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Chapter 11 

Molecular electronic transitions  

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises 

11.1 See the discussion of the Hund coupling cases in Section 11.1. 

  (i) We focus on which of the quantum numbers for orbital and spin angular momenta 

are good quantum numbers. For case (a) , , ; for case (b) , S; for case (c) E, ; 

for case (d) L, S. 

(ii) In each case, the degeneracy of a rotational energy level is 2J  1, where J is the total 

angular momentum. 

Exercise: Describe mechanisms by which the angular momenta are decoupled. 

 
11.2 Refer as needed to the discussion in Section 8.6. (i) A single electron (spin-1/2) gives rise to  
 
a doublet term. (ii) Since a d-orbital pertains to l = 2, the overlap of two d-orbitals, using the  
 
Clebsch-Gordan series (eqn 4.42), gives rise to terms with values of the orbital angular momenta  
 
of 0, 1, 2, 3, and 4, pertaining to E, A, ), M, and ' terms, respectively. (iii) The E term requires a  
 
label to describe its behaviour under reflection in a plane containing the internuclear axis. The  
 
molecular orbital constructed from face-to-face overlap of dxy orbitals has the character of −1  
 
under this operation so the term is E−. (iv) For the parity classification of the terms, the  
 
molecular orbital does not change upon inversion through the center of the diatomic molecule so  
 
it has gerade symmetry.  
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 The following terms therefore arise: Σgି,
ଶ 	 Πg

ଶ , Δg
ଶ , Φg

ଶ , Γg
ଶ  

 
 
 

		
 
11.3 Refer to the specification of the selection rules in Section 11.3. 

(a) 2  2 allowed by   0 

(b) 1  1 allowed by   0 

(c)    forbidden (  2 not allowed) 

(d)    forbidden by     

(e)    allowed by   0 and    

(f) g
1   u

1  allowed by   0,   , and g  u 

(g) g
3   u

3  forbidden by     

Exercise: Which of 2  2, 3g  u
3 , and 3g  1u are allowed? 

11.4  When a diatomic molecule with S = 3/2 dissociates, the two atoms that form may have 

spins S1 and S2, respectively,  such that the Clebsch-Gordan series (eqn 4.42) for the 

resultant of S1 and S2 contains S = 3/2. For example, (S1 = 2, S2 = 1/2) results in S = 5/2, 

3/2 so this combination of spins is allowed. The spin states, (S1, S2),  of the atoms that 

may form are  

      (0, 3/2), (3/2, 0), (1/2, 1), (1, 1/2), (1/2, 2), (2, 1/2), (1, 3/2), (3/2, 1) and so on.  

 
11.5   A M state pertains to 7 = 3. Therefore, the two atoms that form when the diatomic 

molecule dissociates may have may have orbital angular momenta  L1 and L2, 

respectively,  such that the Clebsch-Gordan series (eqn 4.42) for the resultant of L1 and L2 
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contains  a value of 3. For example, the atomic terms (F, D) pertain to L1 =3 and L2 = 2 

with resultant values of 5, 4, 3, 2, 1, 0; therefore, since a value of 3 is possible, the atomic 

terms (F, D) are possible. The list of possible terms includes 

   (F, S), (S, F), (D, P), (P, D), (D, D), (F, D), (D, F) and so on. 

 
11.6  Dissocation of Oଶ

ା produces O + O+. (i) The 4Au state has a spin multiplicity of (2S + 1) = 

4; that is, S = 3/2. Therefore, if S1 is the total spin for the O atom (an integer since the 

atom has an even number of electrons) and S2 is the total spin for the O+ ion (a half- 

integer since the ion has an odd number of electrons), then possible values for S1 and S2 

are those for which the Clebsch-Gordan series (eqn 4.42) for the coupling of S1 and S2 

includes a value of 3/2. For example, the combination of S1 = 0 (a singlet term) and S2 = 

3/2 (a quartet term) is possible. (ii) The 4Au pertains to  7 = 1. Therefore, the states that 

form when the diatomic molecule dissociates may have orbital angular momenta  L1 and 

L2 such that the Clebsch-Gordan series (eqn 4.42) for the resultant of L1 and L2 contains  a 

value of 1. For example, the terms (P, D) pertain to L1 =2 and L2 = 3 with resultant values 

of 5, 4, 3, 2, 1, 0; therefore, since a value of 1 is possible, the  terms (P, D) are possible. 

