Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 12
The electric properties of molecules

All the following material © P.W. Atkins and R.S. Friedman.

Exercises

121 (a) (4,y =aE [eqn 12.9, 1. =0; o, = ]
=4nsdE [eqn 12.19, a=4nsd']
=(1.11265x 1077 C?*m™") x (10.5 x 107 m’) x (1.0 x 10* Vm™)
=(L.17x 1077 CP*m?) x (1.0x 10* Vm™)

=1.17x10"Cm  (3.5x10°D)[1 D=3.336x 107" C m]

(b)  E(E)-E(0)=-1aF =-585x107"7(=3.52x 10" kI mol ™)

Exercise: Calculate the dipole moment induced by a singly charged ion at a distance of

(a) 0.1 nm, (b) 1.0 nm from a tetrachloromethane molecule.

12.2 Use eqn 12.27 to estimate the polarizibility for the hydrogen atom. The number of valence
electrons, Ny, is one; take AE to be the ionization energy of hydrogen, 13.6 eV or 2.18 x
107"% 1.

_ n*eé*Ny,
m.AE?

(S

(24
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_(1.055x 107 Js)? x (1.602 x 107 €)% x 1
(9.109 x 107" kg) x (2.18 x 107'® J)?

=6.60 x 107" 17 > m?

This answer gives o’ = 5.93 x 10" m’ which differs by 10.% from the experimental

value.
Exercise: Suggest why the agreement between the computed and eperimental values for

the polarizibilty volume is reasonably good.

12.3 a =(B¢me) Y {f,/ AE,} [eqn 12.25]

por
~ (h*e*/m)(fIAE®)  [one transition dominating]
~ (&4’ mec))f [AE = hel )

o = aldne = (€*/161° smec?) A

=(7.138 x 107" m)A*f= (7.138 x 107*° cm’)(A/nm)*f

For A=160 nmand /= 0.3, & ~ 5 x 10°" m®, which is an order of magnitude smaller
than the experimental value.
Exercise: Find a expression for ¢ in terms of the integrated absorption coefficient of a

band.

12.4 E® » =3 [I\s/(In + Is)]( i}y /R®)  [eqn 12.40]
I=Iy=Ig~13.6eV=1312kImol'; &} = af =6.6x 107" m’ [Exercise 12.2]

Consequently,
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E® ~ -3 1/%/R® = ~(4.29 x 10~ kJ mol™") x {1/(R/m)’}=-4.29 x 10"'* kJ mol""

Exercise: Evaluate the dispersion energy directly on the basis of eqn 12.17 and the matrix

elements listed in the solution to Problem 12.3.

12.5 E® ~ —(23hc/Am)(a\al/R") [eqn 12.41]

= —(23x1.055%10* T $x2.9979x10° m s '/4m)x(6.6 x 107" m*)*/(10.0x10~° m)’

= -252x10°Jor —1.52x10"° kJ mol™

12.6 The relative permittivity of a non-polar molecule such as tetracholoromethane is given by
eqn 12.54:
&= (1+2aMN3e)/( 1 — aN3ep)
Since a = 4mepa’ (eqn 12.19), N=Nap/M (Section 12.3), and for tetracholoromethane a'=
1.05 x 10 m®, p=1594 kg m™>, M = 0.153822 kg mol ', the relative permittivity is
&= (1+8ma' Nap/3M)/( 1 — 4na'Nap/3M)

=2.135

12.7 The dipole-moment density is the average of 1 cos & weighted by the Boltzmann factor
and divided by the volume ¥, of the sample:

f; pocos 8 AN(8)  Nxp, f(;T cos 6 e* 9 sin 6 dO

P %4 V(eX —e™)

where we have used eqn 12.56 for the Boltzmann factor. To evaluate the above integral,

let u=cos &, du =—sin 8d6&

T -1 1
fcos 0 eXs9 sin 6 dg = —f ue*tdu = fuex”du

0 1 -1
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Using the standard integral:

ey
]yeaydy = (ay — 1) + constant

we have
1

1 exu
fuex“du =—(ux—-1)
X
-1

-1

e* e ™
=20 -D-—z(x-1

—-X

e*+e* e¥—e
x x2

Therefore,

p Nxpi, f; cos 6 e* 9 sin 6 dO
B V(e* — e¥)

X

_ Nxy <ex +e”
T V(eX —eX)

B (N)(ex+e‘x 1)
— Ho V/\e*—e™>* «x

which, with 7=N/J and the definition of the Langevin function in eqn 12.58, is eqn 12.57.

e* — e‘x)
x x2

12.8 The number density V= Napo/M. Therefore, eqn 12.62b can be written as

where
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2
_ Ho
C = <a + 3kT>pNA/3M£O

We now confirm that the expression for C above matches that given in eqn 12.63.

