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Chapter 1: Standard functions and techniques

1.1. (a) y = x4 for −1.5 ≤ x ≤ 1:
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Figure 1: Problem 1.1a

(b) y = x(1− x) for −1 ≤ x ≤ 2:
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Figure 2: Problem 1.1b

(c) y = 1 + x + x2 for |x− 1| ≤ 2:
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Figure 3: Problem 1.1c

(d) y = |x− 1| for −3 ≤ x ≤ 3:
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Figure 4: Problem 1.1d

1



-3 -2 -1 1 2 3
x

6

7

8

9

10
y

Figure 5: Problem 1.1e
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Figure 6: Problem 1.1f

(e) y = |x|+ |x− 3|+ |x + 2| for −3 ≤ x ≤ 4:
(f) y = ||x| − 1| for −2 ≤ x ≤ 2:
(g) y =

√
(x2 + 1) for |x| ≤ 2:
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Figure 7: Problem 1.1g

1.2. (a) y = −2x + 3; (b) y = 1; (c) y = 2
3x− 1

3 . The intersections occur at A : (2, 1), B : ( 5
4 , 1

2 ),
C : (1, 1). The side lengths are: AB = 1

4

√
13, BC = 1

4

√
5, CA = 1.
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Figure 8: Problem 1.2

1.3. (a) Slope is 1, and the line cuts the axes at (0,−1) and (1, 0).
(b) Slope is 1

3 , and the line cuts the axes at (0,− 2
3 ) and (2, 0).

(c) Slope is − 2
5 , and the line cuts the axes at (0,− 4

5 ) and (2, 0).

1.4. (a) y = x + 1; (b) y = −2x − 4; (c) y = 0.5x − 0.5; (d) y = 3x − 1; (e) the slope of the line
must be − 1

4 : y = − 1
4x + 11

4 .

1.5. The products of the slopes in each case must be −1. The slopes are: (a) − 3
2 and 2

3 ; (b) 2 and
− 1

2 ; (c) 2 and − 1
2 ; (d) 1 and −1.

1.6. At the point of intersection, x + y + 1 = 0 and 2x− 3y − 2 = 0, so the line

(x + y + 1) + α(2x− 3y − 2) = 0
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must pass through this point, which has coordinates (− 1
5 ,− 4

5 ). The straight line joining this point
to (1, 1) is

2y = 3x− 1,

with α = 1
2 .

1.7. (a) Centre at (0, 0), radius 3; (b) centre at (1, 0), radius 2; (c) centre at (1, 1), radius
√

23;
(d) centre at ( 1

2 ,− 1
2 ), radius 1

2

√
11.

1.8. (x− 1)2 + (y + 2)2 = 9.

1.9. Eliminate one of the variables in each case and solve the resulting quadratic equation.
(a) (2, 2) and (2,−2);
(b) Eliminate y, so that x satisfies the equation

x2 + (2x + 1)2 − 2x + 2(2x + 1)− 4 = 0, or 5x2 + 6x− 1 = 0.

The points of intersection are

( 1
5 (−3−√14,−1− 2

√
14) and ( 1

5 (−3 +
√

14,−1 + 2
√

14)

(c) ( 1
2

√
2, 1

2

√
2), one point only since the line is tangential to the circle.

1.10. To three decimal places, the distances of the points from the origin are

1.060, 0.993, 1.011, 0.896, 1.124.

The average value of these distances is r = 1.017. The equation of the circle is

x2 + y2 = r2 = 1.034.

1.11. (a) x = H(t + 1)−H(t− 1).
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Figure 9: Problem 1.11a

(b) x = sgn(1 + t) + sgn(1− t).
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Figure 10: Problem 1.11b

(c) x = tH(t− 1).
(d) (t2 − 1)[sgn(t + 1) + sgn(1− t)].

1.12. (a) f(t) = H(2− t) + H(t + 1)− 1; (b) f(t) = 2tH(t);
(d) f(t) = (3− t)H(3− t) + (t− 2)H(2− t) + (t− 1)H[1− t)− tH(−t).
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Figure 11: Problem 1.11c
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Figure 12: Problem 1.11d

1.13. (a) 1
6π radians; (b) 2

3π radians.

1.14. (a) 1/
√

2; (b) 1; (c) 0; (d) −1/
√

2; (e)
√

3/2; (f) −√3/2; (g) −√3/2;
(h) −√3/2.

1.15. (a) Using the identity cos2 B = 1
2 (1 + cos 2B)

cos4 A =
1
4
(1 + cos 2A)2 =

1
4
(1 + 2 cos 2A + cos2 2A)

=
1
4
(1 + 2 cos 2A +

1
2
(1 + cos 4A)) =

1
8
(3 + 4 cos 2A + cos 4A).

(b) Use the identities sin2 B = 1
2 (1− cos 2B) and cos2 2B = 1

2 (1 + cos 4B):

sin4 A =
1
4
(1− 2 cos 2A + cos2 2A) =

3
8
− 1

2
cos 2A +

1
8

cos 4A.

1.16. (a) cos(x + 1
2π) = cos x cos 1

2π − sin x sin 1
2π = sin x; (b) cos x; (c) − cos x; (d) − cosx (for

both); (e) sin x (for both).

1.17. (a)

cos x + cos y = cos[
1
2
(x + y) +

1
2
(x− y)] + cos[

1
2
(x + y)− 1

2
(x− y)]

= cos[
1
2
(x + y)] cos[

1
2
(x− y)]− sin[

1
2
(x + y)] sin[

1
2
(x− y)] +

cos[
1
2
(x + y)] cos[

1
2
(x− y)] + sin[

1
2
(x + y)] sin[

1
2
(x− y)]

= 2 cos[
1
2
(x + y)] cos[

1
2
(x− y)]

(b) sin x− sin y = 2 sin[ 12 (x− y)] cos[ 12 (x + y)].
(c) cos x− cos y = −2 sin[ 12 (x + y)] sin[ 12 (x− y)].

1.18. (a) x = nπ, (n = 0,±1,±, 2, . . .);
(b) x = 1

2 (2n + 1)π, (n = 0,±1,±, 2, . . .);
(c) x = 2nπ, (n = 0,±1,±, 2, . . .);
(d) x = 1

6 (2n + 1), (n = 0,±1,±, 2, . . .);
(e) x = 1

2nπ, (n = 0,±1,±, 2, . . .);
(f) x = 2n, (n = 0,±1,±, 2, . . .).
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1.19.
amplitude angular frequency period phase

(a) 2 0.2 10π 3.2
(b) 1.5 0.2 10π −0.48
(c) 3.87 0.2 10π −0.135
(d) 1 1 2π π

1.20. (a) F (x) = 1
2

√−x; (b) F (x) = 1
2 (x− 3); (c) F (x) = 1

2 arcsinx;
(d) F (x) = arcsin( 1

2x); (e) F (x) = [arccos x]
1
2 ;

(f) F (x) = arccos
[

2
π arcsin x

]
;

(g) F (x) = x−4; (h) F (x) = − 1
2 +

√
(x + 1

4 ).

1.21. The graph shows y = x3 − x + 1 (the dashed curve) and its inverse.
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Figure 13: Problem 1.21

1.22. (a) x = 1
2 ln 3; (b) x = 1

3e2; (c) x = e−3; (d) x = − 1
3 ln 3;

(e) the equation is the same as (ex − 1)2 = 0: hence x = 0;
(f) x = 2; (g) x = 2/17; (h) x = ±√2; (i) x = ±√(1 + ee);
(j) x = (ln 3)/(ln 2); (k) x = −(ln 2)/(2 ln 3); (l) x = 1

2 ln[4 +
√

17];
(m) no solutions.

1.23. 2x = ex ln 2.

1.24. Consider two values of x, say x1 and x2, where x1 > x2. Then if 10x1 = 2× 10x2 , it follows
that

10x1−x2 = 2, or x1 − x2 =
ln 2
ln 10

,

an interval which is independent of x1 and x2.

1.25. (a) (x− 1)2 + y2 ≤ 9.
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Figure 14: Problem 1.25a

(b) x ≥ 0, y ≥ 0, and x + y ≤ 1.
(c) (x2/4) + (y2/9) ≤ 1.
(d) x2 + y2 ≤ 1 and x ≥ 0.
(e) |x|+ |y| ≤ 1.
1.26. Let

x = tanh y =
sinh y

cosh y
=

ey − e−y

ey + e−y
,
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Figure 15: Problem 1.25b
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Figure 16: Problem 1.25c

where −1 < x < 1. Hence

(1− x)e2y = 1 + x so that y =
1
2

ln
[
1 + x

1− x

]

as required.

1.27. From triangle ABC

AC = AB sin θ +
√

(BC2 −AB2 cos2 θ)
= 2.5[sin ωt +

√
(4− cos2 ωt)] cm,

where θ = ωt. The angular frequency ω = 400π/3.

1.28. x = 5 cos(ωt− 0.927). The amplitude c = 5 and the phase angle is φ = −0.927.

1.29. f(0) = 2 implies C = 2 and f(1) = 0.5 implies 0.5 = Ce−α = 2e−α. Hence α = ln 4. Also
f(2) = 1

8 .

1.30. The tidal period is 2π/0.5 = 12.57 hours. We require the times when the depth is 2m in one
period, which are given by solutions of

2 = 5 + 4.5 sin 0.5t so that sin 0.5t = − 2
3 .
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Figure 17: Problem 1.25d
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Figure 18: Problem 1.25e

Two consecutive times are 11.11 hours and 7.74 hours. Hence the yacht can float free for 9.20
hours in each tidal period. The yacht floats when sin 0.5t > − 2

3 . It is helpful to sketch y = sin 0.5t
and y = − 2

3 and plot their intersections.

1.31. (a) The cardioid r = 0.5(1 + cos θ):
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Figure 19: Problem 1.31a

(b) The folium r = (4 sin2 θ − 1) cos θ
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Figure 20: Problem 1.31b

(c) r = sin 2θ:
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Figure 21: Problem 1.31c

(d) The Archimedean spiral r = 0.04θ:
]

(e) The equiangular spiral r = 0.1e0.1θ:

1.32. (a) sgn (sin x):
(b) sgn cos 2x:
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Figure 22: Problem 1.31d
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Figure 23: Problem 1.31e

(c) H(x) sin x:
(d) sin2 x:
(e) | sin x|:
(f) sin |x|:
(g) H(x− π) sin x:

1.33. Let the points be A : (−7, 3), B : (1,−3) and C : (4, 1). The slope of AB is − 3
4 and the

slope of BC is 4
3 ; the product of the slopes is −1 which means that ÂBC is a right angle. Let D

be the fourth vertex. Then the equations of the lines AD and DC are

y − 3 = 4
3 (x + 7) and y − 1 = − 3

4 (x− 4),

or
3y − 4x− 37 = 0 and 4y + 3x− 16 = 0.

These lines intersect at the point D : (−4, 7)
There is a general formula buried here, if you notice that the coordinates of D are (−7 + 4 −

1, 3 + 1− (−3)).

