Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 10
Molecular rotations and vibrations

All the following material © P.W. Atkins and R.S. Friedman.

Exercises

10.1 The rates of stimulated and spontaneous emission are given by eqns 6.87 and 6.90:

stim __ spont __
WeSi" = Bap W, = Ag

where p is the energy density of radiation states and is given by the Planck distribution.

Therefore, the ratio of the rates is (using eqn 6.92b and noting that By = Bif):

stim
WiS"  Bap 1
T = =
I/Vf(s_pion Aﬁ ehv/kT _ 1

where v is the transition frequency. In terms of the transition wavelength, the ratio is

stim

fei 1
V[/f(s;r;ont "~ ehc/ART _ 1
and at 298 K,

a) for A =0.10 nm: ratio = 1/(e**°° 1
(@

b) for A =10 nm: ratio = 1/(e**° -1

(

(c) for A= 6000 nm: ratio = 1/(¢***° - 1)
10.2 Begin with eqn 10.7:

u(t) = 2a(t)E, cos wt

If the polarizability of the molecule a changes between omin and omax at a frequency wincas a

result of its rotation or vibration, we can write
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a(t) = a+ %Aa COS Wiyt
where a is the mean polarizability and Aa = tmax — Omin. Since
cos (4 + B)=cos A cos B—sin 4 sin B
cos (A — B)=cos A cos B+ sin 4 sin B
we note that
cos (o + win)t + cos (v — win)t
= COS W! COS Win! — SIN Wi SIN Wind + COS W COS Wind + SIN W SIN Winit
=2 CcOS W! COS Winit
and therefore
u(t) = 2a(t)E, cos wt
= 2aEy cos wt + Aa Ey cos wj,t cos wt
= 2%, cos wt + 3 Aa Eg[cos (0 + win)t + cos (0 — Win)t]

which is eqn 10.8.

10.3 The centre of mass is where maRa = mgRg, where R4 is the distance from atom A of mass
ma to the centre of mass, R is the distance from atom B of mass mpg to the centre of mass,
and Ra + Rg = R. Therefore maRa = mg(R — Ra) and

Ra=mpR/(ma+ mg) and Rg=R — Ra = maR/(ma + mp)

The moment of inertia is then

I= m\R} + mgR;
2p2 2p2
=mA{mB/(mA+mB)} R +mB{mA/(mA+mB)} R

= {ma mp/(ma + mB)}R2 = ,uRz, L =mp mp/(mp + mp)
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104 (a) 'Hy:

Iy p2 2
1= %m( H)R = % x 1.0078 my x (75.09 pm)

=4.718 x 10°* kg m* [1 m, = 1.660 56 x 107" kg, or use m = me + m,]

(b) *Ha:

I=1mCH)R*=9.429 x 10 * kg m’

(c) 'H*CL:

- { m(' Hym(**Cl)

— : = R>=2.644 x 10" ke m>
m("H)+m(**Cl)

Exercise: Find the moments of inertia of H,O about three perpendicular axes.

10.5 Refer to Fig. 10.1.
I =4mgR’ [only atoms a, b, ¢, d contribute for the axis shown; all axes are equivalent]

Exercise: Repeat the question for an ABs trigonal bipyramid with bond lengths Rax, Req.
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m

Figure 10.1: An octahedral molecule and the calculation of its moment of inertia.

10.6
I= Zm,.x;2 = Zm (xi + R)?
= Zm,.xl.2 + ZRZ m.x, + Rzz m;
=1+0+mR*=1+mR*

because z m;x; = 0 for centre of mass and Z m; =m.

1 1

10.7 The NH3 molecule is a symmetric rotor; its rotational wavenumbers are given by eqn 10.16.
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For each value of J, values of both K and M extend in steps of 1 from —/ to +J.

(J, K, M) F=B/J+1)+(A— B)K?*(cm™)
(0,0.0) 0

(£141), (1, £1.0) 7321
(1,0.£1), (1,0.0) 1.954
(242.22), 222.41), (222.0) 27.330
(241.42). (2E141), (241.0) 11.229
(2,0.£2), (2.0£1), (2.0.0) 5.862
(BA3.23). (3322), (3.£3.£1), (3.£3.0) 60.027
(3.£2.53), 3.42.£2), (3,2,41), (32,0 33.192
(31,43, 31,£2), 321.£1), (3,£1,0) 17.091
(3.0.£3), (3.0.£2), (3.0.£1). (3.0,0) 11.724

10.8 Polar molecules may show a pure rotational microwave absorption spectrum. Therefore,
(¢), (d), and (e).

10.9 The line separation is AE/hc = 2B. Then, as B = h/4ncl,, we have (with I, = uR?)
¥ = AE/hc = h2nel | = h/2ncuR’
Therefore,

R = {h2ncuv}"?

