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Chapter 14 

Scattering Theory   

All the following material © P.W. Atkins and R.S. Friedman. 

Exercises 

14.1    (a)   The process is inelastic because the electronic state of atomic oxygen changes. 

(b)  The process is elastic because the initial and final states are the same. 

(c)  The process is inelastic because the vibrational state of HF changes. 

(d)  The process is reactive because a chemical reaction has occurred; the reactant HF is 

not retained in the product. 

 (e) The process is elastic because the initial and final states are the same. 

Exercise: Characterize each of the following as elastic, inelastic or reactive: 

 O(3P2)  H2(v  0, j  0)  O(3P1)  H2(v  0, j  0) 

 O(3P2)  H2(v  0, j  0)  O(3P2)  2H(2S) 

14.2 For scattering by a one-dimensional potential energy barrier of finite width (Section 14.1), 

the continuity conditions for the wavefunction and its slope at x = L are given by the last two 

equations in eqn 14.1.  

ei௞ᇱ௅	ᇱܣ ൅ ᇱe‐i௞ᇱ௅ܤ ൌ ᇱᇱei௞௅ܣ ൅ 	ሺiሻ	ᇱᇱe‐i௞௅ܤ

i݇′ܣᇱ	ei௞ᇱ௅ െ i݇′ܤᇱe‐i௞ᇱ௅ ൌ i݇ܣᇱᇱei௞௅ െ i݇ܤᇱᇱe‐i௞௅	ሺiiሻ 

Multiplying (i) by ik and adding (ii) yields: 
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2i݇ܣᇱᇱ	ei௞௅ ൌ i݇ܣᇱei௞ᇱ௅ ൅ i݇′ܣᇱei௞ᇱ௅ ൅ i݇ܤᇱe‐i௞ᇱ௅ െ i݇′ܤᇱe‐i௞ᇱ௅ 

or  

	ᇱᇱܣ ൌ
eiሺ௞

ᇲି௞ሻ௅

2݇
ሺ݇ ൅ ݇ᇱሻܣᇱ ൅

eiሺ௞
ᇲି௞ሻ௅

2݇
ሺ݇ െ ݇ᇱሻܤᇱe‐2i௞

ᇲ௅ሺiiiሻ	

Similarly, multiplying (i) by ik and subtracting (ii) yields: 

2i݇ܤᇱᇱ	e‐i௞௅ ൌ i݇ܣᇱei௞ᇱ௅ െ i݇ᇱܣᇱei௞
ᇲ௅ ൅ i݇ܤᇱe‐i௞

ᇲ௅ ൅ i݇′ܤᇱe‐i௞ᇱ௅ 

or 

	ᇱᇱܤ ൌ
eiሺ௞

ᇲି௞ሻ௅

2݇
ሺ݇ െ ݇ᇱሻܣᇱe2i௞௅ ൅

eiሺ௞
ᇲି௞ሻ௅

2݇
ሺ݇ ൅ ݇ᇱሻܤᇱe2i௞௅e‐2i௞

ᇲ௅ሺivሻ	

Equations (iii) and (iv) can be written in matrix form as  

ቀܣ′′
′′ܤ
ቁ ൌ

eiሺ௞
ᇲି௞ሻ௅

2݇
ቆ

݇ ൅ ݇′ ሺ݇ െ ݇ᇱሻe‐2i௞
ᇲ௅

ሺ݇ െ ݇ᇱሻe2i௞௅ ሺ݇ ൅ ݇ᇱሻe2i௞௅e‐2i௞
ᇲ௅
ቇ ቀܣ′
′ܤ
ቁ 

from which we confirm the form of the matrix Q given in Justification 14.1.  

 

14.3 From eqns 14.2 and 14.3a: 

 

ቀ ܤ
′′ܣ
ቁ ൌ ൬ ଵܵଵ ଵܵଶ

ܵଶଵ ܵଶଶ
൰ ቀ ܣ
′′ܤ
ቁ 

 

If the particle is incident from the right of the one-dimensional barrier, then A = 0 (see Fig.  