1.34. (a) periodic, period 1
2π; (b) periodic, period 2π; (c) periodic, period 2π; (d) not periodic;

(e) periodic, period 2π; (f) periodic, period π; (g) not periodic; (h) periodic, period π; (i) periodic,
period π; (j) periodic, period 8π; (k) periodic, period 2

3 , since sin 3t has period 2
3π and cos 9t has

period 2
9π but has the period of sin 3t; (l) not periodic.

1.35. (a) neither odd nor even; (b) even; (c) odd since sin x is odd; (d) odd since product of odd
and even functions; (e) even; (f) even; (g) neither odd nor even.

1.36. (a) 1
5(x−2) − 1

5(x+3) ; (b) − 1
x+1 + 2

x+2 ; (c) 1
x + 1

x−1 ;
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Figure 24: Problem 1.32a
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Figure 25: Problem 1.32b
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Figure 26: Problem 1.32c

(d) 1
2x − 1

x+1 + 1
2(x+2) ; (e) 1

2(x−1) − 1
x + 1

2(x+1) ;
(f) 1

4x − 1
2(x+2)2 − 1

4(x+2) ; (g) 1
x+1 = 4

(x+2)2 ;
(h) 1

2(x−3) + 1
2(x+1) ; (i) 1

x − 1
x−1 + 1

(x−1)2 ;
(j) 1

x2 − 1
x + 1

x+1 .

1.37. (a) 1
x − x+1

x2+x+1 ; (b) 1
2(x−1) + 1−x

2(x2+1) ; (c) − 1
5(x+1) + x+6

5(x2+2x+6) .

1.38. (a) 1
x2 − 1

x2+1 ; (b) x− 3− 1
x+1 + 8

x+2 ;
(c) 1 + 9

8(x−3) + 1
8(x+1) − 9

4(x+3) .

1.39. (a) 4 + 8 + 16 + 32; (b) 1 + 1
2 + 1

5 + 1
10 + 1

17 ;
(c) x + 2x2 + 3x3 + 4x4.

1.40. For (a), (b), (c), (e) and (f) proceed as in Example 1.17.
(a) 2[1− ( 1

2 )8] = 255
128 .

(b) 1
2 · 1

3 [1− ( 1
3 )5] = 121

729 .
(c) (1− e−12)/(1− e2).
(d) The sum is 642. More generally, let

x + 2x2 + · · ·+ nxn = T.

Then
T − xT = (1− x)T = xS − nxn+1,

where S is the sum of the geometric series

1 + x + · · ·+ xn−1.
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Figure 27: Problem 1.32d
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Figure 28: Problem 1.32e
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Figure 29: Problem 1.32f

For the given problem x = 2.
(e) − 1

2
2
3 [1− (− 1

2 )10 = − 341
1024 .

(f) 2[ 1−(0.5)7

0.5 ] + 3[( 1−(0.6)7

0.4 ] = 11.258 . . ..

1.41. The series can be expressed as

x + x5 + x9 + · · ·+ x41 = x

10∑
n=0

(x4)n.

Using (1.33), the sum of the series is

x
1− x44

1− x4
.

1.42. Let D be the foot of the perpendicular on to the side AC. Then

c2 = DB2 + DA2 = DB2 + (AC −DC)2.

But DB = a sin C and DC = a cosC. Therefore

c2 = a2 sin2 C + (b− a cos C)2

= a2 sin2 C + a2 cos2 C + b2 − 2ab cos C

= a2 + b2 − 2ab cosC

1.43. The ratio of any pair of successive terms is

f(t0 + (n + 1)T )
f(t0 + nT )

=
Aec(t0+(n+1)T )

Aec(t0+nT )
= ecT ,

2 4 6 8 10 12
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Figure 30: Problem 1.32g
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which is independent of n. The common ratio is ecT .

1.44. (a) 1.111 . . . = 1 + 1
10 + 1

100 + · · · is an infinite geometric series with common ratio 1
10 and

sum 1/(1 − 1
10 ) = 11/9. (b) The common ratio is 1/10, and as a fraction the sum is 1; (c) the

common ratio is 1/100, and as a fraction the sum is 1/99; (d) the common ration is 1/100, and
as a fraction the sum is 1/11; (e) the common ration is 1/10 and as a fraction the sum is 2/3; (f)
the notation means 2.7̇2̇ = 2.727272 . . .: the common ratio is 1/100 and the sum represents the
fraction 30/11.

1.45. The sum of the infinite geometric series is

∞∑
n=m

xn =
xm

1− x
, |x| < 1.

(a) 2; (b) 10/9; (c) e/(e− 1); (d) 2
3 ; (e) 3/5.

1.46. (a) 24, 720, 5040; (b) 12; (c) 720; (d) 220; (e) 120; (f) 1, 3, 3, 1.

1.47. (a) (i) n(n− 1); (ii) (n + 1)n; (b) (i) 2mm!; (ii) (2m + 1)!/(2mm!).

1.48. (a) (i) 120; (ii) 504; (iii) 120; (iv) 35; (v) 35; (vi) 252; (vii) 4950; (viii)
(
10
7

)
=10 C7 = 120.

(b) nPn = n!
(n−n)! = n!

0! = n! Also nPn−1 = n!
(n−n+1)! = n!

1! = n!. Consider a collection of n

different letters. The number of different words of length n which can be made without repetition
is nPn = n!. Suppose that the letters are A,B, C, . . . . Suppose that the first letter of an n
character word is A. Then the remaining n − 1 letters can be chosen in (n − 1)! ways. Repeat
the procedure for words with first letters B, C and so on. We obtain all words with n characters
again, and there are n(n− 1)! = n! of them.

1.49. (a) 4P1 = 4!; (b) 4C3 = 4; (c) 44 = 256; (d) 20; (e) 4P4+4P3+4P2+4P1 = 4+12+24+24 = 64.
(f) Without repetitions the number of combinations is

4C1 +4 C2 +4 C3 +4 C4 = 4 + 6 + 4 + 1 = 15.

With 2 letters the same there are 4 + 12 + 12 = 28 possibilities, and with 3 letters the same there
are 4 + 12 = 16. Hence the total number of combinations is 15 + 28 + 16 = 59

1.50. (a) With no E’s there are 4P3 = 24 words, with 1 E there are 3×4 P2 = 36, and with 2 E’s
there are 3×4 P1 = 12. Hence there are 24 + 36 + 12 = 72 words.
(b) Label six letters A,B, C,D, E1, E2. Then the number of words treating E1 and E2 as distinct
is 6! = 720. The letters E1 and E2 can be interchanged in 2! = 2 ways. Hence the number of
six-letter words is 720/2 = 360.

1.51. (a) There are 5P4 = 5!/1! = 120 distinct four-digit numbers.
(b) To be divisible by 5, the last digit must be 5. The preceding 3 digits can be chosen in 4P3 = 24
ways. Hence there are 24 numbers divisible by 5.
(c) To be divisible by 2 the final digit must be 2 or 4. As in (b) the number of numbers is 24P3 = 48.
(d) The numbers contain either 1, 2, 3 or 4 digits. There are 4 one-digit numbers (excluding
zero). For two-digit numbers we must exclude those starting with zero since they are the same
as the one-digit numbers. Hence there are 16 distinct two-digit numbers. Similarly there are
44P2 = 48 three-digit numbers and 44P3 = 96 four-digit numbers. Hence the total number is
4 + 16 + 48 + 96 = 164 words.

1.52. (a) Without restriction, the number of distinct combinations of personnel (no distinction
being made as to which particular post is assigned to each person) is 7C4 = 7!/(4!3!) = 35.
(b) There is one selection with 4 females, 12 with 3 females and one male, 18 with 2 females and
2 males and 4 with one female and three males. (b) The posts can be filled in the following ways:
4C4 = 1 with 4 females; 4C3 3C1 = 12 with 3 females and one male; 4C2 3C2 = 18 with 2 females
and 2 males; 4C13C3 = 4 with one female and 3 males. This confirms the 35 combinations of
personnel.
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1.53. (a) We may model the problem by thinking of an ordered line of N pool balls, of various
colours (types) denoted by A,B, . . ., the number of each colour being NA, NB , . . . . The number
of possible orders (permutations) for the individual balls is N !, but we cannot distinguish visually
between balls having the same colour, so many of the N ! orders will look identical.

Suppose that the number of distinguishable arrangements is M . Each one of of these corresponds
to a possible NA!NB ! . . . permutations within the separate colours, so that

N ! = M [NA!NB ! . . .], or M =
N !

NA!NB ! . . .
.

(b) We require the total number of different combinations, involving every number 1, 2, . . . , N of
balls. Consider any one of these: it contains 0 or 1 or 2. . . or NA (that is, (1 + NA) possibilities)
of type A; 0 or 1 or 2. . . or NB of type B; and so on. The number of possible combinations is
therefore

(1 + NA)(1 + NB) . . . − 1,

in which the term −1 is introduced to exclude the case of an all-zero ‘combination’.

1.54. (a) The national groups may be ordered (permuted) in 4! ways. By allowing for 5! permu-
tations possible within each group we obtain

5!5!5!5!4! = 5!44! = 2880

distinct line-ups.
(b) The number of distinct orderings of the 4 groups around a circular table is (4 − 1)! = 3! (see
Example 1.23). All possible permutations within the groups are then to be allowed for, so the total
number of arrangements is 5!3! = 720.

1.55. (a) (Prizes identical) The number of combinations of 3 distinct prizewinners out of 10
eligibles is 10C3 = 120.
(b) (Prizes different) Call the Prizes P1, P2, P3. P1 may go to any of 10 people; with each allocation
P2 may go to any of the remaining 9; then P3 to any of the remaining 8; all of these distributions
being distinct. The total number of possibilities is 10× 9× 8 = 720.
(c) (Prizes equal, distribution arbitrary) There are 3 types of distribution which can occur:

(i) One person gets all the prizes: there are 10 possibilities.
(ii) There are 10 persons who might get 2 prizes. With each of these there are 9 persons eligible

for the other prize. There are therefore 9× 10 = 90 possibilities.
(iii) Three different people get prizes. Part (a) gives the number: there are 120 possibilities.
Therefore the total number of possibilities is

10 + 90 + 120 = 220

(d) P1 may go to any of the 10; similarly with P2 and P3. Therefore the total number is 10×10×10 =
1000.

1.56. (a) The table shows the permissible numbers in the 3 categories. The number of combinations
possible within each category are given in brackets.

Accountants Lawyers Doctors Committees

- 1(2) 3(1) 2
- 2(1) 2(3C2) 3

1(2) - 3(1) 2
1(2) 1(2) 2(3C2) 12
1(2) 2(1) 1(3) 6
2(1) - 2(3C2) 3
2(1) 1(2) 1(3) 6
2(1) 2(1) - 1

Check: 7C4 = 35
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Committees with exactly 1 accountant: 2 + 12 + 6 = 20.
Committees with exactly 1 doctor: 6 + 6 = 12.
(b) To locate the fallacy consider combinations of the 7 letters A,B,C, D,E, F, G, and take n = 4
and r = 3. Take, say, the r = 3-fold combination ABC and supplement it by, say, the unused letter
D, to form the combination ABCD. In the fallacious construction this will be counted several
times; for example, the same combination is counted again when it arises from supplementing
BCD by A.

