared absorption spectra. 
 
10.17  The P-branch line corresponds to a transition from the initial state (v = 0, J = 2) to the  
 
final state (v = 1, J = 1). Since a given vibrational-rotational state (v, J) has an energy  
 
(in cm−1) of  
 

݄ܿ/ܧ ൌ ሺݒ ൅ 1/2ሻߥ෤ ൅ ܬሺܬ෨ܤ ൅ 1ሻ	 
 
the photon wavenumber for the transition is 
 
E(1,1)/hc – E(0,2)/hc  
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     ={(1 + 1/2) × 4138.3 + 1(1+1) × 20.9} cm−1    − {(0 + 1/2) × 4183.3 + 2(2+1) × 20.9} cm−1  

 

     = 4054.7 cm−1     

 
10.18  The dipole moment of a homonuclear diatomic molecule does not vary with 
 
vibrational motion; the molecule remains nonpolar as the bond length changes. However, the  
 
molecular polarizability does vary with distance. Therefore, a homonuclear diatomic molecule is  
 
infrared inactive but vibrationally Raman active.  
 
10.19  For a linear molecule, there are 3N – 5 normal modes where N is the number of atoms in  
 
the molecule. For a non-linear molecule, 3N – 6.  Molecules (a) and (b) are non-linear; (c) and  
 
(d) are linear.  
 

(a) N = 4; 3N – 6 = 6 
 

(b) N = 12; 3N – 6 = 30 
 

(c) N = 6; 3N – 5 = 13 
 

(d) N = 3; 3N – 5 = 4 
 
10.20  The molecule has three normal modes so the ground state has zero quanta in each of the  
 
vibrational modes; that is, (0, 0, 0) is the ground state. Within the harmonic approximation, each  
 
normal mode makes a contribution of (vi + ½)ħωi to the vibrational energy where vi is the  
 
vibrational quanta in mode i of frequency ωi. Therefore, the ground-state energy in wavenumber  
 
units is 
 
 E/hc = (0 + 1/2) × 1595 cm−1 + (0 + 1/2) × 3652 cm−1 + (0 + 1/2) × 3756 cm−1  = 450.1.5 cm−1 
 
10.21 The point group for NH3 is C3v. (a) Infrared active normal modes must belong to the same  
 
symmetry species as x, y, or z, which are A1 (z) and E (x, y). Therefore all modes are infrared  
 
active. (b) Raman active modes must belong to the same symmetry species as one of the  
 
components of the electric polarizability (x2, xy, xz, z2, etc.) Since z2 is of A1 symmetry and (x, y)  
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of E symmetry, both normal modes are Raman active.  
 
10.22  The ground vibrational state is (0, 0, 0). Letting 1595, 3652 and 3756 be the vibrational  
 
wavenumber of modes 1, 2 and 3, respectively, we designate an excited state as (v1, v2, v3). The  
 
three-lowest frequency overtones correspond to transitions from (0, 0, 0) to the excited states: 
 
   (2, 0, 0):  wavenumber = 2 × 1595 cm−1 = 3190  cm−1 

 

   (3, 0, 0):  wavenumber = 3 × 1595 cm−1 = 4785  cm−1 
 
   (4, 0, 0):  wavenumber = 4 × 1595 cm−1 = 6380  cm−1 

 

The three-lowest frequency combination bands  correspond to transitions from (0, 0, 0) to the  
 
excited states: 
 
   (1, 1, 0):  wavenumber = 1595 cm−1 + 3652 cm−1 = 5247  cm−1 

 

   (1, 0, 1):  wavenumber = 1595 cm−1 + 3756 cm−1  = 5351  cm−1 
 
   (2, 1, 0):  wavenumber = 2 × 1595 cm−1 + 3652 cm−1 = 6842  cm−1 

 

Problems 

10.1 (a)  I   
R R

rrrrmr
0 0

22 )dπ2()(d      [: density] 

    2  
R

Rrr
0

4
2
13 πd   

  m  R2; therefore I  
2

4

π2

π

R

mR
  2

2
1 mR  

(b) The perpendicular distance of the volume element at (r, , ) is r sin ; therefore 

 I   r(  sin )2 sin d d r2dr 

  
5π 2π4 3

0 0 0

4
d sin d d (2π)

5 3

R R
r r    

     
  

   
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dߥ෤௃
dܬ

ൌ ෨ܤ2 െ ܬ෩ሺܦ12 ൅ 1ሻଶ ൌ 0 

  
Therefore, 
 

෨ܤ ൌ ܬ෩ሺܦ6 ൅ 1ሻଶ 
 

ሺܬ ൅ 1ሻଶ ൌ  ෩ܦ෨/6ܤ
 

ܬ ൌ ൫ܤ෨/6ܦ෩൯
ଵ/ଶ

െ 1 
 
Using the date in problem 10.5 for HCl, we find 
 

ܬ ൌ 	 ሺ10.4400/ሼ6 ൈ 0.0004ሽሻଵ/ଶ െ 1	 ൎ 65 
 
 
 
