Atkins & Friedman: Molecular Quantum Mechanics 5e

Chapter 14
Scattering Theory

All the following material © P.W. Atkins and R.S. Friedman.

Exercises
14.1 (a) The process is inelastic because the electronic state of atomic oxygen changes.
(b) The process is elastic because the initial and final states are the same.
(c) The process is inelastic because the vibrational state of HF changes.
(d) The process is reactive because a chemical reaction has occurred; the reactant HF is
not retained in the product.
(e) The process is elastic because the initial and final states are the same.

Exercise: Characterize each of the following as elastic, inelastic or reactive:

OCP,) + Hy(v=0,j=0) > OCP)) + Hy(v =0, j = 0)

OCPy) + Hy(v =0, j = 0) > OCP,) + 2H(*S)

14.2 For scattering by a one-dimensional potential energy barrier of finite width (Section 14.1),
the continuity conditions for the wavefunction and its slope at x = L are given by the last two

equations in eqn 14.1.

A’ eile + Ble-ile — AlreikL + Brre-ikL (1)

ik'A" e®'l — ik'B'eF'L = jkA" e*l — ikB" e kL (ii)

Multiplying (1) by ik and adding (ii) yields:
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2ikA” e*l = ikA'e®'L 4 ik'A’e*'L + ikB'e 'L — jk'B'e k'L
or

ei(k’—k)L i(k'—k)L

[ AW  LN\R!a-2ik"L 31
A" = T (k+EkHA + T (k—k")B'e (iii)

Similarly, multiplying (1) by ik and subtracting (ii) yields:
2ikB" ekl = ikA'elV't — ik’ A'e't + ikB'e k' + ik'Be
or

ei(k’—k)L i(k'-Kk)L
— kDA 2ikL
ok (k —kHA e "™ + ok

B'" = (k +kl)Ble21kLe-Zik'L(iv)

Equations (iii) and (iv) can be written in matrix form as

(A//) _ ei(k'—k)L k + k/ (k _ kl)e-Zik’L (A,)
B” 2k \(k — k")e?*L  (k + k")e?kle2ik'L ) \B'

from which we confirm the form of the matrix Q given in Justification 14.1.

14.3 From eqns 14.2 and 14.3a:

()= (s 52)(5)

If the particle is incident from the right of the one-dimensional barrier, then 4 = 0 (see Fig.
14.1 of the text). As a result:

BZSlzB” T:|S12|2
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A’ =8,B" R=|S»]

14.4 Use eqn 14.15
o=fl6, §)* = sin*Ocos’¢p
Exercise: Proceed to evaluate the integral scattering cross-section Ojor.

14.5 Use eqn 14.7:

din= [} [ Csinaag

- CUO sin 9d9}“§”d¢}
=4nC

Exercise: What scattering amplitude f; corresponds to the above oio? Within the Born

approximation, find the potential that gives rise to this scattering amplitude.

14.6 We show in Justification 14.2 that in the limit » — oo, ¢ and fie""/r are each eigenfunctions
of the hamiltonian with the same eigenvalue k*#%/2u. Therefore, the total wavefunction

has an asymptotic form given by the sum of ¢“ and fie"/ with eigenvalue K*7#%/2u:
H(eikz +ﬁeikr/l") =H eikz + kaeikr/r
= (K1 12p) €+ (R 12p) fie " /r

= (KRR 12p)E"+ fie"/r)

14.7 The free-particle radial wave equation, eqn 14.23, is

2.0

dr? r?
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() u) = j,(kr) ==sin(kr); [ = 0 implies I(/ +1)/r* = 0

d’u)  &*sin(kr)

- = —k? sin(kr
dr? dr? (&)
Therefore
i sin(kr) + {k2 — 0} sin(kr)=0
(i1)
u = j(kr)= sin(kr) cos(kr)
diy(kr) _ cos(kr) _ sin(kr) + k sin(kr)
dr r kr?
21 . i
d*j (zkr) _ “ksin(kr) 2 cosz(kr) L2 51n(3kr) + k* cos(kr)
dr r r kr
Therefore
_ksin(kr) 2 cosz(kr) . 2 s1n(3kr) 2 cos(kr)
r r kr
N {kz —%HS‘HW ) os(kr)} -0
r kr

Exercise: Repeat the confirmation for the first three (/= 0, 1, 2) Riccati-Neumann
functions.
14.8 The general relation between £ and K is given in the equation proceeding eqn 14.51:
WPK* = 2u(E + Vy)

Therefore
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h?K?
= -V
2U 0

RKZ,
2p

Eres = 0

and, using eqn 14.62,

_ (2n+1)’n?n?

res —

8ua? 0

14.9 The relation between the mean lifetime 7 of the resonance state and the full width at half-
maximum /”is given by eqn 14.75. If the full width at half-maximum expressed in cm™

units is denoted A, then /"= hcA; therefore

h -1
7= —— =(2mncA
hcA ( )

(@)
r=(2n x2.9979 x 10" cm s x 0.05 cm ™)™
=1.1x10"s=0.11ns
(b)
r=(2n x2.9979 x 10" ecm s x 3.5 cm™)™!
=1.5x10"%s=15ps
(©)

r=(2n x2.9979 x 10" cm s™' x 45 cm™)™!