The result is shown to be false by simply substituting the given numbers: only one contradiction
is sufficient to dispose of it.

1.57. (a) Refer back to (1.44).
(b) (1− x)6 = 1− 6x + 15x2 − 20x3 + 15x4 − 6x5 + x6.
(c)

(x + x−1)5 = x5 + 5x4x−1 + 10x3x−2 +
10x2x−3 + 5xx−4 + x−5

= x5 + 5x3 + 10x + 10x−1 + 5x−3 + x−5

(x− x−1)5 = x5 + 5x4(−x)−1 + 10x3(−x)−2 + 10x2(−)x−3 +
5x(−x)−4 + (−x)−5

= x5 − 5x3 + 10x− 10x−1 + 5x−3 − x−5

1.58.

(1.01)10 = (1 + 0.01)10

= 1 + 10× (0.01) + 45× (0.01)2 + 120× (0.01)3 + · · ·
= 1 + 0.1 + 0.0045 + 0.00012 + · · · = 1.105

to three decimal places.
Similarly

(0.99)8 = (1− 0.01)8

= 1− 8× (0.01) + 28× (0.01)2 − 56× (0.01)3 + · · ·
= 1− 0.08 + 0.0028− 0.00056 + · · · = 0.923

to 3 decimal places.

1.59. Use the binomial theorem in the form

(1 + x)n = 1 +n C1x +n C2 + · · ·+n Cnxn.

(a) Put x = 2, so that
3n = 1 + 2nC1 + 22

nC2 + · · ·+ 2n
nCnxn.

For the second result put x = −1:

0 = 1−n C1 +n C2 − · · ·+ (−1)n
nCnxn.

(b) Obtain two series with x = 1 and x = −1. Then add and subtract the series.

1.60. F (n, k) is defined for n = 0, 1, 2, . . ., and k = 0, 1, 2, . . . , n by

F (n, k) = nC0 + n+1C1 + n+2C2 + · · ·+ n+kCk. (i)

A certain formula, namely
F (n, k) = n+k+1Ck (ii)
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is suggested for the sum in (i), and its truth for small values of k can be confirmed by calculation;
for example, from (i)

F (n, 0) = nC0 =
n!

0!n!
= 1 ≡ n+1C0, (iii)

F (n, 1) = nC0 + n+1C1 = 1 +
(n + 1)!

1!n!
= n + 2 ≡ n+2C1;

and so on.
To prove the truth of (ii) for all values of 0 ≤ k ≤ n, recast (i) into the form

F (n, k + 1) ≡ F (n, k) + n+k+1Ck+1, (iv)

a ‘recurrence formula’ enabling us to advance one step at a time in k, starting, for example, with
F (n, 0) and finding F (n, 1), F (n, 2), . . . , successively.

Now suppose we have verified the formula (ii) for any one particular value of k, say for k = K;
that is, we know somehow that

F (n,K) = n+K+1CK =
(n + K + 1)!
K!(n + 1)!

(v)

(for all n). Then from (iv)

F (n,K + 1) = F (n,K) + n+K+1CK+1

= n+K+1CK + n+K+1CK+1 from (v)

=
(n + K + 1)!
K!(n + 1)!

+
(n + K + 1)!
(K + 1)!n!

=
(n + K + 1)!

K!n!

(
1

n + 1
+

1
K + 1

)

=
(n + K + 2)!

(K + 1)!(n + 1)!
= n+K+2CK+1

We have proved that if (iv) is true for k = K, it is true for k = K + 1, where K may take any
value in 0 ≤ K < n.

But we verified in (iii) that (iv) holds good when k = K = 0. Therefore by (vi) it is true when
k = K + 1 = 1, so by (vi) again it is true when k = K + 2 = 2, and so on. It is therefore true for
all k.

1.61. Using partial fractions

1
x2 + 3x + 2

=
1

(1 + x)(2 + x)
=

1
1 + x

− 1
2 + x

.

Write as
1

x2 + 3x + 2
= (1 + x)−1 − 1

2
(1 +

1
2
x)−1,

and expand both terms using (1.37) for infinite geometric series. Hence

1
x2 + 3x + 2

= (1− x + x2 − x3 + · · ·)− 1
2
(1− x

2
+

x2

22
− x3

23
+ · · ·)

=
1
2
− (1− 1

2.2
)x + (1− 1

2.22
)x2 − (1− 1

2.23
)x3 + · · · .

1.62. V1 = A(1 + R), V2 = V1(1 + R) = A(1 + R)2, etc. In pounds: for 1000 @ 3% p.a.;

V5 = 1000(1 + 0.03)5 = 1159.27, V10 = 1343.92; V15 = 1557.97.
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(b) Let the period start at an arbitrary time T0. Then

VT0+T

VT0

=
(1 + R)t0+T

(1 + R)T0
= (1 + R)T .

(c) Let T2 be the doubling period, so that from (b)

(1 + R)T2 = 2 and T2 =
ln 2

ln(1 + R)
.

If R = 3%, T2 = 23.4 yr; if R = 6%, T2 = 11.9 yr; if R = 9%, T2 = 8.0 yr.
For the ten-times period, T10 = ln 10/ ln(1+ R). If R = 6%, then T10 + ln 10/ ln 1.06 = 39.6 yr.

1.63. If the income is withdrawn annually, it has been allowed to accrue to the fund through the
previous year with interest at the going rate R annually, or r monthly, the relation being

A(1 + R) = A(1 + r)12

where A is the value of the fund at the start of that year. By the binomial theorem,

(1 + r)12 = 1 + 12r + · · · · · · > 1 + 12r,

so R > 12r.

1.64. If the interest is payable monthly at the rate of rM per month, the interest on a fixed debt
D over any 12-month period is D(1 + rM )12. This is equal to D(1 + R) where R is the annual
equivalent rate (AER). Therefore R = (1+rM )12−1. If rM = 1%, R = 1.0112−1 = 0.126 (12.6%).
If rM = 3%, R = 0.425 (42.5%).

1.65. (a) After N complete years the initial payment A has drawn interest for N yrs, the second
payment for N − 1 yrs, and so on, and the (N − 1)th payment for 1 yr. The value VN of the fund
is then given by the geometric series

A(1 + R)N + A(1 + R)N−1 + · · ·+ A(1 + R)
= A(1 + R){1 + (1 + R) + · · ·+ (1 + R)N−1}
= A(1 + R){(1 + R)N − 1}/R.

(b) N = 10, R = 5%. We obtain

V10 =
100(1.05)(1.0510 − 1)

0.05
= £1320.68,

equivalent to a gain of 32% on the total investment of £1000.
(c) M investments of 2A, at 2-year intervals. Formula (a), with the fund value increasing by a
factor (1 + R)2 in each interval, becomes

V2M =
(2A)(1 + R)2){[(1 + R)2]M − 1}

{(1 + R)2 − 1} .

Using the data in (b) we obtain

V10 =
200(1.05)2(1.0510 − 1)

1.052 − 1
= £1352.88.

Chapter 2: Differentiation

2.1. Below are some sample values for three values of x on either side of the point where the
tangent is required. (The exact value of the slope is also given here.)

15



(a) y = x3 at (1, 1).
x 0.94 0.96 0.98 1.02 1.04 1.06

chord slope 2.82 2.88 2.94 3.06 3.12 3.18
The slope is 3.

(b) y =
√

x at (1, 1).
x 0.85 0.90 0.95 1.025 1.10 1.15

chord slope 0.520 0.513 0.506 0.494 0.488 0.483
The slope is 0.5

(c) y = cos x at ( 1
4π, 1/

√
2).

x− 1
4π −0.09 −0.06 −0.03 +0.03 0.06 0.09

chord slope 0.674 0.685 0.696 0.718 0.728 0.738
The slope is 1/

√
2 = 0.707

(d) y = ex at (0, 1).
x −0.15 −0.10 −0.05 0.05 0.10 0.15

chord slope 0.929 0.952 0.975 1.025 1.052 1.079
The slope is 1.

(e) y = e2x at (0, 1).
x −0.15 −0.10 −0.05 0.05 0.10 0.15

chord slope 1.728 1.813 1.903 2.103 2.214 2.332
The slope is 2.

(f) y = x3 + x
1
2 at (1, 2).

x 0.94 0.96 0.98 1.02 1.04 1.06
chord slope 3.33 3.38 3.44 3.56 3.62 3.68

The slope is 3.5, the sum of the slopes in (a) and (b).

(g) y = ln x at (1, 0).
x 0.94 0.96 0.98 1.02 1.04 1.06

chord slope 1.031 1.0206 1.010 0.990 0.981 0.971
The slope is 1

2.2. (a) For y = 3x at (2, 6),

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

[
3(2 + δx)− 6

δx

]
= 3.

(b) For y = 3− 2x at (1, 1),

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

[
[3− 2(1 + δx)− (3− 2)

δx

]
= −2.

(c) For y = 3x2 at (1, 3),

dy

dx
= lim

δx→0

[
3(1 + δx)2 − 3(1)2

δx

]

= lim
δx→0

[6 + 3δx] = 6.

(d) For y = x3 at (1, 1),

dy

dx
= lim

δx→0

[
(1 + δx)3 − 13

δx

]

= lim
δx→0

[
3δx + 3(δx)2 + (δx)3

δx

]

= lim
δx→0

[3 + 3δx + (δx)2] = 3
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(e) For y = 1/x at (2, 1
2 ),

dy

dx
= lim

δx→0

1
δx

[
1

2 + δx
− 1

2

]

= lim
δx→0

[ −1
2(2 + δx)

]
= −1

4
.

(f) For y = 3x + 2x2 at (1, 5),

dy

dx
= lim δx → 0

[
3(1 + δx) + 2(1 + δx)2 − 3− 2

δx

]

= lim
δx→0

[3 + 4 + 2δx] = 7.

(g) For y = (1 + 2x)2 = 1 + 4x + 4x2 at (−1, 1),

dy

dx
= lim

δx→0

1
δx

[1 + 4(−1 + δx) + 4(−1 + δx)2 − 1 + 4− 4]

= lim
δx→0

[4 + 4(−2 + (δx)2] = −4.

2.3. (a) y = 3x2

dy

dx
= lim

δx→0

1
δx

[3(x + δx)2 − 3x2]

= lim
δx→0

[6x + 3δx]

= 6x.

(b) y = x3.

dy

dx
= lim

δx→0

1
δx

[(x + δx)3 − x3]

= lim
δx→0

[3x2 + 3xδx + (δx)2]

= 3x2.

(c) y = 1/x.

dy

dx
= lim

δx→0

1
δx

[
1

x + δx
− 1

x

]

= lim
δx→0

[ −1
x(x + δx)

]

= −1/x2.

(d) y = x + 1
2 .

dy

dx
= lim

δx→0

1
δx

[(x + δx +
1
2
)− (x +

1
2
)]

= 1.