 

14.1 of the text). As a result: 

  

 B = S12 B’’ T = |S12|
2 
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 A’’ = S22 B’’ R= |S22|

2 

 

14.4  Use eqn 14.15 

  fk(, )2  sin2cos2 

Exercise: Proceed to evaluate the integral scattering cross-section tot. 

14.5  Use eqn 14.7: 

 tot  
π 2π

0 0
C  sindd  

  
π 2π

0 0
sin dC d                  

  4C 

Exercise: What scattering amplitude fk corresponds to the above tot? Within the Born 

approximation, find the potential that gives rise to this scattering amplitude. 

14.6 We show in Justification 14.2 that in the limit r → ∞, eikz and fke
ikr/r are each eigenfunctions 

of the hamiltonian with the same eigenvalue k2ħ2/2:. Therefore, the total wavefunction 

has an asymptotic form given by the sum of eikz and fke
ikr/r with eigenvalue k2ħ2/2:: 

   H(eikz + fke
ikr/r) = H eikz + H fke

ikr/r  

            = (k2ħ2/2:) eikz + (k2ħ2/2:) fke
ikr/r  

            = (k2ħ2/2:)(eikz +  fke
ikr/r) 

14.7 The free-particle radial wave equation, eqn 14.23, is 

2 0
2 0

2 2

d ( 1)

d
l

l

u l l
k u

r r

   
 

  0 
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(i) 0
0

ˆ ( )lu j kr    sin(kr); l  0 implies l(l 1)/r2  0 

2 0 2

2 2

d d sin( )

d d
lu kr

r r
   k2 sin(kr) 

 Therefore 

k2 sin(kr)  {k2  0} sin(kr)  0 

(ii) 

 0
lu   1

sin( )ˆ ( )
kr

j kr
kr

  cos(kr) 

 1̂d ( )

d

j kr

r
  

2

cos( ) sin( )kr kr

r kr
  k sin(kr) 

 
2

1
2

ˆd ( )

d

j kr

r
  

2 3

sin( ) 2 cos( ) 2 sin( )k kr kr kr

r r kr


   k2 cos(kr) 

 Therefore 

 
2 3

sin( ) 2 cos( ) 2 sin( )k kr kr kr

r r kr
     k2 cos(kr) 

  2
2

2 sin( )
cos( )

kr
k kr

krr

     
  

  0 

Exercise: Repeat the confirmation for the first three (l  0, 1, 2) Riccati–Neumann 

functions. 

14.8 The general relation between E and K is given in the equation proceeding eqn 14.51: 

   ħ2K 2 = 2:(E + V0)  

  Therefore 
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ܧ ൌ
԰ଶܭଶ

ߤ2
െ	 ଴ܸ 

resܧ ൌ
԰ଶܭresଶ

ߤ2
െ	 ଴ܸ 

and, using eqn 14.62, 

resܧ ൌ
ሺ2݊ ൅ 1ሻଶπଶ԰ଶ

ଶܽߤ8
െ	 ଴ܸ 

 

14.9 The relation between the mean lifetime  of the resonance state and the full width at half-

maximum  is given by eqn 14.75. If the full width at half-maximum expressed in cm1 

units is denoted , then   hc; therefore   

  
hc
ħ

  (2c)1   

 (a) 

   (2  2.9979  1010 cm s1  0.05 cm1)1 

  1.1  1010 s  0.11 ns 

 (b) 

   (2  2.9979  1010 cm s1  3.5 cm1)1 

  1.5  1012 s  1.5 ps 

(c) 

   (2  2.9979  1010 cm s1  45 cm1)1 

  1.2  1013 s  0.12 ps 
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Exercise: If the mean lifetime of the resonance state is 10 fs, what would be the expected 

full width at half-maximum for the Breit–Wigner peak? 

  

14.10 At scattering energy E1, the total number of open channels is 11 6  16  33. Therefore, 

the scattering matrix is a 33  33 square matrix. The dimension is 33. 