2

_ 1y Ho
C = (41‘[800( + 3kT> pN,/3Meg,

_4mega’pNy | pgpNy
~ 3Mg, 9goMKT

4‘1'[pNA ,
= W (a + ,Ll%/lZT[SOkT)

12.9 Begin with the equation following eqn 12.70:

Hz) = oz + Z{“Z,Onan (t)e™9not + p, noar (t)el®not}

n+0

We need to substitute into the above equation the expressions for a,(f) and its complex

conjugate obtained from eqn 12.72:

a (t) — UznoE A@+wno)t ~ FA@=0no)t
n h W+ Wpo W — Wy

ar (t) — ﬂ;,no E e-i(w+wn0)t ~ ei(w_wno)t
n h W+ Wy W — Wng

Proceed piecewise and use € = cos x + i sinx:

|,uz,n0|2£{ elwt e-loot }

h W+ Wy W= Wy

Uz onln ) e 1 @not =

_ |ﬂz,n0|2 E {w(eiwt - e-iwt) — Wno (eiwt + e'iwt)}
T h

2 _ 2
w Wno

2|tz nol* E {iw sin wt — wy,g COS wt}
- h

2 02
w Wno
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2 it it
i Vsl (|
zno%n
h W+ Wy = Wy

_ |ﬂz,n0|2 E {w(e—iwt - eth) - (Uno(eiwt + e'i”‘Jt)}
T h

2 _ 2
w Wno

2|Mz,no|2 E {—iw sin wt — w, cos wt}
 h

2 42

[z 0n0n (£)e79n0t 4 11 o ar (¢)elenot

2|tz n0|* E (iw sin wt — wyq cos wt — iw sin wt — wyg cos wt
- h

2 42

_ 2|znol® E {ano cos a)t}

Therefore,

2|tz n0l* E (2wpo cos wt

(Hz) = oz + z P 02 — w2

n+0 no
2 w 2
= U, + {—Z {n(Z)LGoJ}} X 2E cos wt
h Wip — W
n+0

which is eqn 12.73.
12.10 Let D = a(w)Meo. Then, from eqn 12.78,

1+42D/3
1-D/3

n¢

which, upon substitution into the left-hand side of eqn 12.79, yields

1+2D/3 1-D/3 D
nf-1_T1-D/3 1-D/3 1-D/3_D
n2+2 1+2D/3 2—-2D/3 _ 3 3

1-D/3 T 1-D/3 T1-D/3
With D = a(w)Neo, the expression D/3 matches the right-hand side of eqn 12.79.

12.11 @y = wt —2mznyv/c = wt —zniw/c [eqn 12.84, v =27 V]
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Letting n = "Y(n+ + n-) and An=n, —n_,we obtainn, =n+An/2,n_=n— An/2

or ny = n + An/2. Therefore

Zniw Z (niT)w nw _ wzAn
= = pt———2- =wt———7F
c c 2c

which is eqn 12.85.

Problems

120 =2 {theontt n/AEn0}  [eqn 12.16 with z — x]

n#0

on = (0] —ex + %eL|n> =—e(0x|n) [(O|L|n) =(0|n)L =0, n# 0]

—(8/n*)Ln/ (n* =1)*, neven
0 nodd [Problem 6.8]

(Olx|r) = {
AE, = (n* = 1)(h*/8mL?)
e = 28 (BLITY (8mL* M) > {n*/(n*~1)°

even

=28/n’Ya). {(n’/(n’*~1y a=(eL)/(h*/8mL’)

even

> {(nl(n*~1)° =0.01648 [Problem 6.8]

0.02166¢°L?
Therefore, a,, = 0.021 66a = 12/ 8mI2

For m = me, a4 = 9.229 (L/pm)* x 107" J7' C? m?

A e = O /ATE = 8.295 X 107 (L/pm)4 cm’
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With L = 150 pm, &/ = 4.199 x 10 cm’.

Exercise: Calculate the polarizability volume of a rectangular, three-dimensional box of
sides X, Y, Z, and the mean polarizability volume, and relate ¢ to V' = XYZ.