(e) y = x + (1/x).

dy

dx
= lim

δx→0

1
δx

[(
x + δx +

1
x + δx

)
−

(
x +

1
x

)]

= lim
δx→0

[
1− 1

x2 + xδx

]

= 1− 1
x2

.
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(f) y = 2x2 − 3.

dy

dx
= lim

δx→0

1
δx

[(2(x + δx)2 − 3)− (2x2 − 3)]

= lim
δx→0

[4x + 2δx]

= 4x.

2.4. Let x = f(t) be the displacement function in each case. The average velocity over the interval
t to t + δt equals

[f(t + δt)− f(t)]/δt.

(a) x = f(t) = 3t. When t = 1
Interval δt 0.5 0.25 0.1 0.01

f(1 + δt) 4.5 3.75 3.3 3.03

Average velocity 3 3 3 3

(Since f(t) is linear in t the velocity 3 at all t.)
(b) x = f(t) = 5t2. When t = 3.

Interval δt 0.5 0.25 0.1 0.01

f(3 + δt) 61.25 52.81 48.05 45.35

Average velocity 32.5 31.25 30.5 30.05

The values are approaching the limit 30.
(c) x = f(t) = 2t− 5t2. When t = 1.

Interval δt 0.5 0.25 0.1 0.01

f(1 + δt) −8.25 3.75 −3.85 −3.08

Average velocity −10.5 −9.25 −8.5 −8.05

The limit is −8.
(d) x = 2t− 5t2. When t = 0.2.

Interval δt 0.5 0.25 0.1 0.01

f(0.2 + δt) −1.25 −0.3125 −0.05 −0.0005

Average velocity −25 −1.25 −0.5 −0.05

In the limit the velocity is zero.

2.5. (a) dy/dx = 1 for all x; (b) dy/dx = 3x2 so that dy/dx = 27 at x = 3;
(c) dy/dx = 4x3 so that dy/dx = 32 at x = 2 and −32 at x = −2.

2.6. (a) y = x; dy/dx = 1: the graph is a straight line at 45◦ to the x axis.

-2 -1 1 2
x

-2

-1

1

2

y

Figure 31: Problem 2.6a

(b) y = x2; dy/dx = 2x: the slope is negative for x < 0 and positive for x > 0, and increases from
−∞ to +∞: the curve is a parabola.
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Figure 32: Problem 2.6b

-1 -0.5 0.5 1
x
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-0.5

0.5

1

y

Figure 33: Problem 2.6c

(c) y = x3; dy/dx = 3x2: the slope is positive except at x = 0 where it is zero.
(d) y = x4; dy/dx = 4x3.

-1 -0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

y

Figure 34: Problem 2.6d

(e) y = x5; dy/dx = 5x4.

-1 -0.5 0.5 1
x

-1

-0.5

0.5

1

y

Figure 35: Problem 2.6e

2.7. For the displacement x = t3, the velocity of the point is dx/dt = 3t2 and its acceleration is
d2x/dt2 = 6t. The graph of acceleration against time is a straight line.

2.8. (a) If V = 4
3πr3 then dV/dr = 4πr2.

(b) If S = πd2 then dS/dd = 2πd.
(c) If E = kT 4 then dE/dt = 4kT 3.
(d) If I = V/R then dI/dV = 1/R.
(e) If H = RI2 then dH/dI = 2RI.
(f) If V = RT/P then dV/dT = R/P .

2.9.

(a)
d
dx

(3x2 − 2x + 1) = 3
d
dx

(x2)− 2
d
dx

(x) +
d
dx

(1) = 6x− 2.
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(b)
d
dx

(x7 − 3x6 + x + 1) = 7x6 − 18x5 + 1.

(c)
d
dx

(x + C) = 1.

(d)
d
dx

[x(x− 1)] =
d
dx

(x2 − x) = 2x− 1.

(e)
d
dx

[x2(x2 + 1)− 1] =
d
dx

[x4 + x2 + 1] = 4x3 + 2x.

(f)
d
dx

(ax2 + bx + c) = 2ax + b.

(g).
d
dx

[(x− 1)2] =
d
dx

(x2 − 2x + 1) = 2x− 2.

2.10. Let m1 and m2 be the slopes of the curves at the point of intersection, and check that
m1m2 = −1. Then
(a) m1 = (d/dx)(1 + x− x2) = 1− 2x = −1 at x = 1,
m2 = (d/dx)(1− x + x2) = −1 + 2x = 1 at x = 1. Hence m1m2 = −1 as required.
(b) m1 = −x = −1, m2 = 1 at x = 1.
(c) m1 = −x = −1, m2 = x = 1 at x = 1.

2.11. (a) The curves y = x2 and y = 1− x2 intersect where x2 = 1− x2 or where x2 = 1
2 . Hence

the points of intersection occur at A : ( 1√
2 , 1

2 ) and B; (− 1√
2 , 1

2 ).
The slopes of the curves at A are

m1 = 2x = 2/
√

2 =
√

2 and m2 = −2x = −2/
√

2 = −√2.

Let
tan α1 =

√
2 (0 < α1 <

1
2
π) and tan α2 = −√2 (−1

2
π < α1 < 0).

Using the identity from (1.17a):

tan(α1 − α2) =
tan α1 − tan α2

1 + tan α1 tan α2
=

√
2 +

√
2

1−√2
√

2
= −2

√
2

We choose a positive value for the angle (a sketch of the intersection of the curves is helpful).
Hence α1 − α2 = arctan(−2

√
2) = 109.47◦.

The slopes of the curves at B are

n1 = −2x = −2/
√

2 = −√2 and n2 = 2x = 2/
√

2 =
√

2.

The two slopes at B are interchanged but otherwise the same. Hence the angle between the
tangents will also be 109.47◦. (Note that in both these cases you might obtain the alternative
angles (180− 109.47)◦.)
(b) The curves y = 1

3x3 and y = x2 − 2x + 4
3 intersect where

x3 = 3x2 − 6x + 4 or where (x− 1)(x2 − 2x + 4) = 0.

The only real root is x = 1. Hence the point of intersection is at (1, 1
3 ). The slopes of the curves at

this point are m1 = 1 and m2 = 0. Let tan α1 = 1 and tan α2 = 0. Then we can choose α1 = 1
4π

and α2 = 0. The required angle is 1
4π.
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2.12. Use the limits in Section 2.6. Note that, in all the following, ε is never zero, so cancellation
is legitimate.

(a) lim
ε→0

ε

ε
= lim

ε→0
1 = 1.

(b) lim
ε→0

ε

2ε
= lim

ε→0

1
2

=
1
2
.

(c) lim
ε→0

ε2

ε
= lim

ε→0
ε = 0.

(d) lim
ε→0

e2ε − 1
2ε

= lim
µ→0

eµ − 1
µ

= 1, (µ = 2ε) (from (2.11)).

(e) lim
ε→0

e2ε − 1
ε

= lim
µ→0

2
eµ − 1

µ
= 2, (µ = 2ε).

(f) lim
ε→0

sin 2ε

2ε
= lim

µ→0

sin µ

µ
= 1, (µ = 2ε) (from (2.13).

(g) lim
ε→0

sin 2ε

ε
= lim

µ→0
2
sin µ

µ
= 2, (µ = 2ε).

(h) lim
ε→0

ln(1 + ε2)
ε2

= lim
µ→0

2
ln(1 + µ)

µ
= 1, (µ = ε2) (from (2.14)).

(i) Note that (2.13) is only true if ε is measured in radians. Therefore replace ε degrees by 180ε/π
radians. Hence

lim
ε→0

sin ε

ε
= lim

ε→0

sin(πε/180)
ε

= lim
µ→0

π sin µ

180µ
(µ = πε/180)

= π/180 (from (2.13)).

(j)

lim
ε→0

tan ε

ε
= lim

ε→0

sin ε

ε

1
cos ε

= lim
ε→0

sin ε

ε
lim
ε→0

1
cos ε

= 1× 1 = 1

(k)

lim
ε→0

sinh ε

ε
= lim

ε→0

eε − e−ε

2ε
= lim

ε→0

e2ε−1

2ε
lim
ε→0

e−ε

= 1× 1 = 1

(l) lim
ε→0

e−ε−1

ε
= lim

ε→0

eε − 1
ε

lim
ε→0

[−e−ε] = −1.

2.13.

d
dx

(cos x) = lim
δx→0

[
cos(x + δx)− cosx

δx

]

= lim
δx→0

[−2 sin 1
2 (2x + δx) sin 1

2 (δx)
δx

]

= lim
δx→0

[
− sin(x +

1
2
δx)

sin( 1
2δx)

1
2δx

]

= − sinx
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2.14.

(a)
d
dx

(e2x) = lim
ε→0

[
e2(x+ε) − e2x

ε

]
= 2e2x lim

ε→0

[
e2ε − 1

2ε

]
= 2e2x,

(from (2.11)).
(b)

d
dx

(sin 2x) = lim
ε→0

[
sin[2(x + ε)]− sin 2x

ε

]

= lim
ε→0

[
2 sin ε

ε
cos

1
2
(4x + 2ε)

]

= 2 cos 2x

(c).
d
dx

(e−x) = lim
ε→0

[
e−(x+ε) − e−x

ε

]
= −e−x lim

ε→0

[
e−ε − 1
−ε

]
= −e−x.

Thus
d
dx

(sinhx) =
1
2

d
dx

(ex − e−x) =
1
2
(ex + e−x) = cosh x.

d
dx

(coshx) =
1
2

d
dx

(ex + e−x) =
1
2
(ex − e−x) = sinh x.

2.15.

(a)
d
dx

(2 sin x− 3 cos x) = 2
d
dx

(sin x)− 3
d
dx

(sinx) = 2 cos x + 3 sin x.

(b)
d
dx

(ln 3x) =
d
dx

(ln 3 + ln x) =
1
x

.

(c)
d
dx

(ln x3) =
d
dx

(3 ln x) =
3
x

.

(d)
d
dx

(sinx− x) = cos x− 1.

(e)
d
dx

(ex − 1− x− 1
2
x2) = ex − 1− x.

2.16. The required tangent lines are
(a) y = 3x− 2; (b) y = 24x− 39; (c) y = −x + 1

2π; (d) y = x/e; (e) y = 1; (f) y = −x + 3.

2.17.

(a) y = x6,
dy

dx
= 6x5,

d2y

dx2
= 30x4,

d3y

dx3
= 120x3.

(b) y = 3x2 − 2x + 2,
dy

dx
= 6x− 2,

d2y

dx2
= 6,

d3y

dx3
= 0.

(c) y = x6 − x2,
dy

dx
= 6x5 − 2x,

d2y

dx2
= 30x4 − 2,

d3y

dx3
= 120x3.
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(d) y = 2 sin x− 3 cos x,
dy

dx
= 2 cos x + 3 sin x,

d2y

dx2
= −2 sin x + 3 cos x,

d3y

dx3
= −2 cos x− 3 sin x.

(e) y = ex − 1− x− 1
2
x2,

dy

dx
= ex − 1− x,

d2

dx2
= ex − 1,

d3y

dx3
= ex.