=162pm [r=0.999 86 m, = 1.6603 x 10" kg, AE/hc = 12.8 cm™']

10.10 For “H"L, 1= 1.9826 m,. As ¥ o 1/u the line separation will be 0.5043 x (12.8 cm™") =
6.46 cm”".

Exercise: The bond length of "H*H is 74.136 pm. At what wavenumbers would it absorb

if its rotational transitions were active?

10.11 Rotational Raman transitions obey the selection rule AJ = £2 for linear molecules. From
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the discussion in Section 10.5, with ¥, the wavenumber of the incident radiation (that is, the
Rayleigh line), the wavenumbers of the Stokes and anti-Stokes lines relative to and closest to the
Rayleigh line are:

Stokes lines: ¥, — ¥ = —4B (J+3/2) ] =0,1,2

Anti-Stokes lines: V; — ¥, = 4B (J —1/2) ] =2,3,4
Since B = 10.4400 cm™1, the relative wavenumbers are:
—62.64 cm™'

0
1 —104.4 cm™!
2 —146.16 cm

Stokes:

J
J
J

Anti-Stokes: J=0 +62.64 cm’'
J =1 +1044cm
J =2 +146.16 cm™’
10.12 The rotational wavenumbers for a linear rotor, including the effects of centrifugal
distortion, are given by eqn 10.21:
F=BJjJ+1)— DJ*(J + 1)?

The rotational wavenumbers for the states involved in the rotational Raman transitions in

Exercise 10.11 are

<
Il
o
™
Il
o
<
Il
™
Il
)
o
|
NN
()]

J=2 F=6B-36D J=3 F =12B — 144D

The three Stokes lines closest to the Rayleigh line and their wavenumbers are:

J=0—>J=2 ¥, — ¥y =—6B +36D = —62.6256 cm™*
J=1->J=3 ¥, — ¥ = —10B + 140D = —104.344 cm™!
J=2—-J=4 ¥, — Vo = —14B + 364D = —146.0144 cm™

The three anti-Stokes lines closest to the Rayleigh line and their wavenumbers are:
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J=2—-J=0 ¥, — ¥, =6B —36D = +62.6256 cm™*
J=3->J=1 ¥, — ¥, = 108 — 140D = +104.344 cm™?
J=4—-J=2 ¥, — ¥ = 14B — 364D = +146.0144 cm™*

10.13 The lowest rotational level for a diatomic molecule is J = 0 with zero rotational energy (i.e.

10.14

no zero-point energy). However, for molecular hydrogen, as discussed in Section 10.6,
there are two distinct forms: para-hydrogen (even J) and ortho-hydrogen (odd J). The
conversion of ortho to para is very slow so as a sample of H, at room temperature is
cooled, the ortho-hydrogen settles into its lowest rotational state /= 1; even at 7= 0, it
cannot readily convert to para-hydrogen J = 0. Thus, with the J = 1 state having some
population, there is an effective zero-point energy.

Exercise: What can be said about zero-point rotational energy for dioxygen?

The following table lists value of z/m, for the species; to obtain absolute values use m, =
1.660 56 x 107 kg; additional data will be found in Exercises 10.4 and 10.9. [Tables of
nuclide masses are given in the Handbook of the American Institute of Physics, D.E. Gray
(ed.), McGraw-Hill (1972).] Values of k are obtained from k¢ = ,ua)2 = 4752,1102172 [w=27v,

v=cV].

lH2 1H19F 1H35Cl 1H81Br 1H127I

Himy

0.5039 0.9570 0.9796 0.9954 0.9999

k(N m™) 574.9 965.7 516.3 4115 313.8
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10.15 For the effect of replacing 'H by “H, assume that k; remains constant, and so form ¥ =

(1727me) (ke ,u*)l/z, with g7 the reduced mass of the deuterated species. Draw up the

following table:
H'H 2R 213501 8By 2127
L Imy 0.6717 1.8210 1.9044 1.9652 1.9826
V/em™ 3811 3000 2145 1885 1639

Exercise: In three dimensions the motion of the centre of mass separates from the internal
motion, but rotations and vibrations separate only approximately. Demonstrate these

features.