Exercise: Explore how the dimension of the scattering matrix varies with the scattering 

energy. Take J  0. Assume that only rotational levels in the ground vibrational states of 

BC, AB, and AC are open. Treat the rotational constants of the three diatomic molecules 

as equivalent. 

14.11   We need to evaluate the integral on the right-hand side of eqn 14.102 assuming that the 

cumulative reaction probability P(E) is independent of energy: 

න ܲሺܧሻeିா/௞்dܧ ൌ
ஶ

଴
ܲන eିா/௞்dܧ

ஶ

଴
 

ൌ െܲ݇ܶeିா/௞்ห
଴

ஶ
 

ൌ െܲ݇ܶሺ0 െ 1ሻ 

ൌ ܲ݇ܶ 

 Therefore the rate constant is directly proportional to the temperature.  

14.12  The classical model of chemical reactivity yields a cumultive reaction probability of  

     P(E) = 0   0 ൑ ܧ ൏ ଴ܸ    

   P(E) = 1   ଴ܸ ൑ ܧ ൏ ∞ 

  Therefore 

݇rሺܶሻ ∝ න ܲሺܧሻeିா/௞்dܧ ൌ
ஶ

଴
න eିா/௞்dܧ
ஶ

௏బ
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ൌ െ݇ܶeିா/௞்ห
௏బ

ஶ
 

ൌ ݇ܶeି௏బ/௞் 

This has a form similar to the Arrhenius equation if we allow the pre-exponential factor 

A to be directly proportional to temperature and identify the activation energy Ea  with 

Ea/RT = V0/kT or, since R = kNA, Ea = NAV0. 

 

14.13 According to eqn 14.103 and the discussion in Section 14.10, a pole in the scattering 

matrix (i.e. a resonance) will appear in each scattering matrix element. Therefore 

scattering cross-sections connecting all possible incoming and outgoing channels should 

have peaks at the same energy Eres with the same width . In this case, the resonance 

which appears in the neutron–Te scattering process effects both the elastic scattering and 

non-elastic scattering processes and therefore the cross-sections show Breit–Wigner peaks 

at the same energy and of the same width. 

Exercise: It is found experimentally that the scattering cross-sections have peaks at an 

energy of 2.3 eV with a width of 0.11 eV. Determine the resonance energy of the 

resonance state in the neutron–Te scattering process. 

 

14.14 The scattering  matrix S is often symmetric, Sij  Sji. (It is always symmetric when the 

scattering process has a property known as time-reversal invariance). The probability in 

general for a transition from incident channel i to final channel j is given by 

Pji  Sji2 

Thus, for a two-channel scattering process with a symmetric scattering matrix, 
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 P12  S122 

  S212 

  P21 

consistent with the principle of microscopic reversibility. 

Exercise: Give examples of scattering systems for which the principle of microscopic 

reversibility is not satisfied. 

 

Problems 

14.1 For Zone II (see Section 14.1), the potential energy is V(x)  V (rather than +V) and all 

solutions are oscillatory for positive energies: 

Zone II:   AeiKx  BeiKx    Kħ  {2m(E  V)}1/2 

Hence S can be constructed from eqn 14.3 by replacing k in eqn 14.3c with K. The 

transmission probability for a particle incident from the left is given by |S21|
2.  

14.4. From Example 14.3     

   
2 2 4

0
2 2 2 21

2

4 /

( 4 sin )

V

k


 

ħ
  

  
2 2

0
4 4 2 2 2 21

2

4

(1 (4 / )sin )

V

k


  ħ

  

 
2 2 2

0(2 / )V


 ħ

  2 2 2 21
2

1

(1 (4 / )sin )k  
  

 (a) For zero energy, k  0 
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2 2 2
0(2 / )V


 ħ

   1  

  independent of . 