2.18. To prove that (dxN/dxN )(xN ) = N ! for all integers N ≥ 1!. We can confirm the formula
for the case N = 1:

d
dx

(x) = 1 = 1! (i)

as a starting-point in a step-by-step argument.
Suppose that we have somehow established that the result is true for any one particular value

of N , say for N = K, so that
dN (xN )

dxN
= K! when N = K. (ii)

Next, consider the transition to N = K + 1:

dK+1

dxK+1
(xK+1) =

d
dx

[
dK

dxK
(xK+1)

]
=

dK

dxK

[
d
dx

(xK+1)
]

=
dK

dxK
{(K + 1)xK} (by (2.9))

= (K + 1)K! (by (ii))
= (K + 1)!

In other words, if (ii) is true for some integer N = K, it follows that it is also true for
N = K + 1. Since we now know it is true for N = K + 1, the same argument implies that it is
true for N = (K + 1) + 1 = K + 2; and so on for all subsequent values of N .

But we have verified its truth in the case N = 1 (in equation (i)); therefore (ii) is true for all
values of N . This is proof by induction.

2.19. If y = x2(x2 − 1), then

dy

dx
= 4x3 − 6x,

d2y

dx2
= 12x2 − 6.

(a) The slope of the curve is positive where dy/dx > 0 or where x(2x +
√

3)(2x −√3) > 0. This
occurs where − 1

2

√
3 < x < 0 and 1

2

√
3 < x.

(b) The slope of the curve is negative where x(2x +
√

3)(2x −√3) < 0, that is where x < − 1
2

√
3

and 0 < x < 1
2

√
3.

(c) The second derivative is positive where 12(x+ 1
2

√
2)(x− 1

2

√
2) > 0, that is where x > 1

2

√
2 and

x < − 1
2

√
2.

(d) The second derivative is negative where − 1
2

√
2 < x < 1

2

√
2.

2.20. At x = x0 the tangent has slope m0 = 2x0. Hence the slope of the normal is −1/m0 =
−1/(2ax0). The equation of the normal is therefore

y − ax2
0 = − 1

2ax0
(x− x0).

Chapter 3: Further techniques for differentiation

23



3.1.

(a)
d
dx

(xex) = x
d
dx

(ex) +
d
dx

(x)ex = xex + ex.

(b)
d
dx

(x sin x) = x cos x + sin x.

(c)
d
dx

(x cos x) = −x sin x + cos x

(d)
d
dx

(ex sin x) = ex cosx + ex sin x.

(e)
d
dx

(x ln x) = 1 + ln x.

(f)
d
dx

(x2 ln x) = x2x−1 + 2x ln x = x + 2x ln x.

(g)
d
dx

(ex ln x) =
ex

x
+ ex ln x.

(h)
d
dx

(x2ex) = x2ex + 2xex.

(i)
d
dx

(sinx cosx) = − sin2 x + cos2 x = cos 2x.

(j)
d
dx

(x2x3) = x2.3x2 + 2x.x3 = 5x4 =
d
dx

(x5).

3.2. All these problems illustrate the reciprocal and quotient rules given in (3.2).
(a)

d
dx

(cotx) =
d
dx

(cosx

sin x

)
=

sin x(− sin x)− cosx(cos x)
sin2 x

= − 1
sin2 x

= −cosec 2x

(b)
d
dx

(
x

x + 1

)
=

1
(x + 1)2

(
(x + 1)

d
dx

(x)− x
d
dx

(x + 1)
)

=
1

(x + 1)2
.

(c)
d
dx

(
sin x

x

)
=

1
x2

(x cos x− sin x).

(d)
d
dx

(
ex

x

)
=

ex

x2
(x− 1).

(e)
d
dx

(
x2 − 1
x2 + 1

)
=

1
(x2 + 1)2

[(x2 + 1)(2x)− (x2 − 1)(2x)] =
4x

(x2 + 1)2
.
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(f)
d
dx

(
tan x

x2

)
=

1
x4

(x2 sec2 x− 2x tan x) =
1
x3

(x sec2 x− 2 tan x).

(g)

d
dx

(
sin x + cos x

sin x− cosx

)

=
(sinx− cosx)(cos x− sin x)− (sinx + cos x)(cos x + sin x)

(sinx− cos x)2

= − 2
(sinx− cosx)2

.

(h)
d
dx

(secx) =
d
dx

(
1

cos x

)
=

sin x

cos2 x
= sec x tan x.

(i)
d
dx

(cosec x) =
d
dx

(
1

sin x

)
= − cos x

sin2 x
= − cot xcosecx.

(j)
d
dx

(
x

3x2 − 2

)
=

−2− 3x2

(−2 + 3x2)2
.

(k)
d
dx

(
1

x(x3 + 1)

)
=

−1− 4x3

x2(x3 + 1)
.

(l)
d
dx

(
1

ln x

)
= − 1

x(ln x)2
.

(m)
d
dx

(xn) =
d
dx

(
1

x−n

)
= nxn−1 (by the quotient rule).

(n)
d
dx

(
1

x + 1

)
= − 1

(x + 1)2
.

(o)
d
dx

(e−x) =
d
dx

(
1
ex

)
= − 1

e2x

d
dx

(ex) = −e−x.

(p)
d
dx

(
1

tan x

)
=

d
dx

(cotx) = −cosec 2x (as in (a)).

d
dx

(x−2 ln x) =
d
dx

(
ln x

x2

)
=

1
x4

(
x2

x
− 2x ln x

)
=

1− 2 ln x

x3
.

3.3.

(a)
d
dx

[
1

1− x

]
=

1
(1− x)2

;
d2

dx2

[
1

(1− x)

]
=

2
(1− x)2

,

d3

dx3

[
1

(1− x)

]
=

6
(1− x)4

.
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(b)
d
dx

(x sin x) = x cosx + sin x;
d2

dx2
(x sinx) = 2 cos x− x sin x;

d3

dx3
(x sinx) = −x cosx− 3 sin x.

(c)
d
dx

(
x

x− 1

)
= − 1

(x− 1)2
;

d2

dx2

(
x

x− 1

)
=

2
(x− 1)3

;

d3

dx3

(
x

x− 1

)
= − 6

(x− 1)4
.

(d) Let y = f(x)g(x). Then
dy

dx
= g

df

dx
+ f

dg

dx
,

d2y

dx2
= 2

df

dx

dg

dx
+ g

d2f

dx2
+ f

d2g

dx2
,

d3y

dx3
= 3

dg

dx

d2f

dx
+ 3

df

dx

d2g

dx2
+ g

d3f

dx3
+ f

d3g

dx3
.

3.4. These problems use the chain rule (3.3) in the form

dy

dx
=

dy

du

du

dx
.

(a) Let u = sin x. Then y = u2, and

dy

dx
=

dy

du

du

dx
= 2u cos x = 2 sin x cos x = sin 2x.

(b) Let u = cos x, y = u2. Then (d/dx)(cos2 x) = −2 sinx cosx = − sin 2x.
(c) Let u = x2, y = sin u. Then (d/dx)(sinx2) = 2x cos x2.
(d) Let u = x2, y = cos u. Then (d/dx)(cos x2) = −2x sin x2.
(e) Let u = tan x, y = u2. Then d/dx)(tan2 x) = 2 sec2 x tan x.
(f) Let u = x2, y = tan u. Then (d/dx)(tanx2) = 2x sec2 x2.
(g) Let u = 1/x, y = cos u. Then d/dx)[cos(1/x)] = 2 sin(1/x)/x2.
(h) Let u = −x, y = eu. Then (d/dx)(e−x) = −e−x.
(i) Let u = 1/(x + 1), y = u5. Then (d/dx)(1/(x + 1)5) = −5/(x + 1)6.
(j) Let u = x3 + 1, y = u4. Then (d/dx)[(x3 + 1)4] = 12x2(x3 + 1)3.
(k) Let u = 3x, y = sin u. Then (d/dx)(sin 3x) = 3 cos 3x.
(l) Let u = 1

2x, cos u. Then (d/dx)(cos 1
2x) = − 1

2 sin 1
2x.

(m) Let u = 1
2x, y = tan u. Then (d/dx)(tan 1

2x) = 1
2 sec2 x.

(n) Let u = −3x, y = eu. Then (d/dx)(e−3x) = −3e−3x.
(o) Let u = 2x + 1, y = sinu. Then (d/dx)[sin(2x + 1)] = 2 cos(2x + 1).
(p) Let u = 3x− 2, y = cos u. Then (d/dx)[cos(3x− 2)]) = −3 sin(3x− 2).
(q) Let u = 1− 2x, y = tan u. Then (d/dx)[tan(1− 2x)] = −2 sec2(1− 2x).
(r) Let u = 1/x, y = eu. Then (d/dx)(e1/x) = −e1/x/x2.

3.5. All these problems use the result that (d/dx)xα = αxα−1.

((a))
d
dx

(x−2) = −2x−3.

(b)
d
dx

(x−1) = − 1
x2

.
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(c)
d
dx

x
1
3 =

1
3
x−

2
3 .

(d)
d
dx

(x−
1
3 ) = −1

3
x−

4
3 .

(e)
d
dx

(x
3
2 ) =

3
2
x

1
2 .

(f)
d
dx

(
√

x) =
d
dx

(x
1
2 ) =

1
2
x−

1
2 .

(g)
d
dx

√
x3 =

d
dx

(x
3
2 ) =

3
2
x

1
2 .

(h)
d
dx

(
1
x

)
=

d
dx

(x−1) = − 1
x2

.

(i)
d
dx

[
1√
x

]
=

d
dx

(x−
1
2 ) =

−1
2x

3
2
.

3.6. (a)
d
dx

(x
1
2 sin x) = x

1
2 cos x +

sin x

2x
1
2

.

(b)
d
dx

(sin
1
3 x) =

cos x

3 sin
2
3 x

.

(c)
d
dx

[(x2 + 1)−
1
2 ] = − x

(x2 + 1)
3
2
.

(d)
d
dt

[sin2(3t + 1)] = 6 cos(3t + 1) sin(3t + 1).

(e)
d
dt

(e−t cos t) = −e−t(cos t + sin t).

(f)
d
dt

(e−t sin t) = e−t(cos t− sin t).

(g)
d
dt

(e−2t cos 3t) = −e−2t(2 cos 3t + 3 sin 3t).

(h)
d
dt

(e−3t cos 2t) = −e−3t(3 cos 2t + 2 sin 2t).

(i)
d
dx

(sinx cos2 x) = cos3 x− 2 cos x sin2 x.
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(j)
d
dx

(sin2 x cosx) = 2 cos2 x sin x− sin3 x.

(k)
d
dx

[(
sinx

x

)2
]

=
2 cos x sin x

x2
− 2 sin2 x

x3
.

(l)
d
dx

[
x(sin3 x)

]
= 3x cosx sin2 x + sin3 x.

(m)
d
dx

[
x(cos3 x)

]
= −3x cos2 x sin x + cos3 x.

3.7. (a)
d
dx

(cos2 x) =
d
dx

1
2
(1 + cos 2x) = − sin 2x.

d
dx

(sin2 x) =
d
dx

1
2
(1− cos 2x) = sin 2x.

