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Answers to Exercises: Part A 

Chapter 1 

Exercise 1.1 

A radiofrequency pulse is applied to a sample of isolated spin- 1
2

 nuclei in thermal equilibrium with spin state 

populations n  (lower level) and n  (upper level). How will these populations be changed if the pulse flip 

angle  is:  (a) 90 , (b) 180 , and (c) 45 ? 

Let eqn  and 
eqn  be the equilibrium populations prior to the pulse. Mz (the z component of the magnetization) 

is always proportional to the population difference. The value of Mz after the pulse (flip angle ) is 

proportional to cos  (Fig. 1.2). 

Therefore the population difference after the pulse is: 

 eq eq cosn n n n . 

The total number of spins is, of course, unchanged by the pulse: 

 
eq eqn n n n . 

Solving these two equations gives: 

 

eq eq1 1
2 2

eq eq1 1
2 2

1 cos 1 cos

1 cos 1 cos .

n n n

n n n
 

Therefore: 

(a) 90 , cos 0 :   eq eq1
2

n n n n     (populations equalized). 

(b) 180 , cos 1 :  
eq eq;n n n n     (populations exchanged). 

(c) 1
2

45 , cos :  
eq eq eq eq0.854 0.146 ; 0.146 0.854n n n n n n . 

 

Exercise 1.2 

The z magnetization of a sample of isolated nuclear spins recovers after a 90  pulse according to

0 11 exp /zM M t T . How many multiples of 1T  is it necessary to wait for ( )zM t  to recover to within 1% 

of its equilibrium value? 

 0 1 1 1 1/ 0.99 1 exp / exp / 0.01 ln100 4.61zM M t T t T t T T . 
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Exercise 1.3 

Write an equation for the recovery of ( )zM t  after a 180  pulse. At what time does ( )zM t  change sign from 

negative to positive? 

The required expression is: 

 0 1( ) 1 2exp /zM t M t T  

where 0M  is the equilibrium magnetization. This clearly has the correct properties: (a) as t , 0zM M ; 

(b) 0at 0, zt M M ; (c) exponential relaxation. 

 ( ) 0zM t  when 1 1 1exp / 0.5 ln2 0.693t T t T T . 

 

Exercise 1.4 

In a 90 180x y  spin echo experiment on a heteronuclear two-spin system (I and S), with pulses applied 

only to spin I, the magnetization of spin I is refocused along the y  axis. What happens when the phase of the 

180  pulse is x  instead of y , i.e. 90 180x x ? 

Suppose that at the end of the first delay the magnetization vector in Fig. 1.6 makes an angle with respect to 

the y  axis. After a 180 y pulse, this angle becomes  . During the second delay, M accumulates an 

additional phase angle of  so that at 2  the final phase is 0 , i.e. M  lies on the y  axis.  

If, instead, the 180  rotation is around the x  axis, it changes the phase angle from  to 180 . Then, 

during the second delay, the additional precession (through angle ) leaves M with a phase angle of 180 , i.e. 

on the y  axis. 

 

Exercise 1.5 

In a 90 180x y  spin echo experiment on a homonuclear two-spin system with a J-coupling of 10 Hz, 

what delay  is needed to get a phase difference of  radians between the two components of the I spin (or S 

spin) doublet at time 2 ? 

The angle between the magnetization vectors at time 2  is 2 2 4J J  (page 8). This equals  when 

1/(4 ) 25msJ . 

  

Hore, Jones & Wimperis: NMR: The Toolkit 2e Oxford University Press

© P.J. Hore, J.A. Jones, S. Wimperis 2015



Page 3 of 57 
 

Chapter 2 

Exercise 2.1 

Verify that Eqns 2.1 and 2.2 are consistent with Eqns 2.3 and 2.4. 

Substituting Eqn 2.1 into Eqn 2.2 gives: 

 

2
0

2
0

2

2 0

2

2

2 2

2
2 2

2

exp i exp / exp i d

exp i i 1 / d

exp i i 1 /

1 / i

1

1 / i

1 / i1
where

1 / i 1 / i

1 / i

1 /

i (usi

S t t T t t

T t t

T t

T

T

T

T T

T

T

A D ng Eqn. 2.4).

 

 

Exercise 2.2 

Verify that the full width (in Hz) at half maximum height of the absorption lineshape A  in Eqn 2.4 is 

21 / T . 

The absorption lineshape is: 

 2
2 2

2

1 /

1 /

T
A

T
.  

The full height of the line at its centre (where 0 ) is 20A T .   

The line has half this height when 1
22

A T , i.e. when 21/T .  

The full width at half maximum height is therefore 22 /T  (in rad s
1
) or 21/ in HzT . 
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Exercise 2.3 

Plot A  and D  (Eqn 2.4) to show that D  has a lot more intensity in its wings than does 

A . Take 2T  = 1 s and 20 20  rad s
1
. 

 

A : blue.  D :  red. 

 

Exercise 2.4 

Determine the appearance of the spectrum corresponding to the model free induction decay: 

A B 2exp i iexp i exp /t t t T . 

Substituting 

 A 2 B 2i / i /e e ie et t T t t Ts t  

into Eqn 2.2 gives (by analogy with Eqns 2.1 and 2.3) 

 A A B Bi i i .S A D A D   

Collecting the real and imaginary parts gives: 

 A B A Bi .S A D D A  

i.e. the real part of S  comprises an absorption line centred at A  and a dispersion line centred at 

B . 

 

Exercise 2.5 

Determine the appearance of the spectra corresponding to the model free induction decays: (a) 

2cos exp i exp /Jt t t T  and (b) 2
2cos exp i exp /Jt t t T . 

(a)  Since  

 
i i1 1

2 2
cos e eJt JtJt  

we can write: 
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 2 2 2i i/ / /i 1 1
2 2

cos e e e e e e .
J t J tt T t T t Tts t Jt   

By analogy with Eqns 2.1 and 2.3: 

 1 1
2 2

Re S A J A J  

which corresponds to two lines of intensity 1
2

 centred at frequencies J . That is, a doublet centred at  

with splitting 2 J . 

(b)  Similarly, 

 
2 2i 2i1 1 1 1 1

2 2 2 4 4
cos cos 2 e eJt JtJt Jt  

so that 

 2 2 2 2i 2 i 2/ / / /2 i i1 1 1
4 2 4

cos e e e e e e e e .
J t J tt T t T t T t Tt ts t Jt  

Again by analogy with Eqns 2.1 and 2.3: 

 1 1 1
4 2 4

Re 2 2S A J A A J  

which corresponds to two lines of intensity 1
4

 centred at frequencies 2 J  and a line of intensity 1
2

 centred 

at frequency . That is, a triplet centred at  with splitting 2 J . 

 

Exercise 2.6 

This Exercise is intended to verify that phase-correction works as depicted in Fig. 2.2. Consider a free induction 

decay of the general form 2exp i exp i exp /s t t t T . Show that the spectrum cos sinR I  is an 

absorption lineshape. R  and I  are the real and imaginary parts of the Fourier transform of s t . 

Using Eqns 2.1 and 2.3, the Fourier transform of  

 2/i ie e e t Tts t  

is 

 

ie i

cos isin i

cos sin i sin cos

S A D

A D

A D A D

 

where A A  and D D .  

Thus: 

 Re cos sin andR S A D  

 Im sin cosI S A D . 

Therefore: 
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2 2

2 2

cos sin cos sin cos sin cos sin

cos sin cos sin sin cos

cos sin

R I A D A D

A D A D

A

A

 

 

Exercise 2.7 

Show that phase-modulated two-dimensional signals of the general form 

1 2 1 1 2 2 2 2, exp i exp / exp i exp /s t t t t T t t T  allow quadrature detection in both dimensions but do 

not give pure absorptive lineshapes. 

Using Eqns 2.1 and 2.3, the two-dimensional Fourier transform of  

 1 1 2 2 2 2i / i /
1 2, e e e et t T t t Ts t t  

is 

 1 2 1 1 2 2 1 2 1 2 1 2 1 2, i i i iS F F A D A D A A D D A D D A  

where j j jA A F  and  , 1,2.j j jD D F j  

The real part of this spectrum 

 1 2 1 2 1 2Re ,S F F A A D D  

is a phase twist lineshape centred at 1 2 1 2, ,F F . See section 2.4. 

 

Exercise 2.8 

A common error in many real spectrometers is that analogue-to-digital converters are not perfectly balanced. 

As a consequence, their outputs often contain a constant offset in addition to the free induction signal. What 

effect will this have on the NMR spectrum obtained by Fourier transformation? 

A constant offset can be regarded as a damped oscillation of the form  2/ie e t Tt
 with zero frequency ( 0 ) 

and infinite decay time ( 2/
2 ,  e 1t TT ). The Fourier transform will therefore be an infinitely narrow 

'spike' at 0 . In general, there will be a constant offset in both detectors so that the spike can have any 

phase.  

More rigorously, suppose that the free induction decay has the form 

 2/ie e t Tts t a  ( 0t ),  

where the offset, a , is a real constant. Fourier transformation, using Eqn 2.2, gives: 

 i i /S A D a a   

where  is the Dirac delta function.  
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Thus the effect of the offset is indeed to give a zero-frequency 'spike' at 0  in the real part of the spectrum. 

 

Exercise 2.9 

A second common problem with quadrature detection is that the two detection channels have slightly different 

sensitivities so that, for example, the same signal would give a slightly bigger output in the real channel than in 

the imaginary channel.  What effect will this have on the NMR spectrum? 

Suppose that the free induction decay has the form 

 2/1 cos isin e t Ts t b t t  ( 0t ) 

where b  is a real constant.  