   The list of possible terms includes 

   O(1P) + O+(4S), O(3P) + O+(4S), O(3P) + O+(2S), O(1D) + O+(4S), O(3D) + O+(4S), 

O(1P) + O+(2D), O(1S) + O+(2P), and so on.  

 
11.7 The transition element 1A2q1A1 transforms as 

A2  (q)  A1  A2  (q); 

but as (q)  A1, B1, B2, it must vanish. 
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The normal coordinates of H2O are of symmetry species 2A1  B2. Since B2  A2  B1, 

the vibronic transition matrix element 

1A2, 
1B2q1A1, 

0B2 

is of symmetry species A2  B2  (q)  A1  A1  B1  (q). It is A1 when (q)  B1, 

which is so where q  x. Therefore, an x-polarized vibronic transition may occur. 

Exercise: Show that the transition 2B2  2B1 is forbidden in ClO2 (a C2v molecule), but 

may be vibronically allowed. 

 
11.8  Determine which states are mixed by rotations. In D6h rotations transform as A2g and E1g. 

Therefore, B1u  {A2g, E1g}  {B2u, E2u} and B2u  {A2g, E1g}  {B1u, E2u}. Therefore 

1 1
2u 2uB and E  may be mixed into 3B1u and 1 1

1u 2uB and E  may be mixed into 3B2u. 

Exercise: What triplet states may be mixed into the 1E state of NH3? What states would 

be mixed if the molecule were planar in the 1E excited state? 

 
 

Problems 

11.1 2s  (Z/a0)
3/2(1/22)(2  )e/2Y    [Table 3.4]    with   Zr/a0 

(a) 

 r 



0

4
0

23

0

22 )/(d)(d ZaRrrrR   

  (a0/Z)(1/8) 3 2

0
(2 ) e d  

     
[Z  2] 

  012 / (318 pm)a Z     



 

 
0

23 96de)2( xxx x  
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(b) 

 P (R)  (Z/a0)
3(1/8)  

R
rr

0

22 de)2(   

   
A

0

22
8
1 de)2(     0.90    [A  ZR/a0] 

That is, we need to solve 

 
A

A
0

22 de)2()(Integral      7.20    for A 

The graph of this integral as a function of A is shown in Fig. 11.1. We see that it has the 

value 7.20 at A  9.12539, so 

R  Za /12539.9 0  (241 pm) 
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 
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  (1/2vv!)1/2
2 21

2
( )

( )e d
y y

vH y y
   


  

 S10  (2/)1/2
2 21

2
( )

e d
y y

y y
   


  

  (2/)1/2 




  yy
zyz

dee
2

2
12

4
1 )(

 

  (2/)1/2 




  wzw wz
de)(e

22
4
1

2
1     [w  y  2

1 z] 

  (2/)1/2
2

4
122

4
1

e)2/(de)(e
2
1 zwz

zwz




    

 2
10S   

2
2
1

e2
2
1 z

z
   (m/2ħ)R2 exp{(m/2ħ)R2} 

  

 
11.7  H2CO belongs to C2v, and q transforms as B1, B2, A1 for x, y, z, respectively. The 

transition 1A2  1A1 is therefore allowed only if it is vibronic [A2qA1 does not span 

A1]. Since the six vibrations of H2CO span 3A1  B1  2B2, possible singly excited 

vibronic states of the A2 electronic state are of symmetry species A1  A2  A2, B1  A2  

B2, and B2  A2  B1. These vibronic states may be stimulated from the A1 state by y-

polarized (B2) or x-polarized (B1) radiation. 