=12x10"s=0.12ps
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Exercise: If the mean lifetime of the resonance state is 10 fs, what would be the expected

full width at half-maximum for the Breit—Wigner peak?

14.10 At scattering energy £}, the total number of open channels is 11 + 6 4+ 16 = 33. Therefore,
the scattering matrix is a 33 x 33 square matrix. The dimension is 33.
Exercise: Explore how the dimension of the scattering matrix varies with the scattering
energy. Take J = 0. Assume that only rotational levels in the ground vibrational states of
BC, AB, and AC are open. Treat the rotational constants of the three diatomic molecules
as equivalent.

14.11 We need to evaluate the integral on the right-hand side of eqn 14.102 assuming that the

cumulative reaction probability P(E) is independent of energy:

[ee]

f P(E)e E/KTdE =P f e E/KTQE
0 0

= —PkTe E/FT|

= —PkT(0 - 1)
= PkT
Therefore the rate constant is directly proportional to the temperature.
14.12 The classical model of chemical reactivity yields a cumultive reaction probability of
PEY=0 O0<E<V,
PE)=1 Vy<E<o

Therefore

o)

P(E)e E/FTdE = f e E/KTqQE

Vo

k.(T) « f

0
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= —kTe‘E/"T|oo
Vo
= kTe Vo/kT
This has a form similar to the Arrhenius equation if we allow the pre-exponential factor

A to be directly proportional to temperature and identify the activation energy £, with

EJ/RT = Vo/kT or, since R = kNa, E.= NAV.

14.13 According to eqn 14.103 and the discussion in Section 14.10, a pole in the scattering
matrix (i.e. a resonance) will appear in each scattering matrix element. Therefore
scattering cross-sections connecting all possible incoming and outgoing channels should
have peaks at the same energy E..s with the same width /7 In this case, the resonance
which appears in the neutron—Te scattering process effects both the elastic scattering and
non-elastic scattering processes and therefore the cross-sections show Breit—Wigner peaks
at the same energy and of the same width.

Exercise: It is found experimentally that the scattering cross-sections have peaks at an
energy of 2.3 eV with a width of 0.11 eV. Determine the resonance energy of the

resonance state in the neutron—Te scattering process.

14.14 The scattering matrix S is often symmetric, S;; = ;.. (It is always symmetric when the
scattering process has a property known as time-reversal invariance). The probability in

general for a transition from incident channel i to final channel j is given by
2
Pji = |Sjil

Thus, for a two-channel scattering process with a symmetric scattering matrix,
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Piy=|S1f
=S

=Py

consistent with the principle of microscopic reversibility.
Exercise: Give examples of scattering systems for which the principle of microscopic

reversibility is not satisfied.

Problems
14.1 For Zone II (see Section 14.1), the potential energy is V(x) = —V (rather than +V’) and all

solutions are oscillatory for positive energies:
Zone II: y=A'e™ + B'e™  Kh={2m(E + V)}'*

Hence S can be constructed from eqn 14.3 by replacing £’ in eqn 14.3c with K. The
transmission probability for a particle incident from the left is given by Sy |*.

14.4. From Example 14.3

e 4°vy | Bt
2 221 o2
(a” +4k”sin” ] 0)

~ 4,L12V02
At (1+(4k> / a*)sin® 1 )

o 1
QuV,/ *a®)?  (1+(4k*/a®)sin® L 6)°

(a) For zero energy, k=0
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9 ~1
Qu¥y !l *a’)’

independent of 6.

(b) For moderate energy (k = /2)

Ko =1

o 1
QuVy/ B*a*)?  (1+sin 1 6)?

(c) For high energy (k=100)

Ko =100

o 1
QuV, | B*a®)  (1+400sin® 1 6)°

Plots of the differential cross-section as a function of € are shown in Fig. 14.1 for (a), (b)

and (c). For k >> «, ofalls off very rapidly as @increases from 0 to /2.
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Figure 14.1 The differential cross-section for the Yukawa potential within the Born

approximation for (a) zero energy (k = 0), (b) moderate energy (k = /2), and (c) high

energy (k= 100).