10.10 
 

෨ܤ  (1H35Cl)  ħ/4cI(1H35Cl) [I  2.644  1047 kg m2, Exercise 10.4] 

   10.59 cm1 

The relative populations are given by 

 b(J)  (2J  1) exp{hcܤ෨J(J  1)/kT} 

   (2J  1) exp{0.050 79 J(J  1)}    [kT/hc  208.51 cm1 at 300 K] 

Draw up the following table (b is discussed below): 

J 0 1 2 3 4 5 6 7 

b(J) 1.000 2.710 3.687 3.805 3.259 2.397 1.540 0.873 

b(J) 1.000 1.807 2.212 2.175 1.811 1.307 0.829 0.465 
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J 8 9 10 11 12 13 14 15 

b(J) 0.439 0.197 0.079 0.028 0.009 0.003 0.001 104 

b(J) 0.232 0.103 0.041 0.015 0.005 0.001 104 105

(j b(J)  20.026, the rotational partition function at 300 K.) (a) If the intensities were 

determined solely by the populations they would be proportional to b(J), and the most 

intense transition would be 4  3. (b) If we take the J-dependence of the transition 

moment into account we should use 

b(J)  {(J  1)/(2J  1)}b(J)  (J  1) exp{0.050 79J (J  1)}, 

which gives the entries in the table above. The transition of maximum intensity is 3  2. 

Note that we have considered only absorption intensities, not net intensities. 

Exercise: Calculate the relative net absorption intensities. 

 

 

 
10.13  Only vibrational transitions of DCl are being considered and the lowest four transitions  
 
from the v = 0 state correspond to the transitions: 
 
 v = 0 → v = 1   (E1 – E0)/hc = 2091 cm−1  = ܧଵ

rel/hc 
 

   v = 0 → v = 2   (E2 – E0)/hc = 4128 cm−1  = ܧଶ
rel/hc 

   v = 0 → v = 3   (E3 – E0)/hc = 6111 cm−1  = ܧଷ
rel/hc 

   v = 0 → v = 4   (E4 – E0)/hc = 8043 cm−1  = ܧସ
rel/hc 
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ሺܧ௩୰ୣ୪/݄ܿሻ/10ଷ	cmିଵ 

Figure 10.4: The plot of relative energies against vibrational quantum number for Problem 10.13.  

It follows that  

԰߱ െ ԰߱ݔe ൌ ሺ2117.1	cmିଵሻ݄ܿ ൌ 4.206 ൈ 10ିଶ଴	J	 

԰߱ݔe ൌ ሺ26.613	cmିଵሻ݄ܿ ൌ 5.287 ൈ 10ିଶଶ	J 

and, therefore,  ω = 4.038 × 1014 s−1 and ωxe = 5.013 × 1012 s−1. 

 

 
10.16   
 

෨ܤ) ෤xe   . . . ߥ	෤   2(v  1)ߥ෤P ߥ  v1  ܤ෨ v)J  (ܤ෨ v1  ܤ෨ v)J
2  . . . [eqn 10.61] 

෨ܤ) ෤xe    . . . ߥ	෤    2(v  1)ߥ ෤Q ߥ  v1  ܤ෨ v)J  (ܤ෨ v1  ܤ෨ v)J
2  . . . [eqn 10.62] 

෨ܤ෤xe    . . .  2ߥ	෤   2(v  1)ߥ ෤R ߥ  v1  (3ܤ෨ v1  ܤ෨ v)J  (ܤ෨ v1  ܤ෨ v)J
2  . . . [eqn 10.63] 

If xe is ignored these equations become 

෨ܤ)෤   ߥ ෤P ߥ  v1  ܤ෨ v)J  (ܤ෨ v1  ܤ෨ v)J
2  . . . 

෨ܤ) ෤  ߥ ෤Q ߥ  v1  ܤ෨ v)J  (ܤ෨ v1  ܤ෨ v)J
2  . . . 

෨ܤ෤    2ߥ෤R ߥ v1  (3ܤ෨ v1  ܤ෨ v)J  (ܤ෨ v1  ܤ෨ v)J
2  . . . 