This rearranges to: 

 

2 2

2 2

2 2

/ /i

/ /i i i

/ /i i

e e cos e

e e e e e
2

1 e e e e .
2 2

t T t Tt

t T t Tt t t

t T t Tt t

s t b t

b

b b

 

Fourier transformation using Eqn 2.2 gives 

 1 i i
2 2

b b
S A D A D  , 

the real part of which is 

 Re 1 .
2 2

b b
S A A  

Thus the spectrum comprises a line of intensity 1 / 2b  at the correct frequency ( ) and a 'quadrature 

image' of intensity / 2b  at the mirror image frequency ( ). 
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Chapter 3 

Exercise 3.1 

Show that the pulse sequence 90 90x x  has the following result:  cos sinz z xI I I . A sample 

comprises a dilute solute in an otherwise pure solvent; the solute and solvent each give an NMR singlet. How 

might this pulse sequence be used to obtain a spectrum of the solute free from the obscuring presence of the 

solvent line? 

 

90

90

cos sin

cos sin

x

x

z y

y x

z x

z

I

I

I

I I

I I

I I

. 

If we choose rf  such that solvent 0  and  such that solute /2 , then the result of the pulse sequence 

will be  

 solvent:  zI      and     solute:  xI . 

Thus, there will be no observable signal for the solvent. The signal for the solute will be the same as would have 

been obtained with a single 90 yI  pulse. This pulse sequence is known as 'Jump and Return'. See P. Plateau and 

M. Guéron, J. Amer. Chem. Soc. 104 (1982) 7310-7311. 

 

Exercise 3.2 

Determine the effect of the "composite pulse" 90 90x y x  on the initial states:  (a) xI , (b) yI  and (c) zI . What 

geometric operation does this composite pulse perform? 

(a)  

90

90

cos sin

cos sin .

x

y

x

x x

x z

x y

I

I

I

I I

I I

I I

 

(b) 

90

90

cos sin

cos sin .

x

y

x

y z

z x

y x

I

I

I

I I

I I

I I

 

(c) 

90

90 .

x

y

x

z y

y

z

I

I

I

I I

I

I

 

The net effect of this composite "z-pulse" is a rotation through an angle  around the z axis. See M. H. Levitt 
and R. Freeman, J. Magn. Reson. 33 (1979) 473-476. 
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Exercise 3.3 

The evolution of the one-spin operators described in Eqns 3.3 and 3.4 and in Figure 3.2 can also be summarised 

in a 33 table. Using the three initial states ( xI , yI and zI ) to label the rows and the operators corresponding to 

the three basic transformations ( xI , yI and zI ) to label the columns, enter into the table the result towards 

which each operator evolves.  For example, cos siny y z
xII I I  (Eqn 3.3) so that the entry in the yI -row 

and xI -column would be zI . If an operator does not evolve then enter 0 for the corresponding element of the 

table. 

  transformation 
  xI  yI  zI  

initial 
state 

xI  0 zI  yI  

yI  zI  0 xI  

zI  yI  xI  0 

 

Exercise 3.4 

Repeat Exercise 3.3 for two-spin operators by forming a table for the 11 initial states ( qI , qS , 2 z qI S , 2 q zI S , 

, ,q x y z ) evolving under the 7 basic transformations ( qI , qS , 2 z zI S , , ,q x y z ) considered in this chapter. 

  transformation 
  xI  yI  zI  xS  yS  zS  2 z zI S  

initial 
state 

xI  0 zI  yI  0 0 0 2 y zI S  

yI  zI  0 xI  0 0 0 2 x zI S  

zI  yI  xI  0 0 0 0 0 

xS  0 0 0 0 zS  yS  2 z yI S  

yS  0 0 0 zS  0 xS  2 z xI S  

zS  0 0 0 yS  xS  0 0 

2 z xI S  2 y xI S  2 x xI S  0 0 2 z zI S  2 z yI S  yS  

2 z yI S  2 y yI S  2 x yI S  0 2 z zI S  0 2 z xI S  xS  

2 z zI S  2 y zI S  2 x zI S  0 2 z yI S  2 z xI S  0 0 

2 x zI S  0 2 z zI S  2 y zI S  2 x yI S  2 x xI S  0 yI  

2 y zI S  2 z zI S  0 2 x zI S  2 y yI S  2 y xI S  0 xI  
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Exercise 3.5 

Consider the coherence transfer operation: 2 2
I S

x z z xI S I S . Determine the flip angle and phase 

, , orx y x y  of the pulse. 

xI  has been rotated to zI  and zS  has been rotated to xS . Therefore the phase of the pulse must be 

y  and the flip angle must be 90 : 

 
90 90

2 2 2y y

x z z z z x

I S
I S I S I S . 

 

Exercise 3.6 

Assuming that spectra are phased such that yI  corresponds to absorption-mode lineshapes, sketch the spectra 

that correspond to the following two-spin product operators: (a) yI , (b) xI , (c) 2 y zI S , (d) 2 x zI S , (e) 1
2 2y y zI I S , 

(f) 1
2 2y y zI I S .   

 

Exercise 3.7 

Section 3.4 analyses the effect of a spin echo pulse sequence on a homonuclear two-spin system. Repeat this 

analysis using IS / 4J  from the outset. 

Let I Icos ; sin .c s  Note that 1
2

cos sinJ J  when / 4J . 

 90 x
z y

II I  

 I z
y x

I I c I s  

 
/4 2 1 1

2 2
2 2zzI S

y x z x y zI I S c I I S s  

 1 1

2 2

180
2 2y yI S

y x z x y zI I S c I I S s  

 

I 1 1 1 1

2 2 2 2

2 2 2 21 1 1 1

2 2 2 2

1 1

2 2

2 2 2 2

2 2

2

z
y x x z y z x y y z x z

y x x z y z

y x z

I I c I s c I S c I S s c I c I s s I S c I S s s

I c s I sc sc I S c s I S sc sc

I I S

 

 
/4 2 1 1

2 22 2 2zzI S

y x z x z y x zI I S I S I I S  
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Similarly, 2z z xS I S  so that 2 2 .z z x z z xI S I S I S  

 

Exercise 3.8 

Calculate the effect of the spin-echo sequence 180y  on 2 x zI S  in a homonuclear two-spin system. 

Hence determine the effect of the double spin echo sequence 90 180 2 180x y y  on the initial 

state zI . Use previous results to simplify your calculations as much as possible. 

We need to determine the effect of 180y  on the two terms in Eqn 3.19: 2 x zI S  and yI . 

First, the effect of  180y  on 2 x zI S . The offset terms will be refocused by the echo sequence and so can 

be omitted. Using the abbreviations, cosc J  and sins J : 

 

2

180

2

2 2

2 2

2

2 2

2 2

2 cos2 sin2 .

z

y y

z

z

z

J I S
x z x z y

I S

x z y

J I S
x z y y x z

x z y

x z y

I S I S c I s

I S c I s

I S c I s c I c I S s s

I S c s I sc

I S J I J

 

The effect of the single echo sequence on zI  is given on page 25: 

 
90 180 cos2 2 sin2zI

z y y x zI I I J I S J  

the second half of which gives the effect of 180y  on yI . 

So, putting everything together, we get:
 

2 2

cos2 2 sin2 cos2 2 sin2 cos2 2 cos2 sin2 sin2

cos 2 sin 2 2 2sin2 cos2

cos4 2 sin4 .

y x z y x z x z y

y x z

y x z

I J I S J I J I S J J I S J I J J

I J J I S J J

I J I S J
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Chapter 4 

Exercise 4.1 

Consider the INEPT pulse sequence in Fig. 4.1 applied to a two-spin system (I and S). Show that insertion of the 

pulse sequence element 180 ,180y yI S  immediately before the free induction decay, where  has the 

same value as in the first part of the sequence, results in an enhanced in-phase spectrum of spin S. 

Immediately after the final two pulses, with IS1/ 4J , we have:  

 2 z y ya I S bS    (Eqn 4.3). 

The 180 ,180y yI S  sequence does the following: 

 

/4 1

2

, 1

2

/4

2

180 180

2

2 2 2

2 2

2 .

z y y z y x y z x

z y x y z x

x z x

z z

y y

z z

I S

I S

I S

a I S bS a I S aS bS b I S

a I S aS bS b I S

aS b I S

 

Note that chemical shifts have been omitted because they are refocused. Also, we have used IS / 4J so 

that IS IScos sin 1/ 2J J . 

Thus the enhanced S-spin doublet is indeed in-phase ( xaS ). 

 

Exercise 4.2 

Calculate the product operators arising from an INEPT sequence applied to a CH2 group and draw the resulting 

enhanced spectrum. Would phase cycling work in the same way here as it does for a CH group? 

 

/4/4 1
1 2 1 1 2 22

, 1
1 1 2 22

/4/4

1 2

1

1 2

1 2

1 2

22

180 180

22

9090

2 2

2 2

2 2

2

z z y y x z y x z z

y x z y x z z

x z x z z

z z

zzz z

y y

zzz z

y y

I SI S

I S

I SI S

II

aI aI bS aI a I S aI a I S bS

aI a I S aI a I S bS

a I S a I S bS

a I S 2

1 2
90

2

2 2

z z z

z y z y y
xS

a I S bS

a I S a I S bS

 

which should be compared with Eqns 4.2 and 4.3. 

This is the same as Eqn 4.3 with 2 z ya I S  replaced by 1 22 2z y z ya I S a I S . The spectrum comprises an antiphase 

triplet, amplitude a, superimposed on an in-phase triplet, amplitude b: 
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An antiphase triplet can also be seen in Fig. 4.6(b). INEPT on a CH2 group is substantially simpler than DEPT on a 

CH2 group because at no stage during INEPT are xS  or yS  operators produced. 