(b)
d
dx

(cos2 x) =
d
dx

(cos x cos x) = − cosx sin x− sin x cos x = − sin 2x.

d
dx

(sin2 x) =
d
dx

(sinx sin x) = sin x cosx + cosx sinx = − sin 2x.

(c) To apply the chain rule let u = cos x, y = u2. Then

d
dx

(cos2 x) =
d
du

(u2)
d
dx

(cos x) = −2u sin x = −2 cos x sin x = − sin 2x.

Let u = sin x Then

d
dx

(sin2 x) =
d
du

(u2)
d
dx

(sinx) = 2u cosx = 2 sin x cosx = sin 2x.

3.8.

(a)
d2x

dt2
+ 4x = (−4A cos 2t− 4B sin 2t) + 4(A cos 2t + B sin 2t) = 0

(b)
d2x

dt2
+ n2x = (−n2A cos nt− n2B sin nt) + n2(A cosnt + B sinnt) = 0.

(c)
d2x

dt2
− 9x = (9Aent + 9Be−nt)− 9(Aent + Be−nt) = 0.

(d)
d2x

dt2
− n2x = (n2Aent + n2Be−nt)− n2(Aent + Be−nt) = 0.

(e)
dx

dt
= (−A + B)e−t cos t− (A + B)e−t sin t.

d2x

dt2
= −2Be−t cos t + 2Ae−t sin t.
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Hence

d2x

dt2
+ 2

dx

dt
+ 2x =

[−2Be−t cos t + 2Ae−t sin t] +
2[(−A + B)e−t cos t− (A + B)e−t sin t] + 2[Ae−t cos t + Be−t sin t] = 0.

(f) The fourth derivative of each term in y returns the same function in each case. Hence

d4y

dx4
− y = 0.

3.9. Use the chain rule in the form
dy

dx
=

dy

dv

dv

du

du

dx
.

The intermediate variables are defined in each problem.
(a) Let u = cos x, v = u2, so that y = ev. Hence

dy

dx
= ev.2u.(− sin x) = −2ecos2 x cosx sin x.

(b) Let u = x2, v = cos u, so that y = e−v. Hence

dy

dx
= (−e−v).(− sin u).2x = 2x sin(x2)e− cos x2

.

(c) Let u = x2, v = cos u, so that y = ln v. Hence

dy

dx
=

1
v
.(− sin u).2x = −2x tan(x2).

(d) Let u = x2, v = eu − 1, so that y = v4. Hence

dy

dx
= 4v3.eu.2x = 8xex2

(ex2 − 1)3.

3.10. Use the result (3.7) which states that if y = u(x)v(x)w(x) then ln y = ln u + ln v + ln w
which when differentiated gives

dy

dx
= vw

du

dx
+ wu

dv

dx
+ uv

dw

dx
.

(a) Let u = x, v = ex, w = sin x. Then

dy

dx
= ex. sin x.1 + sin x.x.ex + x.ex. cos x = ex[sin x + x sin x + x cosx].

(b) Different variables are used. Let x = tet cos t, and let u = t, v = et, w = cos t. Hence

dx

dt
= et. cos t.1 + cos t.t.et + t.et.(− sin t) = et[cos t + t cos t− t sin t].

(c) Let u = x
1
2 , v = e2x, w = sin

1
2 3x. Then

dy

dx
= e2x. sin

1
2 3x.(

1
2
x−

1
2 ) + sin

1
2 3x.x

1
2 .2e2x + x

1
2 .e2x.

3
2

cos 3x sin−
3
2 3x

=
e2x

2x
1
2 sin

1
2 x

[3x cos 3x + (4x + 1) sin 3x].
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This function and its derivative will only be real for restricted values of x—for example, for 0 ≤
x ≤ 1

3π.

3.11. (a) Treating y as a function of x, and using the chain rule for y(x),

d
dx

(x2 + y2) = 0, or 2x + 2y
dy

dx
= 0.

Hence dy/dx = −x/y as required. Solving the equation x2 + y2 = 4 for y, it follows that y =
±(4− x2)

1
2 . Differentiating with respect to x, we have

dy

dx
= ∓x(4− x2)−

1
2 = −x

y
,

after substitution back in terms of y. This agrees with the answer obtained by the implicit method.
Note that will always be two points on a circle which have the same slope. The tangent is always
perpendicular to the radius to the point which has slope m = y/x.
(b) In this case for x > 0, y ≥ 0,

d
dx

(x
1
2 + y

1
2 ) = 0, or

1
2
x−

1
2 +

1
2
y−

1
2
dy

dx
= 0.

Hence
dy

dx
= −

√
y

x
.

(c) In this case
d
dx

(x3 + xy − y3) = 0 or 3x2 + y + x
dy

dx
− 3y2 dy

dx
.

Hence
dy

dx
= −y + 3x2

x− 3y2
.

(d) In this case

d
dx

(x sin y − y sin x) = 0 or sin y + x cos y
dy

dx
− dy

dx
sin x− y cosx = 0.

Hence
dy

dx
=

y cos x− sin y

x cos y − sinx
.

3.12. The expression for dy/dx obtained from the implicit relation f(x, y) = c does not depend
on c. For example for x2 + y2 = c, we always have dy/dx = −x/y. However, the value of dy/dx
will depend indirectly on c since x and y must always satisfy x2 + y2 = c.

3.13. If xy2 − x2y = 1, then

y2 + 2xy
dy

dx
− 2xy − x2 dy

dx
= 0. (i)

Hence
dy

dx
=

2xy − y2

2xy − x2
. (ii)

Differentiate (i) again with respect to x:

2y
dy

dx
+ 2y

dy

dx
+ 2x

(
dy

dx

)2

+ 2xy
d2y

dx2
− 2y − 2x

dy

dx
− 2x

dy

dx
− x2 d2y

dx2
= 0. (iii)

Eliminate dy/dx between (ii) and (iii): the answer is

d2y

dx2
=

6xy(−x3 + 2x2y − 2xy2 + y3)
(2xy − x2)3

.
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3.14. (a) Let y = arcsin x. Then x = sin y. Differentiating with respect to y,

dx

dy
= cos y =

√
(1− sin2 y) =

√
(1− x2).

Hence
dy

dx
=

(
dx

dy

)−1

=
1√

(1− x2)
.

(b) Let y = arccos x so that x = cos y. Then

dy

dx
=

(
dx

dy

)−1

= − 1
sin y

= − 1√
(1− x2)

.

(c) Let y = arctan x so that x = tan y. Then

dy

dx
=

(
dx

dy

)−1

=
1

sec2 y
= cos2 y =

1
1 + x2

.

(d) Let y = sinh−1 x so that x = sinh y. Then

dy

dx
=

(
dx

dy

)−1

=
1

cosh y
=

1√
(1 + sinh2 y)

=
1√

(1 + x2)
.

(e) Let y = cosh−1 x so that x = cosh y. Then

dy

dx
=

(
dx

dy

)−1

=
1

sinh y
=

1√
(cosh2−1)

=
1√

(x2 − 1)
.

(f) Let y = tanh−1 x so that x = tanh y. Then

dy

dx
=

(
dx

dy

)−1

=
1

sech 2y
=

1
1− tanh2 y

=
1

1− x2
.

3.15. (a) If r = sin 1
2θ, then the (x, y) coordinates are

x = r cos θ = sin
1
2
θ cos θ, y = r sin θ = sin

1
2
θ sin θ.

Using parametric differentiation,

dy

dx
=

dy

dθ

/
dx

dθ
=

1
2 cos 1

2θ sin θ + sin 1
2θ cos θ

1
2 cos 1

2θ cos θ − sin 1
2θ sin θ

.

At θ = 1
2π,

dy

dx
=

1
2
√

2 + 0

0− 1√
2

= −1
2
.

(b) If r = 1 + sin2 θ, then

x = r cos θ = (1 + sin2 θ) cos θ, y = r sin θ = (1 + sin2 θ) sin θ.

Hence
dx

dθ
= − sin θ − sin3 θ + 2 cos2 θ sin θ = − 1

2
√

2
at θ = 1

4π,

and
dy

dθ
= cos θ + 3 sin2 θ cos θ =

1√
2

+
3

2
√

2
=

5
2
√

2
at θ =

1
4
π.
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Hence
dy

dx
=

dy

dθ

/
dx

dθ
= −5

.

3.16. (a) For x = t3 and y = t2,

dy

dx
=

dy

dt

/
dx

dt
=

2t

3t2
=

2
3t

=
2

3x
1
3
.

(b) For x = 2 cos t and y = 2 sin t,

dy

dx
=

dy

dt

/
dx

dt
=

2 cos t

−2 sin t
= ± x

2
√

(4− x2)
,

assuming 0 ≤ t ≤ 1
2π.

3.17. Elimination of t between x and y, using the identity cos2 t + sin2 t = 1, gives the ellipse

x2

a2
+

y2

b2
= 1.

The derivative is given by

dy

dx
=

dy

dt

/
dx

dt
=

b cos t

−a sin t
= − b

a
cot t.

The speed of the point is

[(
dx

dt

)2

+
(

dy

dt

)2
] 1

2

=
√

[a2 sin2 t + b2 cos2 t].

3.18. In exponential form ax = ex ln a. Hence

d
dx

(ax) = (ln a)ex ln a = xa ln a.

Chapter 4: Applications of differentiation

4.1. f(u) = u2, so f ′(u) = 2u and f ′′(u) = 2 for all arguments u.
(a) Let u = t. Then f ′(t) = 2t.
(b) Let u = t2. Then f ′(t2) = 2u = 2t2.
(c) (d/dt)f(t2) = (d/dt)t4 = 4t3.
(d) Let u = t

1
2 . Then f ′(t

1
2 ) = 2u = 2t

1
2 .

(e) (d/dt)f(t
1
2 ) = (d/dt)t = 1.

(f) Let u = t
1
2 . Then f ′′(t

1
2 ) = 2.

4.2. Denote the function in each case by f(x). The stationary points are given by f ′(x) = 0. If
A : x = a is a stationary point, then A is a minimum if f ′′(a) > 0, or a maximum if f ′′(a) < 0. If
f ′′(a) = 0, then the stationary point can be a minimum, maximum or point of inflection depending
on the sign of f ′(x) on either side of x = a.
(a) Since f(x) = x2 − x, then

f ′(x) = 2x− 1, f ′′(x) = 2.

Stationary point: x = 1
2 .

32



Test: f ′′(1
2 ) = 2 > 0 so x = 1

2 is a minimum.
(b) Since f(x) = x2 − 2x− 3, then

f ′(x) = 2x− 2, f ′′(x) = 2.

Stationary point: x = 1.
Test: f ′′(1) = 2 > 0 so x = 1 is a minimum.
(c) Since f(x) = x ln x, then

f ′(x) = 1 + ln x, f ′′(x) =
1
x

.

Stationary point: x = e−1.
Test: f ′′(e−1) = e > 0 so x = e−1 is a minimum.
(d) Since f(x) = xe−x, then

f ′(x) = (1− x)e−x, f ′′(x) = (−2 + x)e−x.

Stationary point: x = 1.
Test: f ′′(1) = −e−1 < 0 so x = 1 is a maximum.
(e) Since f(x) = 1/(x2 + 1), then

f ′(x) =
−2x

(x2 + 1)2
, f ′′(x) =

2(3x2 − 1)
(x2 + 1)3

.

