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Solutions to End-of-Chapter Exercises 

Chapter 5 
 

 

 

 

 

 

 

  

Fundamental constants & properties of nuclei  

 

c = 2.997  10
8
 m s

-1
 

e = 1.602  10
−19

 C 

k = 1.381  10
−23

 J K
-1

 

h = 6.626  10
−34

 J s 

 

Mass 

 Electron  = 9.109 390  10
−31

 kg 

 Proton   = 1.672 622  10
−27

 kg 

 

0 = 4  10
−7

 J s
2 

C
−2

 m
−1

 (= T
2
 J

−1
 m

3
) 

B = 9.274  10
−24

 J T
-1

 

N = 5.050 784  10
−27

 J T
−1

 

ge = 2.0023 193 (electron g factor) 

gp = 5.585 694 7 (proton g factor) 

e = 1.761  10
11

 s
−1

 T
−1

 

 

Properties for other common nuclei 

 gN N / MHz  / 10
7
 s

−1
 T

−1
 

1
H 5.5857 14.9021 26.752 

2
H 0.8574 2.2876 4.107 

13
C 1.4048 3.7479 6.728 

14
N 0.4038 1.0772 1.934 

31
P 2.2632 6.0380 10.839 

L (in units of MHz) for B = 0.35 T 
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Exercise 5.1) Sketch the expected first derivative profiles of the resultant powder EPR 

spectra for the idealised hyperfine patterns shown in Fig. 5.14. 

 

ANSWER 

These spectra were shown in Fig. 5.14 in absorption mode (eg., as would be observed in a 

pulsed ENDOR spectrum). However, the anisotropic profile with derivative lineshape may 

also be observed in CW mode, so the resultant spectra are shown below (red trace). Notice the 

similarity in profiles for a)-c), with the major differences arising from the spacings: 

 
 

Exercise 5.2) A 2  2 matrix, labelled M, is given below. Find the determinant (det(M)), the 

transpose (M
T
) and the inverse (M

-1
) of the matrix. Briefly explain how the diagonal of the 

matrix can be determined, and therefore why g (and A or D, see Chapter 8) is expressed as a 

diagonal matrix. 

 
ANSWER 

Throughout this book, several matrices (eg. g, A or P) are presented. It is necessary to be able 

to manipulate and transform these matrices: 

M = [
4 3
2 −5

] 

 

i)  The determinant of M, written det(M) = (4  –5) – (3  2) = –26 

 

ii) The transpose M
T
, written [

4 3
2 −5

]
𝑇

= [
4 2
3 −5

] 

 

iii) The inverse M
-1

, written [
4 3
2 −5

]
−1

= [
5

26

3

26
1

13

−2

13

] 

 

Therefore in the above case, =
1

−26
 ×  [

−5 −3
−2 4

] = [
5

26

3

26
1

13

−2

13

] 

 

In may cases, the values of g and A determined experimentally will not be the principle values 

of g or A (such as gxx, gyy, gzz). Diagonalisation of an experimentally determined set of values 

must therefore be performed. For the A values this is written as Aexp = P
-1

 Adiag P.     
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Exercise 5.3) Using eqn. 5.12, derive an expression for g
2
 when the single crystal containing 

a paramagnetic centre is rotated in the YZ and XY plane, given the corresponding direction 

cosines are (lx = 0, ly = sin, lz = cos) and (lx = cos, ly = sin, lz = 0) respectively, and where 

 is the angle between B and the z-axis. 

 

ANSWER 

According to eqn. 5.12: 

𝑔2 = [𝑙𝑥 𝑙𝑦 𝑙𝑧] [

(𝐠𝐠)𝑥𝑥 (𝐠𝐠)𝑥𝑦 (𝐠𝐠)𝑥𝑧

(𝐠𝐠)𝑥𝑦 (𝐠𝐠)𝑦𝑦 (𝐠𝐠)𝑦𝑧

(𝐠𝐠)𝑥𝑧 (𝐠𝐠)𝑦𝑧 (𝐠𝐠)𝑧𝑧

] [

𝑙𝑥

𝑙𝑦

𝑙𝑧

] 

By inserting the values of the direction cosines into the above equation for the two YZ and 

XY planes, we must then find the product of the row vector multiplied by a square matrix 

multiplied by a column vector.  

   

In the YZ plane 

𝑔2 = [0 sinθ cosθ] [

(𝐠𝐠)𝑥𝑥 (𝐠𝐠)𝑥𝑦 (𝐠𝐠)𝑥𝑧

0 (𝐠𝐠)𝑦𝑦 (𝐠𝐠)𝑦𝑧

0 0 (𝐠𝐠)𝑧𝑧

] [
0

sinθ
cosθ

] 

 

giving 𝑔2 = (𝐠𝐠)𝑦𝑦sin2θ + 2(𝐠𝐠)𝑦𝑧sinθcosθ + (𝐠𝐠)𝑧𝑧cos2θ 

 

In the XY plane 

𝑔2 = [cosϕ sinϕ 0] [

(𝐠𝐠)𝑥𝑥 (𝐠𝐠)𝑥𝑦 (𝐠𝐠)𝑥𝑧

0 (𝐠𝐠)𝑦𝑦 (𝐠𝐠)𝑦𝑧

0 0 (𝐠𝐠)𝑧𝑧

] [
cosϕ
sinϕ

0
] 

 

giving 𝑔2 = (𝐠𝐠)𝑥𝑥cos2ϕ + 2(𝐠𝐠)𝑥𝑦sinϕcosϕ + (𝐠𝐠)𝑦𝑦sin2ϕ 

 

 

Exercise 5.4) Using a suitable graphics programme, calculate the angular dependency curve 

and resonant field position for an S = ½ spin system with axial symmetry where g = 2.000 

and g|| = 1.950 (given  = 9.5 GHz). 