The phase cycling involves replacing the final 90y  pulse on the I spins by a 90 y  pulse. When this change is 

made, the last two lines of the above derivation become 

  1 2 1 2

1 2

1 29090

90

2 2 2 2

2 2

x z x z z z z z z z

z y z y y

y y

x

II

S

a I S a I S bS a I S a I S bS

a I S a I S bS
 

i.e. the enhanced terms change sign and the unenhanced term does not. This is exactly the same result as for a 

CH group. 

 

Exercise 4.3 

Repeat Exercise 4.2 for a CH3 group. 

Comparing Exercise 4.2 with section 4.2, it should be clear that the end result for a CH3 group should be: 

 1 2 3 1 2 32 2 2z z z y z y z y z y yaI aI aI bS a I S a I S a I S bS . 

The spectrum comprises an antiphase quartet, amplitude a, superimposed on an in-phase quartet, 

amplitude b: 
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Exercise 4.4 

Would the INEPT pulse sequence in Fig. 4.1 still work if: (a) both 180y  pulses were replaced by 180x  pulses? 

(b) the final 90 xS  pulse were replaced by a 90 yS  pulse? (c) the final 90 yI  pulse were replaced by a 90 xI  

pulse? 

(a)   The final stage of the INEPT sequence, as shown in Fig. 4.1, is (Eqn 4.3): 

 
90 902 2 2x z z z z z z y y

y xI Sa I S bS a I S bS a I S bS . 

Shifting the phase of the 180 pulses simply changes the sign of the first term on the left hand side so that the 

outcome is: 

 2 z y ya I S bS . 

The sequence still works. 

(b)  Starting with the left hand side of Eqn 4.3, 

 2 x z za I S bS . 

It can be seen that changing the final 90 xS  pulse to 90 yS  just shifts the phase of both terms: 

  
90 90

2 2 2x z z z z z z x x
y yI S

a I S bS a I S bS a I S bS . 

The sequence still works. 

(c)  Again, starting with the left hand side of Eqn 4.3, it can be seen that changing the final 90 yI  pulse to 90 xI  

produces the following result: 

 

90

90

2 2

2

.

x z z x z z

x y y

y y y

x

x

I

S

a I S bS a I S bS

a I S bS

aDQ aZQ bS

 

The sequence no longer works. The spectrum contains only the unenhanced S spin doublet. 

 

Exercise 4.5 

Prove the results given in Eqn. 4.6. 

Using the abbreviations I Icosc t , I Isins t , S Scosc t , S Ssins t , Eqn 3.4 gives 
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I

I

S

S

I I I I

I I I I

S S S S

S S S S

cos sin

cos sin

cos sin

cos sin .

x x y x y

y y x y x

x x y x y

y y x y x

z

z

z

z

t I

t I

t S

t S

I I t I t I c I s

I I t I t I c I s

S S t S t S c S s

S S t S t S c S s

 

Therefore: 

 

I I S S

I S I S I S I S

I I S S

I S I S I S I S

I S

I S

2 2

2 2 2 2

2 2

2 2 2 2 .

x x x y x y

x x x y y x y y

y y y x y x

y y y x x y x x

z z

z z

t I t S

tI t S

I S I c I s S c S s

I S c c I S c s I S sc I S s s

I S I c I s S c S s

I S c c I S c s I S sc I S s s

 

And so: 

 

1
2

1 1 1 1
I S I S I S I S I S I S I S I S2 2 2 2

1 1
I S I S I S I S2 2

I S I S

I S(2 2 )

2 2 2 2

2 2 2 2

cos sin .

x x x y y

x x x y y x y y

x x y y x y y x

x y

z zt I t S
DQ I S I S

I S c c s s I S c s sc I S sc c s I S s s c c

I S I S c c s s I S I S c s sc

DQ t DQ t

 

The proof of the ZQx bit of Eqn 4.6 proceeds in an exactly similar manner. 

 

Exercise 4.6 

What detectable signal results from 2 x xI S

z zI S ? Sketch the form of the spectrum. What flip angle gives 

the maximum detectable signal?  

 
2 2

2 2

2 2 cos sin cos sin

2 cos 2 cos sin 2 sin cos 2 sin

2 cos 2 2 sin cos sin

x xI S

z z z y z y

z z z y y z y y

z z z y y z x x

I S I I S S

I S I S I S I S

I S I S I S ZQ DQ

 

The detectable signal is 2 2 sin cosz y y zI S I S , i.e. antiphase doublets for both spins. The maximum signal 

occurs when 45 . If 90 , there is ZQ and DQ coherence but no detectable signal. 
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Exercise 4.7. 

Four new one-spin product operators can be defined by ix yI I I   and ix yS S S . Write 1
2 (2 2 )x x y yI S I S  

in terms of I  and S  and interpret the results. 

Rearrangement of the equations for I  and S gives: 

 , , ,
2 2i 2 2i

x y x y

I I I I S S S S
I I S S , 

showing that I  and S  are single quantum product operators. These expressions can be used to rewrite DQx 

and ZQx: 

 

1 1
2 2

1
4

1
2

1 1
2 2

1
4

(2 2 ) 2 2
2 2 2i 2i

;

(2 2 ) 2 2
2 2 2i 2i

x x x y y

x x x y y

I I S S I I S S
DQ I S I S

I S I S I S I S I S I S I S I S

I S I S

I I S S I I S S
ZQ I S I S

I S I S I S

1
2 ,

I S I S I S I S I S

I S I S

 

showing that the single quantum operators can be combined to obtain multiple quantum product operators. 

 

Exercise 4.8. 

Show that the rules for combining DEPT spectra stated after Eqn. 4.20 are correct. 

  A B C 

  45  90  135  

CH sin  
1

2
 1 

1

2
 

CH2 sin cos  
1

2
 0 

1

2
 

CH3 
2sin cos  

1

2 2
 0 

1

2 2
 

 

Clearly B has only CH signals. 

For the CH2 signals: 
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 2 3 2 3 2

1 1 1 1 1 1
A C CH CH CH CH CH CH CH

2 22 2 2 2 2 2
.    

And for the CH3 signals: 

 

2 3 2 3

3 3

1 1 1 1 1 1
2 A C 2B CH CH CH CH CH CH 2B

2 22 2 2 2 2 2

1
2 2 CH CH 2 CH CH .

2

  

 

Exercise 4.9. 

What would happen to a quaternary carbon in a DEPT experiment? 

When there are no coupled protons, DEPT simply acts as a 90 180x x  spin echo sequence. 
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Chapter 5 

Exercise 5.1 

Performing the COSY experiment with two 90x  pulses as in Fig. 5.1 yields diagonal peak signals that are sine 

modulated as a function of 1t  and cross-peak signals that are cosine modulated (see Eqn 5.2). Show that 

changing the first pulse to 90y  results in diagonal peak signals that are cosine modulated as a function of 1t  

and cross-peak signals that are sine modulated. (Note that the signals from these two experiments can be used 

as the inputs to a hypercomplex Fourier transformation, as described in Section 2.4.) 

We can repeat the calculation in Eqn 5.1 but with an initial 90y  pulse. Immediately after the second pulse we 

have: 

 

I 1 IS 1 I 1 IS 1

I 1 IS 1 I 1 IS 1

I 1 IS 1 I 1 IS 1

I 1

I 1 1 1S IS
90 2

90

cos cos 2 cos sin

sin cos 2 sin sin

cos cos 2 cos sin

sin cos

z

x y z

y x z

x z y

z

y y z z z z

x x

I S t I t S J t I S

I S

I

I t J t I S t J t

I t J t I S t J t

I t J t I S t J t

I t IS 1 I 1 IS 12 sin sin .x yJ t I S t J t

 

Now only the first two terms are observable. If we expand the amplitudes of xI  and 2 z yI S  above using 

trigonometric relations we find: 

 

I 1 IS 1 I 1 IS 1

1
I IS 1 I IS 12

1
I IS 1 I IS 12

cos cos 2 cos sin

cos cos

2 sin sin .

x z y

x

z y

I t J t I S t J t

I J t J t

I S J t J t

 

The term corresponding to the diagonal peak ( xI ) is cosine modulated as a function of 1t , whereas the cross-

peak term ( 2 z yI S ) is sine modulated as a function of 1t . 

 

Exercise 5.2 

Eqn 5.3 shows 8 product operators present at the start of the 2t  (acquisition) period of a COSY experiment 

performed on a three-spin ISR system. Write down the 16 product operators you would expect to find at the 

start of the 2t  period of a COSY experiment performed on a four-spin ISQR system. (There is no need to give 

the signs, associated modulations, or to perform the complete product operator calculation.) 
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With the COSY experiment shown in Fig. 5.1, the 16 product operators would be: zI , 2 x yI S , xI , 2 z yI S , 2 x yI R , 

4 z y yI S R , 2 z yI R , 4 x y yI S R , 2 x yI Q , 2 z yI Q , 4 z y yI S Q , 
		
4I

x
S
y
Q

y
, 4 z y yI R Q , 4 x y yI R Q , 8 x y y yI S R Q , 8 z y y yI S R Q . 

Note that the first 8 of these 16 are the same as those found on the right-hand side of Eqn 5.3. 

 

Exercise 5.3 

A cosine modulated signal is obtained as a function of 1t  for the HMQC pulse sequence in Fig. 5.10 (see Eqn 

5.21). How might the pulse sequence be modified to obtain a sine modulated signal? 

A sine modulated signal as a function of 1t  can be obtained by replacing the first 90x  pulse on spin S in Fig. 