Stationary point: x = 0.
Test: f ′′(0) = −2 < 0 so x = 0 is a maximum.
(f) Since f(x) = x2 − 3x + 2, then

f ′(x) = 2x− 3, f ′′(x) = 2.

Stationary point: x = 3
2 .

Test: f ′′(3
2 ) = 2 > 0 so x = 3

2 is a minimum.
(g) Since f(x) = ex + e−x, then

f ′(x) = ex − e−x, f ′′(x) = ex + e−x.

Stationary point: x = 0.
Test: f ′′(0) = 2 > 0 so x = 0 is a minimum.
(h) Since f(x) = x2 + 4x + 2, then

f ′(x) = 2x + 4, f ′′(x) = 2.

Stationary point: x = −2.
Test: f ′′ − 2) = 2 > 0 so x = −2 is a minimum.
(i) Since f(x) = x− x3, then

f ′(x) = 1− 3x2, f ′′(x) = −6x.

Stationary points: x = ±1/
√

3.
Tests: f ′′(1/

√
3) = −6/

√
3 < 0, so x = 1/

√
3 is a maximum.

f ′′(−1/
√

3) = 6/
√

3 > 0 so x = −1/
√

3 is a minimum.
(j) Since f(x) = x2(x− 1), then

f ′(x) = 3x2 − 2x, f ′′(x) = 6x− 2.

Stationary points: x = 0 and x = 2
3 .
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Tests: f ′′(0) = −2 < 0 so x = 0 is a maximum.
f ′′( 2

3 ) = 2 > 0 so x = 2
3 is a minimum.

(k) Since f(x) = sin x− cos x, then

f ′(x) = cos x + sin x, f ′′(x) = − sin x + cos x.

Stationary points: x = 3
4π and 7

4π for 0 < x < 2π.
Tests: f ′′( 3

4π) = −√2 < 0 so x = 3
4π is a maximum;

f ′′( 7
4π) =

√
2 > 0 so x = 7

4π is a minimum.
(l) Since f(x) = sin x cosx = 1

2 sin 2x, then

f ′(x) = cos 2x, f ′′(x) = −2 sin 2x.

Stationary points: x = − 3
4π, x = − 1

4π, x = 1
4π, x = 3

4π for −π < x < π.
Tests: f ′′(− 3

4π) = −2 < 0 so x = − 3
4π is a maximum;

f ′′(− 1
4π) = 2 > 0 so x = − 1

4π is a minimum;
f ′′( 1

4π) = −2 < 0 so x = 1
4π is a maximum;

f ′′( 3
4π) = 2 > 0 so x = 3

4π is a minimum.
(m) Since f(x) = e−x sin x, then

f ′(x) = e−x(− sin x + cos x), f ′′(x) = −2e−x cos x.

Stationary points occur where tanx = 1, at x = (n + 1
4 )π, (n = 0,±1± 2, . . .).

Tests: f ′′[(n + 1
4 )π] = −√2(−1)ne−(n+ 1

4 )π < 0 or > 0 according as n is even or odd. Hence the
stationary point is a maximum x = (n + 1

4 )π is a maximum if n is even, and a minimum if n is
odd.
(n) Since f(x) = e−

1
3 x sin 2x, then

f ′(x) = 1
3e−

1
3 x(− sin 2x + 6 cos 2x), f ′′(x) = 1

9e−
1
3 x(−12 cos 2x− 35 sin 2x).

Stationary points occur where tan 2x = 6 at x = α+ 1
2nπ, (n = 0,±1±2, . . .), where α = 1

2 arctan 6.
Tests: f ′′(α + 1

2nπ) = −222e−
1
3 (α+ 1

2 nπ)(−1)n/[9
√

37] < 0 or > 0 according as n is even or odd.
Hence the stationary point x = α + 1

2nπ is a maximum if n is even, and a minimum if n is odd.
(o) Since f(x) = x− cosx, then

f ′(x) = 1 + sin x, f ′′(x) = cos x.

Stationary points occur where sin x = −1 at x = (2n− 1
2 )π, (n = 0,±1,±2, . . .).

Tests: f ′′[(2n− 1
2 )π] = 0 for all n. Hence the test fails. But f ′(x) = 1 + sin x ≥ 0 for all x. Hence

all the stationary points must be points of inflection.
(p) Since f(x) = 2ex − 1

2e2x, then

f ′(x) = 2ex − e2x, f ′′(x) = 2ex − 2e2x.

Staionary point occurs where ex = 2 at x = ln 2.
Test: f ′′(ln 2) = −4 < 0 so x = ln 2 is a maximum.
(q) Since f(x) = x2e−x, then

f ′(x) = xe−x(2− x), f ′′(x) = e−x(2− 4x + x2).

Stationary points at x = 0 and x = 2.
Tests: f ′′(0) = 2 > 0 so that x = 0 is a minimum; f ′′(2) = −2e−2 < 0 so that x = 2 is a maximum.
(r) Since f(x) = (ln x)/x, then

f ′(x) =
1
x2

(1− ln x), f ′′(x) =
1
x3

(−3 + 2 ln x).
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Stationary point where ln x = 1 at x = e.
Test: f ′′(e) = −e−3 < 0 so x = e is a maximum.
(s) Since f(x) = (1− x)3, then

f ′(x) = −3(1− x)3, f ′′(x) = 6(1− x)2.

Stationary point: x = 1.
Test: f ′′(1) = 0 and the test fails. However, f ′(x) ≤ 0 for all x. Hence x = 1 is a point of inflection.
(t) Since f(x) = sin3 x, then

f ′(x) = 3 sin2 x cos x, f ′′(x) = 3 sin x(2− 3 sin2 x).

Stationary points occur where sin x = 0, at x = nπ, and where cos x = 0, at x = (n + 1
2 )π for

n = 0,±1,±2, . . ..
Tests: f ′′(nπ) = 0 so that the test fails. However, if n is even, then f ′(x) is positive in a small
interval including x = nπ, and if n is odd, then f ′(x) is negative in a small interval including
x = nπ. In both cases, therefore, the stationary point is a point of inflection.

f ′′[(n + 1
2 )π] = −3(−1)n so that x = (n + 1

2 )π is a maximum if n is even, and a minimum if n
is odd.
(u) Since f(x) = e−x2

, then

f ′(x) = −2xe−x2
, f ′′(x) = 2e−x2

(2x2 − 1).

Stationary point: x = 0.
Test: f ′′(0) = −2 < 0 so x = 0 is a maximum.

(v) Since f(x) = ex2−x, then

f ′(x) = (2x− 1)ex2−x, f ′′(x) = (4x2 − 4x + 3)ex2−x.

Stationary point: x = 1
2 .

Test: f ′′(1
2 ) = 2e−

1
4 > 0 so x = 1

2 is a minimum.
(w) Since f(x) = x + x−1, then

f ′(x) = 1− 1
x2

, f ′′(x) =
2
x3

.

Stationary points: x = ±1.
Tests: f ′′(1) = 2 > 0 so x = 1 is a minimum; and f ′′(−1) = −2 < 0 so x = −1 is a maximum.
(x) Since f(x) = x3e−x, then

f ′(x) = x2e−x(3− x), f ′′(x) = xe−x(6− 6x + x2).

Stationary points: x = 0 and x = 3.
Tests: f ′′(0) = 0 and the test fails. In a small interval which includes the origin f ′(x) > 0 which
means that x = 0 is a point of inflection.
f ′′(3) = −9e−3 < 0 so x = 3 is a maximum.

4.3. If y = f [u(x)], then by the chain rule

dy

dx
=

df

du

du

dx
= f ′(u)u′(x),

and

d2y

dx2
=

d
dx

[f ′(u)u′(x)] =
d
dx

[f ′(u)]u′(x) + f ′(u)u′′(x) (product rule)

= f ′′(u)[u′(x)]2 + f ′(u)u′′(x)
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Since f ′(u) > 0 for all u, then dy/dx can only be zero if u′(x) = 0 (by the chain rule (3.3)). Hence
f [u(x)] and u(x) have stationary points only at the same values of x.

In 4.2(v), f(u) = eu and u = x2 − x.

4.4. If the sides have lengths x > 0 and y > 0, then the given area A = xy. The length of the
perimeter is P = 2x + 2y. Eliminate y so that

P = 2x +
2A

x
.

The first and second derivatives of P are

dP

dx
= 2− 2A

x2
,

d2P

dx2
=

4A

x3
.

Hence the perimeter length is stationary where dP/dx = 0: at x = ±√A. Since x > 0, choose the
stationary value x =

√
A. For this value

d2P

dx2
=

4A

A
3
2

> 0,

so that the perimeter is a minimum when x = y =
√

A. The piece of ground must be a square.

4.5. Let the the base of the cross-section be x > 0 which will also be the diameter of the semicircle,
and let the height of the rectangle be y > 0. The given area A of the tunnel cross-section is

A = xy + 1
8πx2.

The length of the perimeter is P = x + 2y + 1
2πx. Eliminate y, so that

P =
2
x

(
A− 1

8
πx2

)
+ x(1 +

1
2
π) =

2A

x
+ (1 +

1
4
π)x.

This is stationary where
dP

dx
= −2A

x2
+ 1 +

1
4
π = 0,

which occurs at x =
√

8A
4+π (choosing the positive root). The perimeter is a minimum since

d2P

dx2
=

4A

x3
> 0

at the stationary point.

4.6. Let r be the radius of the base and h the height of the drum. The volume V of the drum is
given by V = πr2h and its prescribed surface area by A = 2πr2 + 2πrh. We are given that A is a
constant, so eliminate h in the expression for V :

V =
1
2
[Ar − 2πr3].

Differentiating
dV

dr
=

1
2
[A− 6πr2],

d2V

dr2
= −6πr.

The volume is stationary where
dV

dr
= 0, at r =

√
A

6π
,

choosing the positive root. Obviously d2V/dr2 < 0 which proves that this radius gives a minimum
volume. The height of this drum is h =

√
[2A/(3π)] which is equal to its diameter.
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4.7. Similar to 4.6: the volume is given by the same formula but the prescribed A is different:

V = πr2h, A = πr2 + 2πrh.

Elimination of h leaves
V =

1
2
r(A− πr2).

Differentiating
dV

dr
=

1
2
[A− 3πr2],

d2V

dr2
= 3πr.

Hence the radius and height of the drum of minimum volume are

r = h =

√
A

3π
.

4.8. (a) y = 1/(x2 + 1):
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Figure 36: Problem 4.8a

(b) y = ex2
:
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Figure 37: Problem 4.8b

(c) y = x/(x− 1):
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Figure 38: Problem 4.8c

(d) y = xe−x:
(e) y = x2e−x:
(f) y = x3e−x:
(g) y = e2x − 4ex:
(h) y = (ln x)/x for x > 0:
(i) [ln(−x)]/x for x < 0:
(j) y = x ln x− x for x > 0:
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Figure 39: Problem 4.8d
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Figure 40: Problem 4.8e

(k) y = sin(1/x):
(l) y = (x2 − 1)2:
(m) y = x(x2 − 1)2:
(n) y = (sin x)/x:
4.9. (a) y = 1/(x2 − 1):
(b) y = x/(x2 − 1):
(c) 1/[x(x− 2)]:
(d) y = x3/(1− x):
(e) y = (x + 2)/(x− 1):
(f) y = 1/(x + 1) + 1/(x + 2):
4.10. The incremental formula given by (4.4) is

δy ≈ f ′(a)δx at x = a.