 (b) For moderate energy (k  /2) 

 k2/2  1
4  

 
2 2 2

0(2 / )V


 ħ

  2 21
2

1

(1 sin )
  

          (c)     For high energy (k  10) 

 k2/2  100 

 
2 2 2

0(2 / )V


 ħ

  2 21
2

1

(1 400sin )
  

Plots of the differential cross-section as a function of 2  are shown in Fig. 14.1 for (a), (b) 

and (c).  For k  ,  falls off very rapidly as  increases from 0 to /2. 
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1 1
2 2

i( π ) i( π )
e e

2i

l lkr l kr l
lC

r

     
  

1 1
2 2

i( π) i( π) iei (2 1)[e e ]

2i

kr l kr l krl
lfl

kr r

  
  

Collect terms with a common factor of eikr 

1
2 1

2

i π i
i πi ie e (2 1)

e e e
2i 2i

l l
lkr krlC i l

r kr


 

           
    

   

Cancel common terms: 

i i (2 1)
e l

l

l
l

C
k

 
  

or 

ii (2 1)
e l

l

l
l

C
k


     [eqn 14.41] 

Now collect terms with a common factor of eikr 

1 1
2 2
i π i πi

i ie e i (2 1)e
e e

2i 2i

l
l ll

kr krl lC fl

r kr r

           
      

  

Cancel common terms: 

1 1
2 2
i π i πie e i (2 1)e

2i 2i

l
l ll

l l
l

C f
k

 
    

Use eqn 14.41: 
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1 1
2 2
i π i πi ii (2 1)e e e i (2 1)e

2i 2i

l l
l ll l

l
l l

f
k k

   
    

Because ei/2  i, eil/2  il. 

Therefore 

2i(2 1)e (2 1)

2i 2i

l

l
l l

f
k k

 
   

 fl  2i(2 1)
(e 1)

2i
l

l

k

  

  
i i

i(2 1) (e e )
e

2i

l l
l

l

k

 


 

  
 

  i(2 1)
e sinl

l
l

k
 

    [eqn 14.42]  

Exercise: Derive eqn 14.49.  

 

14.10  

If V(r)  0 for all r, then l(E)  0. 

If V(r)  0 for all r, then l(E)  0. 

Note that if V(r)  0, l(E)  0 by definition. 

If the potential is purely repulsive for all r, then, since the energy E of the particle is 

conserved in elastic scattering, the particle’s kinetic energy is decreased as a result of 

scattering. The wavelength of the particle is therefore increased (recall   h/p), 
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corresponding to a negative phase shift l. (Recall that sin(kr  ) has a longer wavelength 

than sin kr if   0.) 

Conversely, if the potential is purely attractive for all r, the particle is accelerated as it 

scatters. The increase in kinetic energy corresponds to a shortened wavelength and a 

positive phase shift l. 

Exercise: Sketch the form of the scattering wavefunctions for V(r)  0, V(r)  0, and V(r) 

 0; qualitatively verify the above conclusions. 

 14.13 

V(r)  0

if 0

if 0

0 if

r

V r a

r a

 
  
 

 

Consider energies E  V0 and find 0. 

At r  0, V(r)   which implies u0(0)  0 for the radial wavefunction. 

For 0  r  a, V(r)  V0     (V0  0) 

22
0

2

d

2 d

u

m r

ħ

  V0u0  Eu0    (centrifugal potential  0)     

2
0

2 2

d 2

d

u m

r

ħ

(E  V0)u0  0  

u0(r)  A sin k1r  B cos k1r 

2
1k   

2

2m

ħ
(E  V0)  

For r  a, V(r)  0 
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22

0
2

d

2 d

u

m r

ħ

  Eu0  

u0(r)  C sin kr  D cos kr 

k2  
2

2mE

ħ
  

As r  

 u0(r)  C sin kr  D cos kr 

  E sin(kr  0) 

where 

tan 0  D/C 

To find 0, we need to obtain an expression for D/C. We require that u0(r) and (du0/dr) are 

continuous at r  a. 