Ethene belongs to D2h, and q transforms as B3u, B2u, B1u for x, y, z, respectively. 

Therefore B2u  Ag is allowed for y-polarized radiation. The vibrations of ethene span 

3Ag  2B1g  B2g  Au  B1u  2B2u  2B3u 

[Problem 10.23], and so the possible vibronic states of the B2u electronic state are 

B2u  (Ag, B1g, B2g, Au, B1u, B2u, B3u)  B2u, B3u, Au, B2g, B3g, Ag, B1g 
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[Refer to the character table, form (R)(R) for   , and identify the set of characters 

so produced]. Of these, B2u and B3u may be reached by an electric dipole transition from 

the Ag ground state. 

Exercise: Assess the polarization of the 1B2  1B1 transition in H2CO and the B1g  Ag 

transition in ethene. 

 

11.10 

P2(t)  (2V/)2 sin2 ( 2
1 t), 2  2

21   4V2 [eqn 6.63].  

ħ21  ħJ. For state 2 taken as T0, ħV  ħ/ 2  [Problem 11.9];  

for state 2 corresponding to T, ħV  ħ/2. Therefore, 

 P(T0)   2 2 2 2 2 2 1/ 21
2{2 /( 2 )}sin ( 2 )J J t     

 P(T)   2 2 2 2 2 2 1/ 21
2{ /( )}sin ( )J J t     

 P(T)  )()()( 0   TPTPTP  

For a range of initial times, 0  t0  T; the time t then corresponds to the duration since 

initiation, which is t  t0 for a given member of the system. Therefore, since t0 ranges 

from 0 to T, the average population is: 

 P (T0)  {22/(J2  22)}(1/T)  2 2 2 1/ 21
0 020

sin ( 2 ) ( ) d
T

J t t t   

  {22/(J2  22)}(1/T) 2 2 2 1/ 21
0 2sin ( )d [ , ( 2 ) ]

t

t T
a t t a J   


     

  {2/(J2  22)}{1  /2aT} 
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   [1  cos(2aT)] sin(2at)  sin(2aT) cos(2at) 

If T is long in the sense that 2aT  1, 

P (T0)  2/(J2  22) 

Likewise 

P (T)  2
1 2/(J2  2) 

Overall, therefore, 

P (T)  2/(J2  22)  2/(J2  2)  
)2)((

)32(
2222

222






JJ

J
 

When J2  2, P (T)  22/J2. 

Exercise: Suppose a magnetic field is present. How does P (T) depend on it? 

 
 

11.13  H  E,   a  ;nnn b      H(bath)n  Enn. 

 should be interpreted as system fbath and  as bath gsystem, with H(bath)fbath  0 and 

H(sys)gsystem  0 (so that in each case no energy resides in the relevant component). 

Then 

 H  aE  n n n
n

b E    Ha   
n

nnHb   

  Ea  E n n
n

b     
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Multiply by (a) * and integrate, (b) *n  and integrate (follow that by setting n  n): 

 (E  E)a  V
n

nb   0 [n  0, H  0] 

 Va  (En  E)bn  0 [n  0, nHn  0] 

Then, bn  {V/(E  En)}a. 

Substitute this expression for bn back into the first equation of the pair: 

                        (E  E)  V2 {1/{ )}E  n
n

E   0    

Then, with E  En    n and   1/, 

 E  E  (V2/) 
n

n)}/{1{   

  (V2) cot() 

As  is normalized to unity, a2  2
nn b   1; consequently [from above] 

                                       a2  a2V2 2{1/ ( ) }E n
n

E   1     

Since 







n

n 2)(   2cosec2 

[Handbook of mathematical functions] 

 a2  {1  22V2cosec2()}1 
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  {1  22V2  22V2 cot2()}1 

  {1  22V2  22V2[(E  E)/V 2]2}1 

  
2

2 2 2 2( ) (π )E   
V

E V V
     

Exercise: Find an expression for .4
nn b  

 