10.16 To show an infrared absorption spectrum, a molecule must have a dipole moment that
varies, at least transiently, with atomic displacements (that is, stretching and bending motions).
Note that a molecule can be nonpolar but still be infrared active if there is at least one vibrational
normal mode that induces, at least temporarily, a dipole moment in the molecule. Homonuclear
diatomic molecules are infrared inactive; heteronuclear diatomic molecules are active. Therefore,
(a), (c), and (d) can show infrared absorption spectra.
10.17 The P-branch line corresponds to a transition from the initial state (v = 0, J = 2) to the
final state (v = 1, J = 1). Since a given vibrational-rotational state (v, J) has an energy
(in cm ') of

E/hc=(w+1/2)V+BJjJ +1)
the photon wavenumber for the transition is

E(1,1)/he — E(0,2)/he
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={(1+1/2) x 41383 + 1(1+1) x 20.9} cm™" — {(0 + 1/2) x 4183.3 + 2(2+1) x 20.9} cm '

=4054.7 cm’’
10.18 The dipole moment of a homonuclear diatomic molecule does not vary with
vibrational motion; the molecule remains nonpolar as the bond length changes. However, the
molecular polarizability does vary with distance. Therefore, a homonuclear diatomic molecule is
infrared inactive but vibrationally Raman active.
10.19 For a linear molecule, there are 3N — 5 normal modes where N is the number of atoms in
the molecule.-For a non-linear molecule, 3N — 6. Molecules (a) and (b) are non-linear; (c) and
(d) are linear.

(a) N=4;3N-6=6

(b) N =12; 3N -6 =30

1

(c) N=6;3N-5
(dN=3;3N-5=4
10.20 The molecule has three normal modes so the ground state has zero quanta in each of the
vibrational modes; that is, (0, 0, 0) is the ground state. Within the harmonic approximation, each
normal mode makes a contribution of (vi + /2)Aiw; to the vibrational energy where v; is the
vibrational quanta in mode i of frequency w;. Therefore, the ground-state energy in wavenumber
units is
Elhe = (0+1/2) x 1595 cm ™' + (0 + 1/2) x 3652 cm ' + (0 + 1/2) x 3756 cm ' =450.1.5 cm”'
10.21 The point group for NHj3 is Csy. (a) Infrared active normal modes must belong to the same
symmetry species as x, y, or z, which are A, (z) and E (x, y). Therefore all modes are infrared
active. (b) Raman active modes must belong to the same symmetry species as one of the

components of the electric polarizability (x?, xy, xz, z°, etc.) Since z* is of A symmetry and (x, y)
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of E symmetry, both normal modes are Raman active.
10.22 The ground vibrational state is (0, 0, 0). Letting 1595, 3652 and 3756 be the vibrational
wavenumber of modes 1, 2 and 3, respectively, we designate an excited state as (v, v2, v3). The
three-lowest frequency overtones correspond to transitions from (0, 0, 0) to the excited states:
(2,0, 0): wavenumber =2 x 1595 cm™' =3190 cm'
(3,0, 0): wavenumber =3 x 1595 cm™ ' = 4785 cm '
(4, 0, 0): wavenumber =4 x 1595 cm™' = 6380 cm '
The three-lowest frequency combination bands correspond to transitions from (0, 0, 0) to the
excited states:
(1, 1, 0): wavenumber = 1595 cm™' + 3652 cm ' = 5247 cm '
(1,0, 1): wavenumber = 1595 cm '+ 3756 cm ' = 5351 cm’

(2, 1, 0): wavenumber =2 x 1595 cm™ ' + 3652 cm ' = 6842 cm '

Problems
10.1 (a) I= jOR rdm(r) = jOR(znprdr)rz [p: density]

= 275,0"? rdr =1npR*

4
TR"'m
_ 1 2
2—2mR

m= Tchp; therefore / =
2nR

(b) The perpendicular distance of the volume element at (r, 6, ¢) is r sin &, therefore

1= J.p(r sin ) sin O dg rdr

5
= p jo"" ridr jo sin’0do joz”d¢ = p(%}[%)@n)
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Therefore,

]:M 2 mR?
(4n/3)R’ >

10.4 F(J, K, Mj) = BJ(J + 1) + (A - B)K* [eqn 10.16]

I = 4mpR’® [Table 10.1]

I, = 2mgR* [Table 10.1]

Therefore

A A

— 2’
= dnely  16mmgeR

A A

g = = 5
dncl)  8mmgeR

and so A = B/2. It follows that
F(J, K, M) =BJJ+ 1)~ BK =B{J¢ +1) —1K?}

Exercise: Establish a similar result for an octahedral AB¢ molecule.