 

 

ANSWER 

For a system with axial symmetry, the angular dependency of g was given by eqn. 5.11. 

Simple algebraic manipulation of this equation gives an explicit expression of the angle 𝜃 

between B and the molecular z axis as:  

𝜃 =  cos−1 [
𝑔2(𝜃)−𝑔⊥

2

𝑔∥
2 − 𝑔⊥

2 ]
1/2

 (page 49) 

Given that 𝐵(𝜃) =
ℎ𝜈

𝜇𝐵𝑔(𝜃)
,  then two possible algorithms can be used to solve for .  

 

1. Fixing an array 𝜃 so that 0 < 𝜃 <
𝜋

2
 and then calculating 𝐵(𝜃) with equations 5.11 

and the above eqn. in series; 

2. Fixing an array g so that 𝑔1 < 𝑔 < 𝑔2, in this case 𝑔∥ < 𝑔 < 𝑔⊥, and then calculating 

𝜃 with the above eqn. and 𝐵(𝜃) with the eqn. 𝐵(𝜃) =
ℎ𝜈

𝜇𝐵𝑔(𝜃)
 independently. 

Both algorithms implemented in MATLAB are given on the next page: 
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MATLAB SOLUTION 1 
 
Implementing the following code in a *.m file: 
 
h = 6.62607004e-34; % Planck constant in Kg*m^2*s^-1, equivalent to J*s 
freq = 9.5e9; % X-band microwave frequency in Hertz, i.e s^-1 
bohr_mag = 9.27400968e-24; % Bohr magneton in A*m^2, equivalent to J*T^-1 
  
theta = 0:0.01:pi/2; % array containing the angular domain. use a sufficiently high number of 
points. in this case (pi/2-0)/0.01 + 1 = 158 
g_para = 1.950; % numerical value of g parallel 
g_perp = 2.000; % numerical value of g perpendicular 
B = h*freq/bohr_mag*(1./sqrt((g_para^2-g_perp^2).*(cos(theta)).^2+g_perp^2))*1000; % 
angular dependency of the resonant field position 
  
plot(B,theta) 
  
% Graph formatting code 
ylim([0 pi/2]) % lower and upper limits of the y-axis 
xlim([338 349]) % left and right limits of the x-axis 
set(gca,'ytick',0:pi/6:pi/2) % numerical values to be displayed 
set(gca,'yticklabel',{'0','\pi/6','\pi/3','\pi/2'}) 
xlabel('Magnetic Field / mT') % x-axis label 
ylabel('\theta / rad') % y-axis label 
 

 

 
 
MATLAB SOLUTION 2  
 
Implementing the following code in a *.m file: 
 
h = 6.62607004e-34; % Planck constant in Kg*m^2*s^-1, equivalent to J*s 
freq = 9.5e9; % X-band microwave frequency in Hertz, i.e s^-1 
bohr_mag = 9.27400968e-24; % Bohr magneton in A*m^2, equivalent to J*T^-1 
  
g_para = 1.950; % numerical value of g parallel 
g_perp = 2.000; % numerical value of g perpendicular 
g = g_para:0.0001:g_perp; % array containing values of g € (g_para; g_perp) 
B = h*freq./(g*bohr_mag)*1000; % resonant field position 
theta = acos(sqrt((g.^2-g_perp^2)./(g_para^2-g_perp^2))); 
molecular z-axis  
  
plot(B,theta) 
  
% Graph formatting code 
ylim([0 pi/2]) % lower and upper limits of the y-axis 
xlim([338 349]) % left and right limits of the x-axis 
set(gca,'ytick',0:pi/6:pi/2) % numerical values to be displayed 
set(gca,'yticklabel',{'0','\pi/6','\pi/3','\pi/2'}) 
xlabel('Magnetic Field / mT') % x-axis label 
ylabel('\theta / rad') % y-axis label 
 
 
 

 
  

The following figure should be 
obtained: 

 
 

The following figure should be 
obtained: 
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Exercise 5.5) The CW powder EPR spectrum for an S = ½ spin system with an isotropic g 

value and a purely axial hyperfine interaction to a proton (I = ½), is shown in Fig. 5.16. 

Determine the axial hyperfine values, in units of MHz, and hence by applying the point-

dipole approximation: 

𝑇 =
μ0

4πℎ
𝑔eμB𝑔NμN

3 cos2 θ − 1

𝑟3
 

calculate the electron-proton distance r. What are the limitations of this approach for the 

determination of r? 

 

ANSWER 

Because the hyperfine is purely axial, the T|| and T components can be extracted directly 

from the EPR spectrum (shown below), giving T|| = 2 G and T = −1 G. In frequency units 

this gives T|| = 5.6 MHz. Substituting for the values of  o, ge, B, gN, N into the above eqn 

gives: 

𝑇|| =
μ0

4πℎ
(𝑔eμB𝑔NμN)

3 cos2 θ − 1

𝑟3
= 1.509 ×  1026(5.2390 ×  10−49)

3 cos2 θ − 1

𝑟3
 

 

Simplifying this gives 5.6 × 106 = 7.9068 ×  10−23 ×
3 cos2 θ−1

𝑟3  

Hence 7.0825 ×  1028 =
2

𝑟3 , therefore this gives a values of r = 3.05  10
-10 

m. 

Note if we use the value for T = −2.8 MHz, then the term 3 cos
2
 − 1 = −1, and one obtains 

the same answer for r. However, it is important to note, that although the point-dipole 

approximation is frequently used in EPR investigations, the above formula is only valid when 

g is isotropic, and when the distance is greater than ca. 2.0  10
-10 

m.  

 

 

  