5.10 with a 90y  pulse. In this case, Eqn 5.18 becomes: 

 
I I

I I

90

2 cos 2 sin

2 cos 2 sin .

x z y z

x x y x
yS

I S I S

I S I S
  

And then we can continue with the rest of the product operator analysis of the sequence: 

 

I I

I S 1 I S 1

I S 1 I S 1

I S 1 I S 1

1S

180

90

2 cos 2 sin

2 cos cos 2 cos sin

2 sin cos 2 sin sin

2 cos sin 2 sin sin

x x y x

x x x y

y x y y

x z y z

x

z

x

I

t S

S

I S I S

I S t I S t

I S t I S t

I S t I S t

 

Note that we have only retained observable terms in the final line above and that these are now sine 

modulated signal as a function of 1t . 

 

2
I S 1 I I S 1

2
I I S 1 I S 1

S 1

S 1

I

IS 2

2 cos sin 2 cos sin sin

2 cos sin sin 2 sin sin

2 sin

sin .

x z y z

y z x z

x z

y

z

z z

I

J I S

I S t I S t

I S t I S t

I S t

I t

 

As with the COSY experiment in Exercise 5.1, the signals from the cosine and sine modulated HMQC 

experiments can be used as the inputs to a hypercomplex Fourier transformation, as described in Section 2.4. 

 

 

Hore, Jones & Wimperis: NMR: The Toolkit 2e Oxford University Press

© P.J. Hore, J.A. Jones, S. Wimperis 2015



Page 20 of 57 
 

Exercise 5.4 

The HMQC experiment is normally performed to correlate I and S spins through their one-bond J-couplings, 
1
JIS. 

The Heteronuclear Multiple-Bond Correlation (HMBC) experiment is a version of HMQC that allows correlation 

through multiple-bond J-couplings:  
2
JIS,  

3
JIS,  

4
JIS, etc. Suggest the most simple modification of HMQC that 

allows such correlations to be observed. 

Multiple-bond JIS couplings are invariably much smaller than one-bond JIS couplings, with 10 Hz a typical rough 

estimate for 
2
JIS,  

3
JIS,  

4
JIS, etc., with I = 

1
H and S = 

13
C or 

15
N. Therefore, the simplest modification of the HMQC 

sequence to allow correlations through multiple-bond heteronuclear couplings (HMBC) is to lengthen the first 

 delay in Fig. 5.10 to 1/(2×
n
JIS), with 

n
JIS = 10 Hz. 

What about the second  delay? It is tempting to lengthen this to 1/(2×
n
JIS) too. However, we need to 

remember that homonuclear J-couplings, JII, will be present between the I = 
1
H spins and that these could be 

safely ignored in Eqns 5.17 – 5.21 (and in Exercise 5.3) because 
n
JII << 

1
JIS. But 

n
JII ≈ 

n
JIS, the homonuclear J-

couplings will evolve to a significant extent during the extended  delays, and there is no mechanism in the 

pulse sequence in Fig. 5.10 for refocusing of these couplings. As a result, it would be impossible to phase the 

resulting spectrum in the F2 (I = 
1
H) dimension. The pragmatic (but somewhat crude) solution to this problem 

normally adopted is to omit the second  delay completely and hence, because the spin I signals are then 

antiphase with respect to the S spins at the start of the acquisition period, to also omit any decoupling of the S 

spins; no attempt is made to phase the spectrum and it is presented in magnitude mode. 

Exercise 5.5 

In the early years of two-dimensional NMR, heteronuclear correlation experiments were usually carried out by 

having 
1
H magnetization evolve during the 1t  period and detecting the 

13
C or 

15
N signal directly in the 2t  

period. However, this approach is much less sensitive than that used in the so-called inverse experiments 

HMQC and HSQC and has fallen out of favour. Despite this overwhelming sensitivity disadvantage, suggest 

some advantages of the direct detection approach. 

13
C or 

15
N NMR signals cover a much wider range of chemical shifts than 

1
H signals and yet can have much 

narrower line widths in absolute terms. Therefore, in a heteronuclear correlation experiment, it is possible that 

there will be a need to record the spin S (e.g. 
13

C or 
15

N) dimension with much higher resolution than the spin I 

(
1
H) dimension. In purely practical terms, this very high resolution might be easier to obtain in the F2 dimension 

(simply by having a long acquisition time t2) than in the F1 dimension, where a large number of small (because 

of the wide chemical shift range) t1 increments will be needed to achieve a large enough value of t1 to resolve 

closely spaced spin S signals. 

A second possible advantage of direct detection of the (lower , usually less abundant) spin S nucleus is that 

the direct detection of the I = 
1
H nucleus can be complicated by the presence of very strong signals that are not 

involved with the desired I–S correlation, e.g., those arising from a solvent, such as water, that cannot always 

be replaced by its deuterated form for chemical reasons. 
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Chapter 6 

Exercise 6.1 

Draw coherence transfer pathway diagrams for (a) the COSY experiment (Fig. 5.1), the NOESY experiment (Fig. 

5.7), and the HMQC experiment (Fig. 5.10). (For the heteronuclear HMQC experiment, remember that you will 

need to draw separate coherence transfer pathway diagrams for the I and S spins.) 

 

 

(a) COSY

(b) NOESY

(c) HMQC

 p = 0

+1

–1

 p = 0

+1

–1–1

 p = 0

+1

–1

 p = 0

+1

–1

I

S
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Exercise 6.2 

Remembering that, in experimental practice, the flip angles of the pulses may deviate slightly from 90 , design 

a two-step phase cycle for the COSY experiment (Fig. 5.1). 

If the first pulse in the COSY pulse sequence in Fig. 5.1 deviates from 90° then we will have 0p  

magnetization present during the t1 period and this must be eliminated. (Spin-lattice relaxation will also give 

rise to 0p  magnetization even if the pulses are perfect.) Thus, we need to cycle the phase of the first 90° 

pulse ( 1 ) to select  and 1p  simultaneously, rejecting the unwanted 0p . Note that this is 

identical to the axial peak suppression we used in the DQF-COSY experiment in Section 6.3. These two steps are 

 1 0 ,180  

and the First Rule gives the corresponding receiver phase cycle as 

 Rx 0 ,180 .  

Alternatively, we can cycle the phase of the second 90° pulse ( 2 ) to select 0p  and 2p  

simultaneously, rejecting the unwanted 1p . These two steps are 

 2 0 ,180  

and the First Rule gives the corresponding receiver phase cycle as 

 Rx 0 , 0 .  

 

Exercise 6.3 

The NOESY experiment (Fig. 5.7) requires a two-step phase cycle to suppress axial peaks and a four-step phase 

cycle to select 0p  during m . Write down these two phase cycles separately and then nest them to give the 

final eight-step NOESY phase cycle. 

The two-step phase cycle of the first pulse in the NOESY sequence in Fig. 5.7 that suppresses axial peaks is, as 

we have seen for COSY and DQF-COSY:  

 1 0 ,180  

 Rx 0 ,180 .  

For selection of 0p  during the  period it is usual to cycle the third 90° pulse through four steps and to 

select : 
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Nesting these two phase cycles together gives 

 

 

 

Exercise 6.4 

Confirm that cycling the phases 2  and 3  in the DQF-COSY experiment (Fig. 6.1) yields the same eight-step 

phase cycle (but performed in a different order) as that obtained by cycling phases 1  and 3  (Eqn 6.8), as 

described in Section 6.3. 

Phase cycling the second 90° pulse ( ) in Fig. 6.1, we need to select , , and 

, rejecting the unwanted and . This can be achieved by the two-step phase cycle: 

  

  

The phase cycle for the third 90° pulse ( ) has already been given in Eqns 6.2 and 6.4: 

 3 0 ,90 ,180 ,270  

 Rx 0 ,270 ,180 ,90
 

Nesting these two phase cycles together gives 

 

1

2

3

Rx

0 0 0 0 0 0 0 0

0 0 0 0 180 180 180 180

0 90 180 270 0 90 180 270

0 270 180 90 180 90 0 270
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Now this does not appear to be quite the same phase cycle as in Eqn 6.8; the first four steps are the same but 

the second four are different. However, without altering the performance of the phase cycle, we can arbitrarily 

add 180° to all four phases in steps five to eight to obtain 

 

1

2

3

Rx

0 0 0 0 180 180 180 180

0 0 0 0 0 0 0 0

0 90 180 270 180 270 0 90

0 270 180 90 0 270 180 90

 

This is now identical to the phase cycle given in Eqn 6.8 except that the order in which steps five to eight are 

performed has been changed. 

 

Exercise 6.5 

Confirm that cycling the phases 1  and 2  in the DQF-COSY experiment (Fig. 6.1) alone cannot suppress 0p  

during the  delay, as described in Section 6.3. 

 

Phase cycling the first 90° pulse ( 1 ) in Fig. 6.1, we can select 1p  and 1  coherences during t1. But then, 

as we have seen in Exercise 6.4, the second pulse ( 2 ) must select 3p , 1p , 1p and 

3p . Unfortunately, it easily seen that the change 1p  applied to 1p  and the change 

1p  applied to 1p   both yield 0p  magnetization during the  delay. One solution to this is to 

phase cycle the second pulse to select only 3p and 3p but this will lead to a loss of signal as two of 

the four pathways leading to double-quantum coherences are blocked. A much better solution is, as described 

in Section 6.3 and Exercise 6.4, to phase cycle either 1  and 3  or, alternatively, 2  and 3  with retention of 

the full signal intensity. 

 

Exercise 6.6 

A strong pulsed field gradient is often applied before the very first radiofrequency pulse is applied in a pulse 

sequence. Suggest why this is beneficial. 