Exercise: Compare the plots to those for k= ¢ and k =20c.
14.7 To derive eqns 14.41 and 14.42, we begin with the equation following eqn 14.40

sin(kr — 1 Im) . el

Ji

Qsin(kr—%ht+§l)=il(21+l)
r

r

Since
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i(kr—11 —i(kr—11 . i(kr—1t i(kr—L i
C] e1( r 2n+51)_e i(kr—5Im+6;) ~ 11(214-1)[61( r 2n)_el( 7 zn)]+ﬁelkr

r 2i 2ikr r

Collect terms with a common factor of e "

e [ QI+ i
R e L T iy
r 2i 2ikr

Cancel common terms:

. .l
Coio QLD
k
or
.l )
C = @elé’ [eqn 14.41]

Now collect terms with a common factor of ¢ ¥

o |G et | e ™™
el T _l— — el 7 .—+_l
r 21 2ikr r

Cancel common terms:

In

Ll - . _1
e 2 el Ci@I+e

C
i ik

+ /i

Use eqn 14.41:
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i1+ 1) e 2l {21 +1)e 2

+
k 2i 2ik /i
Because €™ =1, e™* =1,
Therefore
Ql+De* % (21+1)
: =——+/
2ik 2ik
I+ |
=—7=("" -1
/i 2ik ( )

_ Q@+ g (€ =)
k 2i

- —(211: D e sin g, [eqn 14.42]

Exercise: Derive eqn 14.49.

14.10

If M(r) > 0 for all , then &(E) < 0.

If V(r) < 0 for all r, then o(E) > 0.

Note that if V(r) = 0, o(E) = 0 by definition.
If the potential is purely repulsive for all 7, then, since the energy E of the particle is
conserved in elastic scattering, the particle’s kinetic energy is decreased as a result of

scattering. The wavelength of the particle is therefore increased (recall A = h/p),
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corresponding to a negative phase shift 0. (Recall that sin(kr + 0) has a longer wavelength
than sin kr if 6<0.)

Conversely, if the potential is purely attractive for all r, the particle is accelerated as it
scatters. The increase in kinetic energy corresponds to a shortened wavelength and a
positive phase shift &;.

Exercise: Sketch the form of the scattering wavefunctions for ¥(r) > 0, V(r) =0, and V(r)

< 0; qualitatively verify the above conclusions.

14.13
o ifr=0
Mry=<V, if0<r<a
0 ifr>a

Consider energies £ > V) and find o&.
At r =0, V(r) = o which implies uy(0) = 0 for the radial wavefunction.
ForO<r<a, (r)=Vy, (Vo>0)

P

2m dr?

+ Vouo = Euy  (centrifugal potential = 0)

d*u, 2m
2> T
dr h

(E - Vo)u() =0
uo(r) = A sin kyr + B cos kir

2
K = ﬁ—’?(E— Vo)

Forr>a, V(r)=0
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_n du,

2m dr?

= Eu()

uo(r) = Csin kr + D cos kr

2= 2:2E
Asr— oo
uo(ry= Csin kr + D cos kr
= E sin(kr + &)
where
tan & = D/C

To find &, we need to obtain an expression for D/C. We require that uo(7) and (duy/dr) are
continuous at 7 = a.

First, require u(r) be continuous at » = 0. (We do not impose continuity of (due/dr) at r =

0 because /(0) = .)
r=0: u(r=0)=0=A4sink0+Bcosk0=B
Therefore for 0 < 7 < a, ug(r) = A sin ki
r=a: uy(r=a)=Asinkia=Csinka+ D cos ka

Cilﬂ (r=a)=kiA cos kia = kC cos ka — kD sin ka
r

Divide the above two equations:
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1 Csinka+ D cos ka
—tan kja = .
k, kC cos ka — kD sin ka
sinka+(D/C)coska

" kcoska—k(D/C)sinka

sin ka + tan o, cos ka

" keoska—ktan 0, sinka

k k ) )
— tan kja cos ka — — tan kja tan & sin ka = sin ka + tan & cos ka
1 1

kﬁ tan kja cos ka — sin ka = tan & {cos ka +k£tan kyasin ka}
1 1

_ (k/k;)tan kja cos ka —sin ka
(k/ky)tan kyasin ka + cos ka

an &

with

1/2

( A
“\z-1,)

=

Exercise: First, plot & as a function of E (E > V) for fixed V and a. Second, for E > V),
find an expression for the P-wave phase shift ) for scattering off the same central

potential and plot 6; as a function of energy.