Then, with ܤ෨ 0  10.4400 cm1 and ܤ෨ 1  10.1366 cm1 

 cm1  20.5766J  0.3034J2/(෤ߥ෤P ߥ) 
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෨(v  1, J  2)  (1  2ܨ 
1 )4401.2 cm1  (2)(2  1)121.3 cm1 

   7329.6 cm1 

(a) For the Q-branch Stokes line, v  1 and J  0 so the final state of the diatomic 

molecule is (v  2, J  2) with an energy 

෨(v  2, J  2)  (2  2ܨ 
1 )4401.2 cm1  (2)(2  1)121.3 cm1 

   11 730.8 cm1 

 Therefore, while the diatomic molecule gains an energy given by 

 ෨(v  1, J  2), the scattered radiation loses that energy andܨ	෨(v  2, J  2) ܨ  

therefore has a wavenumber of 

15 873.0  (11 730.8  7329.6)  11 471.8 cm1 

(b) For the O-branch Stokes line, the final state is (v  2, J  0) which has an energy of 

෨(v  2, J  0)  (2  2ܨ 
1 )4401.2 cm1  (0)(0  1)121.3 cm1 

   11 003.0 cm1 

 Therefore, while the diatomic molecule gains an energy given by 

 ෨(v  1, J  2), the scattered radiation loses that energy andܨ ෨(v  2, J  0) ܨ  

therefore has a wavenumber of 

15 873.0  (11 003.0  7329.6)  12 199.6 cm1 
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(c) For the anti-Stokes line, v  1 so the final state of the diatomic molecule is (v  0, J 

 2) with an energy 

෨(v  0, J  2)  (0  2ܨ 
1 )4401.2 cm1  (2)(2  1)121.3 cm1 

   2928.4 cm1 

In this case the diatomic molecule loses an energy given by 

 ෨(v  0, J  2), and the scattered radiation gains that energy; thereforeܨ ෨(v  1, J  2) ܨ 

the scattered radiation occurs at a wavenumber of 

15 873.0  (7329.6  2928.4)  20 274.2 cm1 

If anharmonicity effects are included, the spacing between the v  1 and v  2 vibrational 

levels will decrease (see eqn 10.60) and as a result the scattered Stokes radiation will lose 

less energy and will thus occur at a higher wavenumber than that computed in part (a). 

Exercise: How will the wavenumbers computed in parts (a), (b) and (c) change if the 

effects of centrifugal distortion are included? 

 

 

 

 

 

 



 

 

 

 
10.22  Co

Figure 10

Under th

 

At

onsider the s

0.6: The disp

e operations

q1 

tkins & Frie

system depic

placement co

s of the group

q2 q3

edman: Mol

cted in Fig. 1

oordinates o

p (C2v) they 

 q4

ecular Qua
 

10.6.  

f a C2v mole

transform a

q5

antum Mech

ecule. 

s follows: 

q6 q7

hanics 5e 

 

q8 q9 



Atkins & Friedman: Molecular Quantum Mechanics 5e 
 

 

E q1 q2 q3 q4 q5 q6 q7 q8 q9 9

C2 q4 q5 q6 q1 q2 q3 q7 q8 q9 1

v q4 q5 q6 q1 q2 q3 q7 q8 q9 1

v   q1 q2 q3 q4 q5 q6 q7 q8 q9 3

[The characters, final column, are given by the net number of displacements left 

unchanged by the operation.] The representation decomposes as follows [eqn 5.22]: 

a(A1)  4
1 {9  1  1  3}  3    a(A2)  4

1 {9  1  1  3}  1 

a(B1)  4
1 {9  1  1  3}  2    a(B2)  4

1 {9  1  1  3}  3 

That is, the basis spans 3A1  A2  2B1  3B2. From the C2v character table, translations 

span B1  B2  A1 (for x, y, z respectively) and rotations span B2  B1  A2 (for Rx, Ry, Rz 

respectively). Consequently the vibrations span 21 BA2  . 

(a) Infrared-active transitions are those of the same symmetry species as the electric 

dipole moment, which spans B1  B2  A1 (for x, y, z respectively). Therefore, all 

three modes are infrared active (A1 is z-polarized, B2 y-polarized). 

(b) Raman-active transitions are those of the same symmetry species as the polarizability, 

which transforms as the quadratic form x2, xy, etc. These span 2A1  A2  B1  B2 

[character table], and so all three modes are Raman active. 

Exercise: Establish the symmetry species and activities of the vibrations of H2O2. 
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10.25  The harmonic oscillator wavefunctions are proportional to H0  1, H1  x for oscillations 

in the x-direction and to H0  1, H1  y for oscillations in the y-direction. Therefore, the 

linear combinations H0(y)H1(x)  iH1(y)H0(x) of the singly-excited degenerate states are 

proportional to x  iy  ei, which are eigenfunctions of lz, the angular momentum about 

the z-axis, with ml  1. 

Exercise: What can be said about the doubly excited bending modes? 

 
 