12.4. We continue with Problem 12.3, including the contribution from all p-orbitals:

0 9, 1\2n=5
o= (29e2a(2)/3thH) Z{ n(n-1) }

S (CER VR (A )

o (9, 1\2n-6
= (2962(13/3hCRH) Z{%}

= (n + 1)2n+6
= (2°%¢*a} /3hcRi) {0.0087 + 0.0012 + 0.0004 + .. . }
= (2°%*a}/3hcRy) x 0.0106 =5.97 x 107 J7' C* m®

al, = a.l4rng =537 x 10> cm’

Exercise: Calculate the polarizability of one-electron ions with atomic number Z.

12.7 To derive the expression for the third-order correction to the energy, which we denote

Eé3), we follow the procedure set out in Section 6.2. We include the term A*’H® in eqn

6.20a, I’ w§ ineqn 6.20b, and A°E? in eqn 6.20c. We then obtain in addition to the

equations shown in eqn 6.21 the following equation by collecting A’ coefficients:

HO = By = (B —H Yy + (B - HOYyg” + (B — HOyp?
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The first- and second-order corrections to the energy are given in eqns 6.24 and 6.30,
respectively; the first-order correction to the wavefunction is given in eqn 6.27. For later

use, the second- and third-order corrections to the wavefunction are written as

P = z 20

n#0

3) _ (0)
YIO - Z cnyln

n#0

The equation above obtained by collection of A* coefficients is written in ket notation as

{H? = EOVS ¢, Iny= {ES) — HV}0) + {EY — HP} Y a,ln)

n#0 n#0

+ {E" —H"}> b,In)

n#0

where the coefficients a, for the first-order correction to the wavefunction are given by

eqn 6.26. We now multiply this equation through from the left by (0|, which gives

(recognizing that HO|n) = E,EO)|n>)

— (3) (3) (2) ©
0= EO _HOO _ZanHOn _zanOn

n#0 n#0

If the matrix elements of the second- and third-order perturbations H® and H*® vanish,

then the above expression simplies to

Ey’ = b,H)

n#0
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To find the third-order correction to the energy, we need the coefficients b,. To find them,
we start with eqn 6.29a and multiply through from the left by (k| (setting matrix elements

of H? to zero):

bAE" —E"Y =a, B = a,H})

n#0

Therefore, using eqns 6.24 and 6.26, we find

[OF220)) D) @)

- _ Hoono _z HnOHkn
k 0 0)2 0 0 0 0
(B —E"Y R (E —EPNE” —E”)

When we replace in the above equation the indices n by m, and k by n and substitute the

resulting expression for b, into E” =Y, b H{", we obtain

OF240)
E® —_go M
0 00 EO _ pOy2
n#0 ( 0 n )
HyoHy )

22

om0 () = E))E, - E”)

which matches (upon interchange of the indices m and » in the double summation) the
expression given in Problem 12.6.

Exercise: Derive the expression for the third-order correction to the wave-function.

[H, x*] = ~(h*2me)[(d*/dx?), x*] [V, x°]=0]
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= ~(B22m) {(dHdx)? — x*(d¥dx)}
= —(R*2me) {2 + 4x(d/dx) + x*(d*/dx?) — x*(d*/dx?)}
= —(h/me) — 2(B*/me)x(d/dx)

= —(h*/m¢) — 2i(A/me)xp

(m|[H, x2]|n> =(En— En)<m|x2|n> = ha)mn(xz)mn
= (m| — (h*/m¢) — 2i(B/me)xp|n)

= _(hz/me)5mn - Zl(h/me) Z xmfpjh
f
= —(B%/me) Gn — 21(B/me)(ime) Y X, @ 5%, [eqn 12,112 in F112.2]
f

2
=—(h"/me)Omn + 20 Z X X 1, @ g,
S

Therefore

D XX @ gy = (/2me) S + % (6 )
S
Exercise: Devise a sum rule based on [H, x°].