 

When time averaging an NMR experiment, it is sometimes necessary to use a shorter than optimal relaxation 

delay between acquisitions in order to optimise the signal-to-noise ratio in a finite total experiment time. With 

a short relaxation delay, it is possible that some transverse magnetization or multiple-quantum coherences 

may survive from the previous acquisition and give rise to observable signal in the current acquisition. In order 

words, we may have coherences other than 0p  present at the start of the pulse sequence, which could 
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defeat the design and purpose of our phase cycle. Therefore, one obvious solution to this potential problem is 

to apply a strong pulsed magnetic field gradient before the first pulse in the pulse sequence and so to dephase 

completely any coherences left over from the previous acquisition.
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Answers to Exercises: Part B 

Chapter 7 

Exercise 7.1 

Consider the kets 1 2a , 1 i 2b , and 1 3i 2c . Find the corresponding normalised 

kets a , and so on, and the corresponding normalised bras. 

We can normalise a ket by dividing it by its length: in general 

 . 

Start by finding the un-normalised bras  

 1 2 1 i 2 1 3i 2a b c  

remembering to take the complex conjugates of the coefficients.  The inner products can be evaluated using 

 

1 2 1 2

1 1 1 2 2 1 2 2

1 0 0 1

2

a a

 

and similarly 

 

1 i 2 1 i 2

1 1 i 1 2 i 2 1 i( i) 2 2

1 0 0 1

2

b b

 

and 

 

1 3i 2 1 3i 2

1 1 3i 1 2 3i 2 1 3i( 3i) 2 2

1 0 0 3 1

4

c c

 

Note that these inner products, which are the squares of the lengths of the vectors, are all positive real 

numbers as required.  We could have done these calculations using matrix forms, e.g. 
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†

2

11 i

i

1 i

2

b b b bψ ψ

 

giving precisely the same answers.  Alternatively note that since 1  and 2  are orthogonal and normalised the 

square of the length is just the sum of the squares of the absolute values of the coefficients.  Either way, the 

lengths are 2  for a  and b  and 2 for c . 

Putting all this together gives 

 

3i1 1 1 i 1
2 22 2 2 2

3i1 1 1 i 1
2 22 2 2 2

1 2 1 2 1 2

1 2 1 2 1 2

a b c

a b c

. 

 

Exercise 7.2 

Calculate the inner products a b  and a b  and comment on your answers. 

 

1 2 1 i 2

1 1 i 1 2 2 1 i 2 2

1 0 0 i

1 i

a b

 

 

1 1 1 1

2 2 2 2

1 i 1 i
2 2 2 2

1 i
2 2

1 i
2 2

1
2

1 2 1 i 2

1 1 1 2 2 1 2 2

0 0

1 i

a b

 

Note that a b  could have been obtained directly from a b  by dividing it by the product of the lengths 

of a  and b . 

 

Exercise 7.3 

Calculate the inner products a c  and c a  and comment on your answers. 

The method is the same as before, but we can now miss out unnecessary steps. 
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3i1 1 1
2 22 2

3i1

2 2 2 2

1

2 2

1 2 1 2

1 3i

a c

 

 

3i1 1 1
2 2 2 2

3i1

2 2 2 2

1

2 2

1 2 1 2

1 3i

c a

 

Note that these two results are complex conjugates: 
*

c a a c .  This makes sense because from the 

properties of the adjoint 
†

c a a c , and the adjoint of a number is its complex conjugate. 

 

Exercise 7.4 

Write down the matrix forms of ψ  and ψ  corresponding to the basis kets  and .  Hence show that 

the matrices xI , yI  and zI  (Eqns 7.23 and 7.26) act as described in Eqns 7.21 and 7.25. 

We have  

 
1 0

0 1
ψ ψ  

and so 

 
1 1
2 2 1

211 1
22 2

00 1 0 1 0

0 0 1 0 0xI ψ ψ  

 
1 1
2 2 1

211 1
22 2

00 i 1 0 1 i 0
i

ii 0 0 i 1 0 0yI ψ ψ  

 
1 1 1
2 2 2 1

21 1
2 2

0 1 1 0 0

0 0 0 1 0 0zI ψ ψ  

and similarly 

 
1 1
2 2 1

21
2

0 0

0 1 0xI ψ ψ  

 
1 1
2 2 1

21
2

0 i 0 i
i

i 0 1 0yI ψ ψ  
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1
2 1

211
22

00 0

0 1zI ψ ψ . 

 

Exercise 7.5 

Show that , ,B A A B  and that , , ,A B C A B A C  

These are easily shown by direct expansion 

 

,

,

B A BA AB

AB BA

A B

 

 

,

, ,

A B C A B C B C A

AB AC BA CA

AB BA AC CA

A B A C

 

 

Exercise 7.6 

Determine the nine possible binary products of the matrices xI , yI  and zI , and hence show that these matrices 

have the correct commutation relations to represent angular momentum. 

By direct multiplication 

 
1 1 1 1
2 2 4 21

21 1 1 1
2 2 4 2

0 0 i 0 i 0 0
i

0 i 0 0 0 i 0 0x yI I  

The complete set of nine binary products is 

1 1 1
4 4 41 1 1

4 2 21 1 1
4 4 4

1 1 1
4 4 41 1 1

2 4 21 1 1
4 4 4

1
4

1
4

0 i 0 0
i i

0 0 i 0

i 0 0 0 i
i i

0 i 0 i 0

0

0

x x x y z x z y

y x z y y y z x

z x

I I 1 I I I I I I

I I I I I 1 I I I

I I
1 1
4 41 1 1

2 2 41 1
4 4

0 i 0
i i

i 0 0y z y x z zI I I I I I 1

 

confirming equations 7.28 and 7.29.  Then 

 1 1
2 2, i i ix y x y y x z z zI I I I I I I I I  

and so on. 
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Exercise 7.7 

Use the methods in Appendix D and E to confirm equations 7.52 and 7.53. Find the corresponding result for yI . 

Equation 7.52 is easy: as zI  is diagonal matrix exponentials of terms proportional to it can be calculated 

directly: 

 

1
02

0

1
02

i1
02i

1 i
02

i 0 e 0
e exp

0 i 0 e

t

t

t

t

t
zI . 

The complete calculation of equation 7.53 is given in appendix E; the result can be found in equation E4 

choosing the minus sign.  The corresponding result for yI  can be done in a very similar way to that for xI .  First 

we find the eigenvalues of k yI , 

 
1

22 2 2 21 1
2 41

2

i
i 0

i

k
k k k

kyI 1 , 

and so 

 /2k , 

the same as for xI .  The eigenvectors are, however, different.  For /2k  

 
1 1

12 2

1 1
22 2

i 0

i 0

k k x

k k x
, 

has the solution 2 1ix x , while /2k  has the solution 2 1ix x .  The eigenvectors can be normalised by 

choosing 1 1/ 2x  as before, and so matrices the Λ  and S are now given by 

 
1
2

1
2

0 1 11
,

0 i i2

k

k
Λ S . 

As a check we can evaluate 

 

1
2†

1
2

1 1
2 2

1 1
2 2

1 1 0 1 i1 1

i i 0 1 i2 2

1 1 i1

i i i2

0 i1

i 02

k

k

k k

k k

k

k

k y

SΛS

I

. 

as required.  Finally we have 
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/2
1

/2

/2 /2 /2 /2

/2 /2 /2 /2

1 1 1 ie 01 1
e e

i i 1 i0 e2 2

e e i e e1
.

2 i e e e e

k
k

k

k k k k

k k k k

yI ΛS S

 

Choosing 1ik t  gives 

 

1 1i /2 i /2/2 /2

1 1 1 1

1 1 1 1

1

e e e e

cos / 2 isin / 2 cos / 2 isin / 2

cos / 2 isin / 2 cos / 2 isin / 2

2cos / 2

t tk k

t t t t

t t t t

t

 

and 

 

1 1i /2 i /2/2 /2

1 1 1 1

1 1 1 1

1

e e e e

cos / 2 isin / 2 cos / 2 isin / 2

cos / 2 isin / 2 cos / 2 isin / 2

2isin / 2

t tk k

t t t t

t t t t

t

 

Putting all this together gives 

 

/2
1

/2

1 1

1 1

1 1

1 1

1 1 1 ie 01 1
e e

i i 1 i0 e2 2

2cos / 2 i 2isin / 21

2 i 2isin / 2 2cos / 2

cos / 2 sin / 2
.

sin / 2 cos / 2

k
k

k

t t

t t

t t

t t

yI ΛS S

 

 

Exercise 7.8 

Repeat the calculations in Section 7.5 using matrix exponentials. Repeat the calculations in Section 7.6 for a y-

pulse. 

The general solution is 

 i( ) e (0)tt Hψ ψ . 

In section 7.5 

 0 zH I  

and 
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1

2

1

2

(0) .ψ  

Thus  

 

11 0202

1 1
0 02 2

ii 11

22

1i i1
2 2

ee 0
( )

0 e e

tt

t t
tψ . 

in agreement with Eqn 7.39, and the rest of the calculation is unchanged.  In section 7.6 

 1 yH I  

and 

 
1

(0)
0

ψ  

so 

 1 1 1

1 1 1

cos / 2 sin / 2 1 cos / 2
( )

sin / 2 cos / 2 0 sin / 2

t t t
t

t t t
ψ . 

In this case 

 

1 1 1
1 1 12 2 2

1 1
1 12 2

2 21 1 1 1
1 1 12 2 2 2

ˆ Re cos sin sin

ˆ Im cos sin 0

ˆ cos sin cos .

x

y

z

I t t t

I t t

I t t t

. 
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Chapter 8 

Exercise 8.1 

Consider the ket icos /2 sin /2 ea . Show that a is normalised and find the corresponding 

density matrix aρ . 