First, require u0(r) be continuous at r  0. (We do not impose continuity of (du0/dr) at r  

0 because V(0)  .) 

r  0 :    u0(r  0)  0  A sin k10  B cos k10  B 

Therefore for 0  r  a, u0(r)  A sin k1r 

r  a :    u0(r  a)  A sin k1a  C sin ka  D cos ka 

0d

d

u

r
(r  a)  k1A cos k1a  kC cos ka  kD sin ka 

Divide the above two equations: 
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1

1

k
tan k1a  

sin cos

cos sin

C ka D ka

kC ka kD ka




 

   
sin ( / ) cos

cos ( / )sin

ka D C ka

k ka k D C ka




 

   0

0

sin tan cos

cos tan sin

ka ka

k ka k ka







 

1

k

k
 tan k1a cos ka  

1

k

k
 tan k1a tan 0 sin ka  sin ka  tan 0 cos ka 

1

k

k
 tan k1a cos ka  sin ka  tan 0 1

1

cos tan sin
k

ka k a ka
k

 
 

 
 

tan 0  1 1

1 1

( / ) tan cos sin

( / ) tan sin cos

k k k a ka ka

k k k a ka ka




 

with 

1/ 2

1 0

k E

k E V

 
   

 

Exercise: First, plot 0 as a function of E (E  V0) for fixed V0 and a. Second, for E  V0, 

find an expression for the P-wave phase shift 1 for scattering off the same central 

potential and plot 1 as a function of energy. 

  

 14.16 The spherical square well potential is given in Section 14.5: V  V0 for r  a and V  0 

for r  a. We solve this problem by requiring that the radial solution ul(r) and its first 

derivative be continuous at r  a. 
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In the region r  a, we have to solve the equation 

2
2

2 2

d ( 1)
0

d
l

l

u l l
K u

r r

     
 

where 

ħ2K2  2(E  V0) 

The general solution is a linear combination of the Riccati–Bessel and Riccati–Neumann 

functions: 

ul(r)  Alଔl̂(Kr) ܣ௟
ᇱ ො݊௟(Kr) 

To ensure that R(r)  ul/r is finite at the origin, we require ul(0)  0. Since the Riccati–

Neumann function ො݊l(z) behaves like zl as z  0, we must have lA   0. Therefore, inside 

the well the solution is of the form 

ul(r)  Alଔ̂l(Kr) 

For r  a, the potential vanishes and ul is the solution of the free-particle equation (which 

includes the l(l  1)/r2 centrifugal potential term). We can immediately write down the 

solution as 

ul(r)  Clଔ̂l(kr)  Dl ො݊l(kr) 

where, as usual, E  k2ħ2/2. The scattering phase shift l is introduced via 

Cl  Bl cos l    Dl  Bl sin l 
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so we can write 

ul(r)  Bl cos l ଔ̂l(kr)  Bl sin l ො݊l(kr) 

We require that ul(r) and its first derivative be continuous at r  a. The continuity of the 

wavefunction requires that 

Alଔl̂(Ka)  Bl cos l ଔ̂l(ka)  Bl sin l ො݊l(ka) 

and the continuity of the first derivative requires that 

KAl ଔ௟̂
ᇱ (Ka)  kBl cos *l ଔ௟̂

ᇱሺ݇ܽሻ  kBl sin*l ො݊௟
ᇱሺ݇ܽሻ  

where the prime denotes the derivative with respect to r. Division of the above two 

equations results in the following complicated expression for the phase shift: 

ܭ
ଔ௟̂
ᇱሺܽܭሻ
ଔ௟̂ሺܽܭሻ

ൌ ݇
ଔ௟̂
ᇱሺ݇ܽሻ ൅ tan	ߜ௟	 ො݊௟

ᇱሺ݇ܽሻ
ଔ௟̂ሺ݇ܽሻ ൅ tan	ߜ௟	 ො݊௟ሺ݇ܽሻ

 

or   

tan	ߜ௟ 	ൌ
ଔ௟̂ܭ

ᇱሺܽܭሻଔ௟̂ሺ݇ܽሻ െ ݇ଔ௟̂ሺܽܭሻଔ௟̂ሺ݇ܽሻ
݇ଔ௟̂ሺܽܭሻ ො݊௟

ᇱሺ݇ܽሻ െ ଔ௟̂ܭ
ᇱሺܽܭሻ ො݊௟ሺ݇ܽሻ

	 

From the above equation, for a given energy (and corresponding K and k), we can 

determine the phase shift l. 