10.7 The wavenumbers of the transitions J + 1 «— J are given in eqn 10.30. To find a maximum,

set the first derivative dv;/dJ = 0:

%, =2B(J+1)—-4D(J +1)*
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dv’—zé 12D(J +1)2 =0

Therefore,
B=6D( +1)?
(J+1)*=5/6D
J = (B/6D)"* -1

Using the date in problem 10.5 for HCI, we find

J = (10.4400/{6 x 0.0004})¥/2 —1 ~ 65

10.10

B('"H”Cl) = n/4ncI('H*Cl)  [I=2.644 x 107" kg m®, Exercise 10.4]
=10.59 cm™

The relative populations are given by

b(J) = (2J + 1) exp{—hcBJ(J + 1)/kT}

=(2J+ 1) exp{=0.050 79 J(J + 1)}  [kT/hc =208.51 cm ™" at 300 K
( p

Draw up the following table (' is discussed below):

J 0 1 2 3 4 5 6 7
b(J) 1.000 2.710 3.687 3.805 3.259 2.397 1.540 0.873
b'(J) 1.000 1.807 2.212 2.175 1.811 1.307 0.829 0.465
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J 8 9 10 11 12 13 14 15
b(J) 0.439 0.197 0.079 0.028 0.009 0.003 0.001 107
() | 0232 0103 0041  0.015  0.005  0.001 107 107

(% b(J) = 20.026, the rotational partition function at 300 K.) (a) If the intensities were
determined solely by the populations they would be proportional to b(J), and the most
intense transition would be 4 < 3. (b) If we take the J-dependence of the transition
moment into account we should use
b'(J)={J+ 1D/Q2J+ D}b(J)=(J+ 1) exp{—0.050 79J (J + 1)},

which gives the entries in the table above. The transition of maximum intensity is 3 <— 2.
Note that we have considered only absorption intensities, not net intensities.
Exercise: Calculate the relative net absorption intensities.

10.13 Only vibrational transitions of DCI are being considered and the lowest four transitions

from the v = 0 state correspond to the transitions:

v=0—->v=1 (E,— Eo)/he =2091 cm™' = EX®/hc
v=0—>v=2 (E,— Eo)/he = 4128 cm™' = E5®Y/he
v=0—>v=3 (Es— Eo)/he = 6111 cm™' = E5®/hc

v=0—>v=4 (Es— Eo)/he = 8043 cm™' = Ef®'/hc
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where EX€!/hc is the energy in wavenumber units of vibrational level v relative to the v = 0 level.
The vibrational energies are given by eqn 10.53 and, as in Example 10.3, we retain the first two

terms. Since we desire energies relative to v = 0, we substract the zero-point energy

1 1 . . .
Ehw - Zhwxe. The relative energies are therefore given by

Erel_< +1)h ( +1)2h (ha) ha)xe)
w=(v+g)ho —(v+35) hore— (= 1

= (hw — hwx,)v — hwxv?
A plot of EZL€'/hc against v is shown in Fig. 10.4; the best quadratic fit is

Ef'/hc = 2117.1v — 26.613v?

10

L

(E ™/he)(10° em™)

2
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(EX®'/hc)/10% cm ™!

Figure 10.4: The plot of relative energies against vibrational quantum number for Problem 10.13

It follows that

hw — hwx, = (2117.1 cm™Y)he = 4.206 X 10729

hwx, = (26.613 cm™1)hc = 5.287 x 10722 ]

and, therefore, @ =4.038 x 10" s and wx.=5.013 x 10?57\,

10.16
V=9 200+ D Vxe +...— By + B)J+ (B —B)F +...[eqn 10.61]
=7 20w+ 1) Vxe +...+ By —B)J+ By —B)F +...[eqn 10.62]

Ry —20+ D Wixe +...+2By + (3B — B))J+ By — B)JF +. .. [eqn 10.63]

v
If x. 1s ignored these equations become

V=9 =—Byy+B)J+ By —B)F+. ..
P— P =By —B)W+ By —B)F +. ..

R =2B,1 + BBy —B) + By —B)P+. ..

Then, with By = 10.4400 cm™' and B; = 10.1366 cm™!

@ —)em™ = -20.5766J — 0.3034.7



Atkins & Friedman: Molecular Quantum Mechanics 5e

@¥-P)em™ = -0.3034J(J + 1)

@R = ¥)lem™ =20.2732 + 19.9698J — 0.3034./°

The wavenumbers of the branches are plotted in Fig. 10.5.