It is easiest to do this using matrix representations.  First 

 

†

i

i

2 2

cos / 2 sin / 2 e cos / 2

sin / 2 e

cos / 2 sin / 2

1

a a a aψ ψ

 

and so a is normalised.  Then 

 

†

i

i

2 i

i 2

cos / 2 cos / 2 sin / 2 e

sin / 2 e

cos / 2 cos / 2 sin / 2 e
.

cos / 2 sin / 2 e sin / 2

a a aρ ψ ψ

 

The matrix aρ  can be written in a different form using trigonometric identities 

 
i

i

1 cos sin e1
.

2 sin e 1 cos
aρ  

explaining the use of / 2  in the original description of a .  This form can then be easily related to the Bloch 

sphere description of spin states. 

 

Exercise 8.2 

Show that aρ  is Hermitian and has trace 1. 

 

A matrix M  is Hermitian if it is equal to its adjoint,
*† TM M .  In this case 

 
2 i

T

i 2

cos / 2 cos / 2 sin / 2 e

cos / 2 sin / 2 e sin / 2
aρ  
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and taking the complex conjugate  gives aρ . (Note that we assume her that  and  are real.)  The trace of 

aρ  is the sum of the diagonal elements: 

 2 2Tr  cos /2 sin /2 1aρ  

as required. 

 

Exercise 8.3 

Consider the ket ieb a . Find bρ  and comment on your answer. 

This can be done by direct calculation using matrix forms: 

 

†

i i ii

i i

2 i

i 2

e cos / 2 e sin / 2 ee cos / 2

e sin / 2 e

cos / 2 cos / 2 sin / 2 e

cos / 2 sin / 2 e sin / 2

b b b

a

ρ ψ ψ

ρ

 

where we have assumed that  is real.  More directly 

 i i i ie e e eb b a a a a a a  

where we have used the fact that ie  is just a number an d so commutes with everything.  Terms like ie  are 

called global phases; as they have no effect on the density matrix they cannot affect any observable quantities. 

 

Exercise 8.4 

Show that mixed state density matrices are Hermitian and have trace 1. (Hint: consider Eqn 8.25.) 

From Eqn 8.25, any mixed state density matrix is a linear combination of pure state density matrices, which are 

themselves Hermitian with trace 1 (see Exercise 8.2).  The weighted sum of two Hermitian matrices is itself 

Hermitian as long as the weights are real numbers; this is obvious by considering individual elements, or can be 

deduced from the fact that the transpose and conjugate operations are both linear.  For a mixed state the 

weights are probabilities, which are always positive real numbers.  Similarly the trace operation is linear and so, 

using matrix representations, 

 Tr Tr Tr 1i i i i ii i i
p p pρ ρ ρ  

where we use the fact that the probabilities must sum to 1. 
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Exercise 8.5 

Does the matrix zI  represent a mixed state? If not, does it matter? 

As shown in Exercise 8.4 above, every mixed state density matrix has trace 1, but the trace of the matrix zI  is 0, 

so zI  cannot be a proper mixed state!  By comparing zI  with Eqn 8.30 the cause of the problem because 

obvious: in the case of zI  one of the “probabilities” in the linear combination is negative. 

 

Fortunately this doesn’t matter at all.  Although zI  is not a proper density matrix it can be used in all 

calculations as if it were one.  The easiest way to see this is to follow the approach discussed beneath Eqn 8.32: 

we can replace zI  (which is not a proper density matrix) by 1
2 z1 I  (which is), but since the 1

2 1  part has no 

effect on any observable terms it can be dropped with complete safety. 

 

Exercise 8.6 

Confirm the results of Eqns 8.37 and 8.38. 

This is just an exercise in matrix multiplication.  We have 

 

1 1
i i

1 1 1 1 1
1 1 1 12 2 2 2 2

1 1 1 1 1
1 1 1 12 2 2 2 2

1 1
1 12 2

1 1
1 12 2

( ) e e

cos( ) isin( ) 0 cos( ) isin( )

isin( ) cos( ) 0 isin( ) cos( )

cos( ) isin( )1

isin( ) cos(2

t t
t

t t t t

t t t t

t t

t

x x
I I

zρ I

1 1
1 12 2

1 1
1 12 2

2 21 1 1 1
1 1 1 12 2 2 2

2 21 1 1 1
1 1 1 12 2 2 2

1 1

cos( ) isin( )

) isin( ) cos( )

cos ( ) sin ( ) 2icos( )sin( )1

2 2icos( )sin( ) sin ( ) cos ( )

cos( ) isin( )1

is2

t t

t t t

t t t t

t t t t

t t

1 1in( ) cos( )t t

 

as required.  Then 

 

1 11
4

1 1

1 11
4

1 1

ˆ Tr

cos isin 0 1
Tr

isin cos 1 0

isin cos
Tr

cos isin

0

xI

t t

t t

t t

t t

xρI

 

where for simplicity we have moved all the factors of 1
2  to the front.  Similarly 
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1 11
4

1 1

1 11
4

1 1

1
14

1
12

ˆ Tr

cos isin 0 i
Tr

isin cos i 0

sin icos
Tr

icos sin

2sin

sin

yI

t t

t t

t t

t t

t

t

yρI

 

and 

 

1 11
4

1 1

1 11
4

1 1

1
12

ˆ Tr

cos isin 1 0
Tr

isin cos 0 1

cos isin
Tr

isin cos

cos .

zI

t t

t t

t t

t t

t

zρI

 

 

Exercise 8.7 

Repeat these calculations to find the evolution of zI  under 1 yH I . 

The calculation is very similar to the previous one, and the critical matrix, describing evolution under 1 yI , was 

worked out in Exercise 7.7.  The adjoint is easy to calculate, and then it is a simple matter of multiplying 

matrices.  First we find the density matrix 

 

1 1
i i

1 1 1 1 1
1 1 1 12 2 2 2 2

1 1 1 1 1
1 1 1 12 2 2 2 2

1 1
1 12 2

1 1
1 12 2

( ) e e

cos( ) sin( ) 0 cos( ) sin( )

sin( ) cos( ) 0 sin( ) cos( )

cos( ) sin( )1

sin( ) cos( )2

t t
t

t t t t

t t t t

t t

t t

y y
I I

zρ I

1 1
1 12 2

1 1
1 12 2

2 21 1 1 1
1 1 1 12 2 2 2

2 21 1 1 1
1 1 1 12 2 2 2

1 1

1 1

cos( ) sin( )

sin( ) cos( )

cos ( ) sin ( ) 2cos( )sin( )1

2 2cos( )sin( ) sin ( ) cos ( )

cos( ) sin( )1

sin( ) cos( )2

t t

t t

t t t t

t t t t

t t

t t

 

and then we calculate expectation values 
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1 11
4

1 1

1 11
4

1 1

1
12

ˆ Tr

cos sin 0 1
Tr

sin cos 1 0

sin cos
Tr

cos sin

sin

xI

t t

t t

t t

t t

t

xρI

 

 

1 11
4

1 1

1 11
4

1 1

ˆ Tr

cos sin 0 i
Tr

sin cos i 0

isin icos
Tr

icos isin

0

yI

t t

t t

t t

t t

yρI

 

 

1 11
4

1 1

1 11
4

1 1

1
12

ˆ Tr

cos sin 1 0
Tr

sin cos 0 1

cos sin
Tr

sin cos

cos .

zI

t t

t t

t t

t t

t

zρI

 

 

Exercise 8.8 

Use similar calculations to calculate the result of the spin echo shown in Fig. 1.6 applied to an isolated nucleus 

with offset frequency . Determine the density matrix at each point in the spin echo sequence and interpret it 

as a linear combination of xI , yI  and zI . 

This is just an extension of the same sort of calculation as above, but by now the number of matrices involved 

is becoming so large that it is sensible to pause at each step in the process and consider the result. 

 

The first stage is a 90x  pulse applied to the initial state zI .  The evolution under an x-pulse was calculated in 

Exercise 8.6, and all we need to do is set 1 /2t .  Thus 

 

1

cos / 2 isin / 21

isin / 2 cos / 22

0 i1

i 02

ρ
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Here it fairly easy to recognise yI  by inspection, but this could instead be determined by evaluating the 

expectation values 

 1
2

ˆ ˆ ˆ0 0x y zI I I  

and then doubling them to get 

 1 yρ I . 

 

Now we evolve the state under zH I  (we are working in a rotating frame, and so 0  must be replaced by 

).  After evolution for a time  the density matrix is 

 

i i

2 1

i / 2 i / 2

i / 2 i / 2

i / 2 i / 2

i / 2 i / 2

i

i

e e

e 0 0 i e 01

i 02 0 e 0 e

e 0 0 ie1

2 0 e ie 0

0 ie1

2 ie 0

z z
I I

ρ ρ

 

Now calculate expectation values: 

 

2

i

1
4

i

i

1
4

i

1
2

ˆ Tr

0 ie 0 1
Tr

1 0ie 0

ie 0
Tr

0 ie

sin

xI xρ I

 

 

2

i

1
4

i

i

1
4

i

1
2

ˆ Tr

0 ie 0 i
Tr

i 0ie 0

e 0
Tr

0 e

cos

yI yρ I
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2

i

1
4

i

i

1
4

i

ˆ Tr

0 ie 1 0
Tr

0 1ie 0

0 ie
Tr

ie 0

0.

zI zρ I

 

Doubling these coefficients we see that 

 2 sin cosx yρ I I . 