Exercise: Write down the expression for l for P-wave scattering by a spherical square-

well potential. 
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14.19 Begin with the asymptotic expression (eqn 14.92) for the multichannel stationary 

scattering state 

଴െ෥
A

0

0 0

i
i

A

e
e

k r
k z

f
r




  


      

 

The incident flux Ji is determined by the plane wave eik0z which is the term containing all 

the (relative) initial kinetic energy. By analogy with the results in Justification 14.3, the 

magnitude of the incident flux is k0
ħ/. 

Likewise, by analogy with the result for Jr in Justification 14.3, 

Jr  
2

2

| |kk f

r
ħ

   

for the radial component of the flux density corresponding to (fke
ikr/r), we have here 

Jr  0

2

2

| |k f

r

 



ħ
  

where we have equated rA with r, the relative position. 

Only Jr needs to be retained as r   and we have focused on a single term  in the 

summation for 0
. 

Following the argument in Section 14.3, we then have 

 dNs  Jrr
2d 
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   0

2| |
d

k f  

ħ

     

  
0

diJ 
 
 

  0

0
d

k
 


ħ

    

and therefore 

0 0

0

2| |
k

f
k


 


   

Exercise: Show in detail why  and 0
 do not need to be considered in the above 

argument and also why we can treat each term  in the summation of eqn 14.92 

individually. 

 

 

14.22 (i) Model the cumulative reaction probability as P(E) = α arctan(βE).  

   (a) In the limit  E → 0,  P = α arctan(0) = 0, consistent with the model.  

   (b) At E = V0, P = α arctan(β V0) =½.  

   (c) In the limit E → ∞, P = α arctan(∞) = αB/2 = 1.  

  From condition (c),  α = 2/B. Therefore, from condition (b),  

   (2/B) arctan(β V0) =½ 

   arctan(β V0) = B/4 

   β V0 = 1   [since tan B/4 = 1] 

   β = 1/ V0     
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  (ii) Model the cumulative reaction probability as P(E) = 1 − e−αE.  

   (a) In the limit  E → 0,  P = 1 – 1 = 0, consistent with the model.  

   (b) At E = V0, ܲ ൌ 1 െ	eିఈ௏బ ൌ ½  

   (c) In the limit E → ∞, P = 1 – 0 = 1, consistent with the model.  

  From condition (b),  eିఈ௏బ ൌ ½ or  α = (ln 2)/V0.  

  For part (ii), the temperature dependence of the rate constant predicted by eqn 14.102 is 

݇rሺܶሻ ∝ න ܲሺܧሻeିா/௞்dܧ ൌ
ஶ

଴
න ሺ1	‐	eିఈாሻeିா/௞்dܧ
ஶ

଴
 

ൌ න eିா/௞்dܧ െ න eିாሺఈାଵ/௞்ሻ
ஶ

଴
dܧ

ஶ

଴
 

ൌ െ݇ܶeିா/௞்ห
଴

ஶ
൅

1
ߙ ൅ 1/݇ܶ

eିாሺఈାଵ/௞்ሻห
଴

ஶ
 

ൌ ݇ܶ െ
1

ߙ ൅ 1/݇ܶ
 

ൌ ݇ܶ െ
1

ሺln 2/ ଴ܸሻ ൅ ሺ1/݇ܶሻ
 

ൌ ݇ܶ ൜1 െ
1

݇ܶሺln 2/ ଴ܸሻ ൅ 1
ൠ 

ൌ ݇ܶ ൜1 െ ଴ܸ

݇ܶ ln 2 ൅ ଴ܸ
ൠ 

 

 