14.16 The spherical square well potential is given in Section 14.5: V'=—V, forr<aand V'=0
for » > a. We solve this problem by requiring that the radial solution u,(r) and its first

derivative be continuous at » = a.
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In the region » < a, we have to solve the equation

2
du,J{Kz_l(lH)}ul:O

dr? 2

where
K* = 2(E + V)

The general solution is a linear combination of the Riccati—Bessel and Riccati-Neumann

functions:
u(r) = Aij(Kr) +A;7,(Kr)

To ensure that R(r) = u//r is finite at the origin, we require #,0) = 0. Since the Riccati—

Neumann function A/(z) behaves like z as z — 0, we must have A = 0. Therefore, inside

the well the solution is of the form
u(r) = Aij(Kr)

For r > a, the potential vanishes and u; is the solution of the free-particle equation (which
includes the /(I + 1)/#* centrifugal potential term). We can immediately write down the

solution as
u[(r) = C[j 1(k7‘) + D[ﬁ[(kl”)
where, as usual, £ = k&*h%/2. The scattering phase shift & is introduced via

Ci=Bjcos & D;=B;sin ¢
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SO We can write
ulr) = By cos & fikr) + By sin & Aukr)

We require that () and its first derivative be continuous at » = a. The continuity of the

wavefunction requires that
Ajj(Ka) = B; cos o ji(ka) + B; sin o 7(ka)
and the continuity of the first derivative requires that
KA,j, (Ka) = kB cos 6 jj(ka) + kB; sind; fi;(ka)

where the prime denotes the derivative with respect to ». Division of the above two

equations results in the following complicated expression for the phase shift:

Ji(Ka)  ji(ka) + tan §; i (ka)
7(Ka) " j,(ka) + tan &, Ai;(ka)

or

s KGi(Ka)j(ka) - ki (Ka)ji(ka)
YT kju(Ka)aj(ka) — Kjj (Ka)fy (ka)
From the above equation, for a given energy (and corresponding K and k), we can
determine the phase shift o;.
Exercise: Write down the expression for ¢ for P-wave scattering by a spherical square-

well potential.
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14.19 Begin with the asymptotic expression (eqn 14.92) for the multichannel stationary

scattering state

LN

~ kg2 (&
l‘”aO_e Zao +Zfaa0 Za
a T

The incident flux J; is determined by the plane wave ¢“** which is the term containing all
the (relative) initial kinetic energy. By analogy with the results in Justification 14.3, the

magnitude of the incident flux is &k h/p.

Likewise, by analogy with the result for J, in Justification 14.3,

Jr=—

kalf P
ur’

for the radial component of the flux density corresponding to (fie"*"/r), we have here

L kel
r 2
ur

where we have equated r with r, the relative position.
Only J, needs to be retained as » — o and we have focused on a single term « in the
summation for .

Following the argument in Section 14.3, we then have

dN, = JdQ
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k h 2
_ ke o, 40

U

o, JdQ

aoy* i

and therefore

k 2
O-aao = k_a |faa0|
)}

Exercise: Show in detail why y, and y,, do not need to be considered in the above

argument and also why we can treat each term « in the summation of eqn 14.92

individually.

14.22 (i) Model the cumulative reaction probability as P(E) = a arctan(SE).

(a) In the limit £ — 0, P = a arctan(0) = 0, consistent with the model.
(b) At E= V), P = o arctan(f Vy) =Y.
(c) In the limit £ — oo, P = o arctan(o) = am/2 = 1.
From condition (c), a = 2/n. Therefore, from condition (b),
(2/m) arctan(f Vo) ="
arctan(f Vy) = n/4
L Vo=1 [since tan /4 = 1]

p=1/V,
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(ii) Model the cumulative reaction probability as P(E) = 1 — ¢ *~.
(a) In the limit £— 0, P =1-1=0, consistent with the model.
(D)AtE=Vy,P=1— e =1
(c) In the limit £ — oo, P = 1 — 0 = 1, consistent with the model.
From condition (b), e~*"0 = % or a = (In 2)/V.

For part (i1), the temperature dependence of the rate constant predicted by eqn 14.102 is

(°9) (o8]

k.(T) f P(E)e E/KTdE =] - e—aE)e—E/deE
0

0

oo

:f e_E/deE_f e~ E(a+1/kT) 4
0 0

[oe) 1 [ee]
— _kTe E/kT —E(a+1/KT)
i e 1/kT € o
=T —————
a+ 1/kT
1
= kT

"~ (In2/V,) + (1/kT)

= kT {1 " kT(n 2;1/0) n 1}

—kT{l Yo }
B kTIn2 +V,