Next we have the 180y  pulse. The effect of evolution under 1 yI  was calculated in Exercise 7.7, and setting 

1t  gives 

 
i cos / 2 sin / 2 0 1

e .
sin / 2 cos / 2 1 0

yI  

So 

 

i i

3 2

i

i

i

i

i

i

e e

0 1 0 ie 0 11

1 0 1 02 ie 0

0 1 ie 01

1 02 0 ie

0 ie1

2 ie 0

y y
I I

ρ ρ

 

The expectation values are now 

 1 1
2 2

ˆ ˆ ˆsin cos 0x y zI I I  

so 

 3 sin cosx yρ I I . 

Finally we have the second period of free precession, leading to the final density matrix 
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i i

4 3

i / 2 i i / 2

i / 2 i i / 2

i / 2 i / 2

i / 2 i / 2

e e

e 0 0 ie e 01

2 0 e ie 0 0 e

e 0 0 ie1

2 0 e ie 0

0 i1

i 02

z z
I I

ρ ρ

 

or 

 4 yρ I . 

 

Doing all these calculations “by hand” is a lot of work, and it is easy to make a mistake.  Computer assistance 

can be extremely helpful in checking calculations like these. 

 

Exercise 8.9 

Repeat this calculation using the methods in Section 8.6. 

To repeat the calculation using the methods in Section 8.6 it is necessary to consider the commutators 

between the initial state and the Hamiltonian at each stage. 

 

We start from 0 zρ I  and apply the Hamiltonian 1 1 xH I .  The first commutators is 

 1 1 1, , i iz x yA B I I I C . 

(here 1 1b ), and so we must check 

 1 1 1, , i ix y zB C I I I A . 

Since the commutation relations fit the pattern in Eqn 8.46 we can apply the solution in Eqn 8.47 to get 

 1 1 1 1 1 1 1( ) cos sin cos sint b t b t t tz yρ A C I I . 

and setting 1 /2t  gives 

 1 yρ I . 
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During the second time period 2 zH I  and the commutators are now 

 2 2 2, , , i iy z y z xA B I I I I I C , 

 2 2 2, , , i iz x z x yB C I I I I I A . 

Once again these fit the pattern so 

 2 2 2 2 2( ) cos sin cos sinb t b t t ty xρ A C I I . 

 

During the 180  pulse 3 1 yH I  so 3 yB I  and 3 1b .  The calculation is apparently made complicated by 

the form of the initial state 

 3 2 cos sint ty xA ρ I I , 

as the commutators rules are no longer obeyed.  Performing the naïve calculation gives 

 

3 3

3

, cos sin ,

, cos , sin

i sin

i

t t

t t

t

y x y

y y x y

z

A B I I I

I I I I

I

C

, 

and then 

 

3 3

3

, , sin

i sin

i

t

t

y z

x

B C I I

I

A

 

which does not fit the pattern of Eqn 8.46.  However, closer inspection indicates that the second commutators 

has produced the second of the two parts making up the initial state, while removing the first part. 

 

The right approach here is to note that because the Liouville–von Neumann equation is linear we can consider 

the two parts of 3A  separately.  The first part, which is proportional to yI , commutes with the Hamiltonian, 

and so does not evolve.  The second part does not commute with the Hamiltonian, but its commutators do fit 

the pattern of Eqn 8.46, and so it evolves in the usual way: 

 1 1
1 cos sint tx x z
yII I I . 
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Reassembling the two parts with the appropriate weights gives 

 3 1 1( ) cos sin cos sin sint t t t t ty x zρ I I I  

and choosing 1t  leads to the simple result 

 3 cos sint ty xρ I I  

 

For the last stage it is again convenient to divide up the initial state into two parts, each of which obeys the 

appropriate commutation relations, and so: 

 
cos sin

cos sin

y y x

x x y

z

z

I

I

I I I

I I I
 

Thus reassembling everything gives 

 

4

2 2

2 2

cos sin cos cos sin sin

cos sin cos cos sin sin

cos sin

t t

t t

y x x y

y x x y

y

y

ρ I I I I

I I I I

I

I

 

This exercise conveys clearly the irresistible attraction of the product operator formalism, which enables 

complex calculations to be performed by applying a few simple rules.  Commutators can be easily found and 

checked by examining Table L1, although in practice it is rarely necessarily to do so.  Diagrams such as Figures 

3.2 and 3.7 indicate important triples of product operators which have the right commutation relationships and 

so will evolve in a simple way. 
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Chapter 9 

Exercise 9.1 

Use direct products to calculate the two-spin operator matrix xS  and show that it acts on the four basis states (

ψ  and so on) as expected. 

 

1
2

1 1
2 2

1 1
2 2

1
2

0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0

xS . 

Then 

 

1
2

1 1
2 2 1

21
2

1
2

0 0 0 1 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

xS ψ ψ  

 

1 1
2 2

1
2 1

21
2

1
2

0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

xS ψ ψ  

 

1
2

1
2 1

21
2

11
22

00 0 0 0

00 0 0 0

00 0 0 1

0 0 0 0

xS ψ ψ  

 

1
2

1
2 1

21 1
2 2

1
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 1 0

xS ψ ψ  
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Exercise 9.2 

Confirm that the relationships in Eqns 7.28–7.30 hold for spin S in a two-spin system 

We have calculated xS  above, xS  is given in Eqn 9.5, and using direct products 

 

1
2

1 1
2 2

1 1
2 2

1
2

0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0

zS . 

Multiplying matrices gives 

 

1 1 1
2 2 4

1 1 1
2 2 42 1

41 1 1
2 2 4

1 1 1
2 2 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

xS 1 , 

 

1 1 1
2 2 4

1 1 1
2 2 4 1

21 1 1
2 2 4

1 1 1
2 2 4

0 0 0 0 i 0 0 i 0 0 0

0 0 0 i 0 0 0 0 i 0 0
i

0 0 0 0 0 0 i 0 0 i 0

0 0 0 0 0 i 0 0 0 0 i

x y zS S S , 

 

1 1 1
2 2 4

1 1 1
2 2 4 1

21 1 1
2 2 4

1 1 1
2 2 4

0 i 0 0 0 0 0 i 0 0 0

i 0 0 0 0 0 0 0 i 0 0
i

0 0 0 i 0 0 0 0 0 i 0

0 0 i 0 0 0 0 0 0 0 i

y x zS S S , 

as required.  Finally 

 1 1
2 2, i i ix y x y y x z z zS S S S S S S S S . 

 

Exercise 9.3 

Use a computer package such as Mathematica to calculate the matrix representations of the three-spin 

operators in Section 4.4. 

The simplest approach is to use the inbuilt function KroneckerProduct which can multiply any number of 

matrices together, and the multiply the result by 4. 
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Exercise 9.4 

Repeat the calculations in Eqn 9.16–9.20 for a 90y pulse. 

The propagator for a single spin 90y pulse can be obtained from the results of Exercise 7.7 by setting 

1 /2t  to get.  Then following Eqn 9.18 gives 

 
i( /2)

1 1 1 1

1 1 1 1 1 1 1 11 1 1
e

1 1 1 1 1 1 1 122 2

1 1 1 1

yF  

and the adjoint is easily found.  Then the density matrix after the pulse is given by 

i( /2) i( /2)

1 1 1 1 1 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 11 1
e e

1 1 1 1 0 0 0 0 1 1 1 12 2

1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 1

1 1 1 11

1 1 1 14

1 1 1 1

y yF F

zF

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

0 1 1 0

1 0 0 11

1 0 0 12

0 1 1 0

xF

 

where x x xF I S ,and so on, and matrix forms have been taken from Appendix I. 

 

Exercise 9.5 

Use a computer package such as Mathematica to repeat the double spin echo calculations in Section 9.6.  What 

happens if the 180  pulses are applied with phases of x  and x ? How about y  and y ? 

 

These calculations are fairly straightforward: 
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Note that the propagator is the same in all cases: it does not matter what phases are used for the two 180  

pulses as long as the phases are either identical or differ by 180 .  If, however, 180x  and 180y  pulses are used 

then the evolution will not be quite the same. 

 

Exercise 9.6 

Use the methods in Section 9.6 to calculate the effects of a spin echo in a heteronuclear spin system.  Devise 

pulse sequences to produce the three different average Hamiltonians I zI , S zS  and 2J z zI S . 

 

Start with a simple spin echo where the 180  pulse is only applied to spin I.  The combined propagator is 

 I S I Si 2 i 2ie e e
J Jz z z z z z z zxI S I S I S I SIU  
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and since the three parts of the free precession Hamiltonian all commute with each other and the S-spin terms 

commutes with the I-spin pulse this can be reordered to give 

 S SI I i ii 2 i i i i 2e e e e e e eJ J z zz z z x z z z S SI S I I I I SU . 

Using Eqn 9.33 we know that 

 I Ii i i ie e e ez x z xI I I I  

and the last two terms can be combined to get 

 Si2i 2 i i 2e e e eJ J zz z x z z SI S I I SU . 

The last stage of the simplification requires two-spin matrices 

i i

i i
i 2 i i 2

i i

i i

0 0 i 0e 0 0 0 e 0 0 0

0 0 0 i0 e 0 0 0 e 0 0
e e e

i 0 0 00 0 e 0 0 0 e 0

0 i 0 00 0 0 e 0 0 0 e

J Jz z x z zI S I I S  

where 

 i /2J  

is introduced as a convenient shorthand. Multiplying everything out gives 

 i 2 i i 2 i

0 0 i 0

0 0 0 i
e e e e

i 0 0 0

0 i 0 0

J Jz z x z z xI S I I S I  

so the overall propagator for the single echo is 

 Si2ie e zx SIU . 

Finally, the propagator for the double spin echo is easily obtained 

 

S S

S S

S

S

i2 i2i i

i2 i2i i

i4i2

i4

e e e e

e e e e

e e

e

z zx x

z zx x

zx

z

S SI I

S SI I

SI

S

U

. 