400
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Figure 10.5: The wavenumbers of the P-, Q-, and R-branches calculated in Problem 10.16.

Exercise: Find the location of the lines of the O- and S-branches of the Raman spectrum.

10.19 The energy in wavenumber units of the initial state (v =1, .J = 2) is [see eqn 10.60 with F

= El(hc)]
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Fv=1,J=2)=(1+ 1)4401.2cm™ + (2)2 + 1213 cm™'

=7329.6 cm™
(a) For the Q-branch Stokes line, Av = +1 and AJ = 0 so the final state of the diatomic

molecule is (v =2, J = 2) with an energy

Fv=2,7=2)=(2+ 1)4401.2cm™ + (2)2 + 1213 cm™

=11730.8 cm™
Therefore, while the diatomic molecule gains an energy given by

F(v=2,J=2)-F(v=1,J=2), the scattered radiation /oses that energy and

therefore has a wavenumber of
15 873.0 — (11 730.8 — 7329.6) =11 471.8 cm™"
(b) For the O-branch Stokes line, the final state is (v = 2, J = 0) which has an energy of

Fv=2,7=0)=(2+ 1)4401.2cm™ + (0)(0 + 1)121.3 cm

=11003.0 cm™
Therefore, while the diatomic molecule gains an energy given by

F(v=2,J=0)- F(v=1,J=2), the scattered radiation /oses that energy and

therefore has a wavenumber of

15 873.0 — (11 003.0 — 7329.6) = 12 199.6 cm™'



Atkins & Friedman: Molecular Quantum Mechanics 5e

(c) For the anti-Stokes line, Av = —1 so the final state of the diatomic molecule is (v=10, J

= 2) with an energy

Fv=0,7=2)=(0+ 1)4401.2cm™ +(2)(2 + 1213 cm™'

=2928.4 cm™’
In this case the diatomic molecule loses an energy given by

F(v=1,J=2)- F(v=0,J=2), and the scattered radiation gains that energy; therefore

the scattered radiation occurs at a wavenumber of
15 873.0 +(7329.6 — 2928.4) =20 274.2 cm’!

If anharmonicity effects are included, the spacing between the v = 1 and v = 2 vibrational
levels will decrease (see eqn 10.60) and as a result the scattered Stokes radiation will lose

less energy and will thus occur at a higher wavenumber than that computed in part (a).

Exercise: How will the wavenumbers computed in parts (a), (b) and (c) change if the

effects of centrifugal distortion are included?
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10.22 Consider the system depicted in Fig. 10.6.

Figure 10.6: The displacement coordinates of a C,, molecule.

Under the operations of the group (C,y) they transform as follows:

qi q2 q3 qa qs dé q7 qs

99
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G

Oy

q1 q2 7 q4 gs 7 q7 qs q9 9
—q4 —qs g6 —q1 42 qs —q7 —qs 99 -1
g4 —qs ge q1 —q2 93 q7 —qs 99 1
—q1 q2 q3 —q4 qs qs —q7 qs q9 3

[The characters, final column, are given by the net number of displacements left

unchanged by the operation.] The representation decomposes as follows [eqn 5.22]:

a(A)=1{9-1+1+3}=3 aA)=1(9-1-1-3}=1

aB)=1{9+1+1-3}=2 aB)=1{9+1-1+3}=3

That is, the basis spans 3A| + A, + 2B; + 3B,. From the C,, character table, translations
span By + B, + A; (for x, y, z respectively) and rotations span B, + By + A, (for R, R, R-
respectively). Consequently the vibrations span 2A, +B,.

(a) Infrared-active transitions are those of the same symmetry species as the electric

dipole moment, which spans By + B, + A; (for g, 14, . respectively). Therefore, all

three modes are infrared active (A is z-polarized, B, y-polarized).

(b) Raman-active transitions are those of the same symmetry species as the polarizability,
which transforms as the quadratic form x2, xy, etc. These span 2A; + A, + B; + B,

[character table], and so all three modes are Raman active.

Exercise: Establish the symmetry species and activities of the vibrations of H,O».
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10.25 The harmonic oscillator wavefunctions are proportional to Hy oc 1, H; oc x for oscillations
in the x-direction and to Hy o« 1, H; oc y for oscillations in the y-direction. Therefore, the
linear combinations Hy(y)H;(x) £ iH,(y)Hy(x) of the singly-excited degenerate states are
proportional to x + iy oc ¢, which are eigenfunctions of L., the angular momentum about
the z-axis, with m; = £1.

Exercise: What can be said about the doubly excited bending modes?