12.13

n(w)~1+(N,p/3he,M)C()

@ 2 eqn 12.77
C(o) =Y. 2l [eq ]
nz0 "

Evaluate C(w) numerically, drawing on the information in the solution of Problem 12.4.
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|2

a
C(CU) — z n,ls ’ Iuls,nlml

2 2
nlm=(1,0,0) @y — D

2
D1 | et i, |
_ n,ls z;1s,nlm; 2 .2 .2
=3 Z 2 2 ['ux_'uy_'uz]
ndm#(10,0) @Oy — @

2
= 3¢’ Z "ls “r. | [only np.-orbitals contribute]
n#l nls
1=/ n*)]| z,, , s
:(SezRH/ch)z 1= UL P |

- n*) PRy —(1/A%)

{hwnﬂls - thH[l —izﬂ
n

i s 2 [1-(1/n)n" (n=1)"""/(n+1)>""
= @I AR ) L T R 1)

= (2"/m)(e* ay IRuc)D(A),

[1_(1/1’12)]1’17(1’1 _1)2n—5 /(I’l +1)2n+5
)=
o ; [—Q/n*)] —(1/Ary)*

2n—4 2n+4
_Zn (n 1) /(n+1) . y=1/2Rn

n#l 7/ I’l

Since 7= 1/(590 nm) x (1.097 x 10° cm ") = 0.155, numerical evaluation of the sum (up to

n = 20) leads to D(590 nm) = 0.0112. Therefore,

C=0891x107” C?*m*s)D=9.98x 107> C*m’ s
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Consequently,

me~1+(NM3h&)C  [p=Nmy/V, my=M(H)/Na]

~ 1 + (Matoms m ™) x (3.56 x 1079

When A~ 10° atoms m™

n—1=36x107%

For a gas of atoms at 1.00 atm and 25°C,
N=plkT=2.46 x 10 m™

and then 7, ~ 1.000 088.
Exercise: Find an expression for the refractive index of a gas of one-electron ions of

atomic number Z.

12.16 Take as a trial function = i + ays,_for each atom, so that the overall trial function is

w=(Wa1s+aawaz )(WB1s + as¥sp)

The denominator of the Rayleigh ratio is therefore

j yldr = J. (Waus+ ANV A 2p. ) ( VB,1s +aBWB,2pZ)2dTAdTB

=1+ ai Y1 +a %) [basis functions are orthonormal]

The hamiltonian is

H=Hx+ Hg+ H(l), Hawan=E Wan
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The numerator of the Rayleigh ratio is therefore

J“/’H ydz = I(WA,ls TANY A 2p. YW s + aBlr//B,ZpZ)
X {(E1yas + aaBaya2p )(Wa.1s + as W 2p)
+ (Wais + aaWap )(E1WB1s + apEx v 2p)
+ HY(ya1s + aapap ) (W1 + asWi2p)}
2 2 2 2
=(E1+aryE)(l+ag)+(E1+agE)(1+ay)
+ I(V’A,ls‘/’B,ls T a W0 Veis

+ apWa,1sWB2p. + AAGB WA 2p VB 2p.)
1)
x HO(wa1sWs.1s + aaWasp, W.is + B Wa.1s W 2,

+ anasWa2p B 2p )d7ad 78

Only the zazg components of H" contribute to the integral (because only it has

nonvanishing matrix elements between 1s and 2p;), so we take
HY = 22(1/4n&R) pin- 115

Then the only surviving terms are

2axan {I l//A,ls‘//B,lsH(l)‘//A,Zp_, ‘//B,Zp_,dTAdTB

+ I ‘//A,zpz‘//B,zpzH(l)'//A,ls‘//B,lsdTAdTB }

2 3
= —(e"/meoR’)ananza;1s2p.28;1s 2p,

2 3
=—apnasKZ, K=e/n&eR’, Z=za;152p2B;152p.
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The Rayleigh ratio is then

E, +aiE,
6:
(1+ax)+ (E + agE,) /(1 + a})

3 ayagKZ
(+a)+(1+ap)

The optimum values of asag are those for which d€/0ap = 0€/0ag = 0.

O€/0an = 2apnEr/(1 + a3) — 2an(Ey + aX E2)/(1 +a?% )

—apKZI(1 + @) (1 + a}) + 2arag KZ/(1 + ax )*(1 + ag) =0
Likewise for 0€/0ag. Therefore we must solve

2(E2 - E])aA + 2(E2 - El)aéaA — aBKZ+ aBai KZ=0

2(Ey — Ey)ag + 2(E, — E\) axag — aaKZ + ayan KZ =0

LetAE=FE,—E,| = %thH. Then, since a/i = aé by symmetry, we have

KZ —2AE\"? KZ —2AE\"?
apr=t| ——— ap=t| ——

KZ +2AE KZ +2AE

It follows that, setting y= (KZ — 2AE)/(KZ + 2AFE),

e 2E, + 25, | | KZ
1+y (1+y)?
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Exercise: Calculate the dispersion energy on the basis that the trial function (a) also

includes a 3p-orbital component, (b) includes a ‘1p-orbital’ component.