In this case a minus sign is seen from the spinor behaviour of the 360x  rotation, but this minus sign can be 

safely ignored because it will cancel with a corresponding minus sign in †U  (see Exercise 8.3).  Thus, up to an 

irrelevant minus sign the double spin echo is equivalent to evolution under the average Hamiltonian 
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Sav zH S .  As before it is nescessary to use a double spin echo to remove the direct effects of the 180  pulse, 

although in many NMR experiments these effects are not critical and a single spin echo is sufficient. 

 

The average Hamiltonian Iav zH I  can be created in very much the same way by applying the 180  pulses to 

spin S instead of spin I.  Finally the pure coupling Hamiltonian can be achieved by applying the 180  pulses to 

both spins, imitating the homonuclear case. 

 

Exercise 9.7 

Repeat the calculations in Eqn 9.40 for the other three product operators involved in two-spin multiple 

quantum coherences. 

The four two-spin product operators involved in multiple quantum coherence are given in section 4.3 as 2 x xI S , 

2 x yI S , 2 y xI S , and 2 y yI S , and we need to find the commutators of each of these terms with 2 z zI S .  The 

calculation for the second term is shown in Eqn 9.40, and the other three are done in exactly the same way: 

 1 1 1 1
2 2 2 2

1 1
4 4

,

i i i i

0

y y

y y

x x z z x x z z z z x x

x z x z z x z x

y y

y y

I S I S I S I S I S I S

I I S S I I S S

I S I S

I S I S

 

 1 1 1 1
2 2 2 2

1 1
4 4

,

i i i i

0

y y

y y

y x z z y x z z z z y x

y z x z z y z x

x x

x x

I S I S I S I S I S I S

I I S S I I S S

I S I S

I S I S

 

 1 1 1 1
2 2 2 2

1 1
4 4

,

i i i i

0

y y y

y y

y z z y z z z z y

y z z z y z

x x x x

x x x x

I S I S I S I S I S I S

I I S S I I S S

I S I S

I S I S
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Chapter 10 

Exercise 10.1 

Explain why the eigenvectors of ISH  must have the general form shown in Eqn 10.2, for some value of . (Two 

eigenvectors can be spotted immediately, and then use the fact that the remaining eigenvectors of ISH  will be 

orthogonal unit vectors.) 

The matrix ISH  has the block diagonal structure 

  

where large circles in boxes indicate non-zero elements, and small circles indicate zeroes.  Note that the matrix 

can be partitioned into three boxes, with each box being completely disconnected from the other two, that is 

all the elements which could connect the boxes are zero.  From this it can be immediately deduced that the 

eigenvectors have the corresponding structures 

  

The first and last eigenvectors are obvious: they can only contain a single non-zero element and so must be 

 1 4

1 0

0 0

0 0

0 1

ψ ψ  

while 2ψ  and 3ψ  must be linear combinations of ψ  and ψ , and these two vectors must be normalised and 

orthogonal to each other.  Choosing 

 2

0

cos

sin

0

ψ  

(where the value of  is still to be determined) guarantees that it will be normalised, and this forces the choice 
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 3

0

sin

cos

0

ψ  

to ensure that 2ψ  and 3ψ  are orthogonal to each other. 

 

But is this choice for 2ψ  the only possible form?  If we assume that the coefficients must be real, then this is 

indeed the most general form possible: any set of coefficient for a normalised vector will take this form for 

some value of .  But why can we assume that the coefficients must be real?  In general they could be complex 

numbers. 

 

Here we must distinguish between two possibilities.  The two coefficients could both be complex in the same 

way, so that we can write the state as  

 
i

i
2 i

0 0

e cos cos
e

e sin sin

0 0

ψ . 

As shown in Exercise 8.3 such global phases have no effect and can be ignored.  More importantly the two 

coefficients could differ by a relative phase 

 2 i

0

cos

e sin

0

ψ  

and the assumption of real coefficients is equivalent to the assumption that the relative phase  must be 

either 0  or . 

 

How might such a restriction arise? The simplest way to see this is to note that ISH  is almost symmetric 

between the two spins I and S, and so the eigenstates must also be almost symmetric, leading to this 

restriction. 

 

Hore, Jones & Wimperis: NMR: The Toolkit 2e Oxford University Press

© P.J. Hore, J.A. Jones, S. Wimperis 2015



Page 52 of 57 
 

Exercise 10.2 

Verify the eigenvalues listed in Eqn 10.1. 

The eigenvalues for the two trivial eigenvectors, 1  and 4 , can just be read off from the corresponding 

diagonal elements of the matrix ISH .  For the other two we have to set up the eigenvalue equation 

2 / 2 0 0 0

0 / 2 0
0

0 / 2 0

0 0 0 2 / 2

J

J J
D

J J

J

 

and solve it.  The determinant D  can be partly expanded to give 

/ 2 0

2 / 2 / 2 0

0 0 2 / 2

/ 2
2 / 2 2 / 2

/ 2

J J

D J J J

J

J J
J J

J J

 

where we have used the block diagonal structure to expand the determinant in an intelligent fashion.  The 

eigenvalues are the four roots of this quartic equation (the four values of  for which 0D ), and two of these 

values are immediately obvious 

 1 42 /2 2 /2J J  

and the last two are obtained by solving the remaining quadratic equation in  

 
2

2 2 2 2

/ 2
0

/ 2

/ 2 / 2 0

3 / 4 0

J J

J J

J J J

J J

 

Using the quadratic formula gives 

 

2 2 2

2 2 21 1
2 2

2 21
2

1
2

4 3 / 4

2

4 3

J J J

J J J

J J

J

 

as required for 2  and 3 . 
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Exercise 10.3 

Use 2  and 2  to find an expression for tan  and then use double angle formulae to verify the expression 

for tan2 . 

Concentrating on the central block of the matrix gives 

 2

2

/ 2 cos 0

/ 2 sin 0

J J

J J
 

And multiplying out gives the two equations 

 
2

2

/ 2 cos sin 0

cos / 2 sin 0

J J

J J
 

These equations are equivalent, so we can concentrate on the top one, which rearranges to 

 2 / 2
sin cos

J

J
 

or 

 
/ 2 / 2

tan
J J

J J
. 

Now the double angle formula for tangents gives 

 

2

2 2

22

2 2 2

2 2 2 2

2tan
tan2

1 tan

2 /

1 /

2

2

2

2

2

2

2

/ .

J

J

J

J

J

J

J

J J

J

J
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Exercise 10.4 

Use a computer package such as Mathematica to verify Eqns 10.14 and 10.15 directly. 

A possible solution is shown below. 

 

 

Getting a “nice” result out of a Mathematica calculation typically requires a judicious use of commands such as 

Simplify, ExpandAll and PowerExpand, as well as using substitution commands to change notation, as 

indicated by the arrows in the code above.  It is usually necessary to experiment to find the most effective 

route, and example calculations such as that above sometimes benefit greatly from hindsight. 
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Exercise 10.5 

Use your program to explore the spectrum for a range of values of the ratio /J  and convince yourself that 

weak coupling and equivalent spin behaviour emerges in the appropriate limits. 

This could be done by simply plotting spectra, for example using the program in Fig 10.2.  Alternatively it is 

possible to extend the program in Exercise 10.4 by taking appropriate limits to get the analytic form of the two 

extreme spectra. 

 

 

 

Exercise 10.6 

Expand your program to verify Eqns 10.18 and 10.19. 

This is a fairly simple extension of the previous code; as before the main difficulty is in finding a good route to 

“tidy up” the result. 
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Exercise 10.7 

Use matrix representations to prove Eqn 10.31. 

Taking the matrix representations from Appendix I 

 

0 0 i 0 0 i 0 0

0 0 0 i i 0 0 01 1
2 2

i 0 0 0 0 0 0 i2 2

0 i 0 0 0 0 i

0 i i 0

i 0 0 i1

i 0 0 i2

0 i i 0

y z z yI S I S
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0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 01 1

1 0 0 0 0 0 0 12 2

0 1 0 0 0 0 1 0

0 1 1 0

1 0 0 11

1 0 0 12

0 1 1 0

x xI S

 

and so the commutator is 

 

0 i i 0 0 1 1 0 0 1 1 0 0 i i 0

i 0 0 i 1 0 0 1 1 0 0 1 i 0 0 i1 1

i 0 0 i 1 0 0 1 1 0 0 1 i 0 0 i4 4

0 i i 0 0 1 1 0 0 1 1 0 0 i i 0

0 0 0 0

0 0 0 01

4

0 0 0 0

0 0 0 01

0 0 0 0 0 0 0 04

0 0 0 0 0 0 0 0

0

 

 

Exercise 10.8 

Use operator commutators to prove Eqn 10.31, and hence evaluate the commutators between the sum term 

2 2y z z yI S I S  and xF . 

We can expand the final commutators as the sum of four individual commutators and then look up the 

elementary commutators in Table L1 to get 

 

2 2 , 2 , 2 , 2 , 2 ,

i2 i2 i2 i2

0.

y z z y x x y z x z y x y z x z y x

z z y y y y z z

I S I S I S I S I I S I I S S I S S

I S I S I S I S  

For the sum term, the minus signs before the second and fourth terms on the first line become plus signs, and 

so the commutators add together rather than cancelling out: 

 

2 2 , 2 , 2 , 2 , 2 ,

i2 i2 i2 i2

2 i2 i2 .

y z z y x x y z x z y x y z x z y x

z z y y y y z z

z z y y

I S I S I S I S I I S I I S S I S S

I S I S I S I S

I S I S
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