The exact value is given by
δy = f(a + δx)− f(a).

(a) f(x) = x3: δy ≈ 3x2δx. With x = 2 and δx = 0.1, the approximate and exact values are given
by

δy ≈ 1.200, δy = (2.1)3 − 23 = 1.157 . . . .

(b) f(x) = x sin x: δy ≈ (sinx + x cosx)δx. With x = 1
2π and δx = −0.2 the approximate and

exact values are given by

δy ≈ (sin
1
2
π +

1
2
π cos

1
2
π)(−0.2) = −0.2,

δy = (
1
2
π − 0.2) sin(

1
2
π − 0.2)− 1

2
π sin

1
2
π = −0.227 . . . .
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Figure 41: Problem 4.8f
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Figure 42: Problem 4.8g
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Figure 43: Problem 4.8h

(c) f(x) = cos x: δy ≈ − sin xδx. With x = 1
4π and δx = 0.1 the approximate and exact values

are given by

δy ≈ (− sin
1
4
π)(0.1) = −0.0707 . . . ,

δy = cos(
1
4
π + 0.1)− cos(

1
4
π) = −0.0741 . . . .

(d) f(x) = (1 + x)/(1 − x): δy = 2/(1 − x)2δx. With x = 2 and δx = −0.2 the approximate and
exact values are given by

δy ≈ 2
(1− 2)2

(−0.2) = −0.4, δy = −0.5.

(e) y = tan x: δy ≈ sec2 xδx. With x = 1
4π and δx = 0.1 the approximate and exact values are

given by

δy ≈ (sec2 1
4
π)(0.1) = 0.2, δy = tan(

1
4
π + 0.1)− tan

1
4
π = 0.223 . . . .

(f) f(x) = 1/(1 − x2): f ′(x) = 2x/(1 − x2)2. With x = 0.5 and δx = ±0.1 the approximate and
exact values are given by

δy ≈ 1
(1− 0.52)2

(±0.1) = ±0.177 . . . ,

δy =
1

1− (0.05± 0.1)2
− 1

1− (0.05)2
= 0.229 . . . or − 0.142 . . . .

4.11. (a) With f fixed,
dv

du
= − f2

(u− f)2
.
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Figure 44: Problem 4.8i
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Figure 45: Problem 4.8j
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Figure 46: Problem 4.8k

Hence, with f = 0.75, u = 1.25 and δu = 0.05,

δv ≈ − f2δu

(u− f)2
=
−(0.75)2(0.05)
(1.25− 0.75)2

= −0.112 . . . .

(b) The voltage is given by

v =
E(R1R4 −R2R3)

(R1 + R2)(R3 + R4)
.

Its derivative with respect to R1 is

dv

dR1
=

ER2

(R1 + R2)2
.

Hence
δv ≈ ER2

(R1 + R2)2
=

5
18

δR1.

(c) With b and A constant in a = b sinA/(sin B),

da

dB
=
−b sin A cosB

sin2 B
= −a cot B.

Hence
δa ≈ −a cot B δB.

(d) In terms of a, b, c,

A =
1
4
√

[(a + b + c)(−a + b + c)(a− b + c)(a + b− c)].
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Figure 47: Problem 4.8l
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Figure 48: Problem 4.8m
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Figure 49: Problem 4.8n

Logarithmic differentiation (see equation (3.7)) gives

1
A

dA

dc
=

1
2

[
1

a + b + c
+

1
−a + b + c

+
1

a− b + c
+

1
a + b− c

]
.

The incremental formula for δA becomes, at a = 2, b = 4, c = 5

δA ≈ dA

dc
δc = − 25

2
√

231
(0.1) = 0.0822 . . . .

4.12. Given C = P (1 + r)n.
(a) With n and P fixed,

dC

dr
= Pn(1 + r)n−1, so that δC ≈ Pn(1 + r)n−1δr.

(b) With r and P fixed,

dC

dn
= P

d
dn

en ln(1+r) = P (1 + r)n ln(1 + r) see Problem 3.18.

Hence
δC ≈ P (1 + r)n ln(1 + r)δn.

(c) Suppose that P = £100, r = 0.05 (5% ) and n = 10 years. The tables below show comparisons
between the approximate increments δC for decreasing values of δr (n fixed) and δn (r fixed).

-2 -1 1 2
x

2

4

6

8

10

12
y

Figure 50: Problem 4.9a
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Figure 51: Problem 4.9b
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Figure 52: Problem 4.9c

δr approximate increment in C exact increment in C
Pn(1 + r)n−1δr P (1 + r + δr)n − P (1 + r)n

0.01 15.513 . . . 16.195 . . .

0.005 7.756 . . . 7.925 . . .

0.001 1.551 . . . 1.557 . . .

0.0001 0.155 . . . 0.155 . . .

δn approximate increment in C exact increment in C
P (1 + r)n ln(1 + r)δn P (1 + r)n+δn − P (1 + r)n

1 7.947 . . . 8.144 . . .

0.1 0.795 . . . 0.797 . . .

0.01 0.080 . . . 0.080 . . .

4.13. The iterations in Newton’s method are

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . . ,

for a given initial value x0. (a) Let f(x) = x4 + 2x2 − x− 1. Then

f ′(x) = 4x3 + 4− 1.

For example, if we start with x0 = 0.75, we obtain

x1 = 0.75− f(0.75)
f ′(0.75)

= 0.833 . . . .
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Figure 53: Problem 4.9d
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Figure 54: Problem 4.9e
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Figure 55: Problem 4.9f

Repeat the process starting with x1 to obtain x2, and so on. The solution is x = 0.825 . . ..
(b) Let f(x) = x4 + x

1
3 − 1. Then

f ′(x) = 4x3 +
1
3
x−

2
3 .

The solution is x = 0.619 . . ..
(c) Let f(x) = x ln x + 0.3. Then

f ′(x) = 1 + ln x.

The solution is x = 0.168 . . ..
(d) Let f(x) = ex − 4x3. Then

f ′(x) = ex − 12x2.

The solution is x = 0.831 . . ..
(e) Let f(x) = tan x− 2x. Then

f ′(x) = sec2 x− 2.

By Newton’s method the solution is x = 1.165 . . . 4
(f) Let f(x) = ex sin x/(1 + x). Then

x− f(x)
f ′(x)

= x +
(1 + x)[2(1 + x)e−x − sin x]

(1 + x) cos x + x sin x
.

Let x0 = 1.85. Then
x1 = 1.663, x2 = 1.689, x3 = 1.690

to three decimal places.

4.14. Since f(x) = xe−x + 1 then f ′(x) = (1− x)e−x. The function has its only stationary point
at x = 1 which is a maximum. The slope of y = f(x) in the neighbourhood of the solution of
f(x) = 0 is therefore positive whilst that for any value of x greater than 1 will be negative. By
the geometrical construction of Newton’s method illustrated in Figure 4.15, any tangent which
starts for x > 1 will produce iterations which diverge from the required solution. The graph of
y = xe−x − 1 is shown in the figure.

4.15. (a) The graph shows a continuous function in which f(a) and f(b) have opposite signs.
(b) Let g(x) = ex − 3x. The table gives a sequence of values for g(x) at intervals 0.25.

x 0 0.25 0.5 0.75 1.0 1.25 1.5
g(x) 1 0.534 0.149 -0.133 -0.282 -0.260 -0.018
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Figure 57: Problem 4.15

x 1.75 2.0 2.25 2.5
g(x) 0.505 1.389 2.738 4.682

Evidently the solutions of the equation lie between x = 0.5 and x = 0.75, and between x = 1.5 and
x = 1.75. Note also that the function has a minimum value at x = ln 3 = 1.098 . . ., which means,
for example, that any initial value for the smaller solution must start at a value of x < ln 3 for the
reasons outlined in Problem 4.14. Similar conditions apply to the other solution.

The solutions are x = 0.6190 . . ., and x = 1.5121 . . ..

4.16. (a) Calculate f(a + nE) for n = 1, 2, . . .. Stop the program at n = N , when f(a + NE) and
f(a + (N − 1)E) have different signs.
(b) In the following table the interval is bisected four times with E = 0.125 and N = 8.

x 0 0.125 0.250 0.375 0.500 0.625
f(a + NE) -1 -0.983 -0.929 -0.829 -0.676 -0.457

x 0.750 0.875 1
f(a + NE) -0.162 0.224 0.718

The solution of the equation lies between x = 0.75 and x = 0.875. The computed solution is
x = 0.806 . . ..
(c) Four decimal accuracy is obtained after 10 iterations using the bisection method, whilst New-
ton’s method achieve the same accuracy after just 4 iterations

4.17. The slope of the normal at x = x0 is −1/f ′(x0) and at x = x0 + δx0 is −1/f ′(x0 + δx0).
Hence their equations are

y − f(x0) = − 1
f ′(x0)

(x− x0),

y − f(x0 + δx0) = − 1
f ′(x0 + δx0)

(x− x0 − δx0).

Solving these equations for x and y:

x = x0 − f ′(x0)[f ′(x0 + δx0){f(x0 + δx0)− f(x0)}+ δx0]
f ′(x0 + δx0)− f ′(x0)

,
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y = f(x0) +
[f ′(x0 + δx0){f(x0 + δx0)− f(x0)}+ δx0]

f ′(x0 + δx0)− f ′(x0)
,

Divide the numerators and denominators by δx0 and let the increment tend to zero, so that the
centre of curvature (xc, yc) is located at

(
x0 − f ′(x0)[1 + f ′(x0)2]

f ′′(x0)
, f(x0) +

[1 + f ′(x0)2]
f ′′(x0)

)
.

The radius of curvature

R =
√

[(xc − x0)2 + (yc − y0)2)] =
[1 + f ′(x0)2]

3
2

f ′′(x0)
.

For the parabola y = x2,

f(x) = x2, f ′(x) = 2x, f ′′(x) = 2.

Hence the centre of curvature of the point (x0, x
2
0) is located at

[x0 − x0(1 + 4x2
0), x

2
0 +

1
2
(1 + 4x2

0)],

and its radius of curvature is R = 1
2 (1 + 4x2

0)
3
2 .

4.18. We shall prove Leibniz’s formula by induction. For n = 1, the formula is true since

(fg)(1) = f (1)g + fg(1)

by the product rule: note that 1C1 = 1. Assume that the given formula is true for n = k and all
x. Then

(fg)(k) = f (k)g + kC1f
(k−1)g(1) + kC2f

(k−2)g(2) + · · ·+ kCkfg(k).

Differentiate both sides with respect to x:

(fg)(k+1) =
(f (k+1)g + f (k)g(1)) + (kC1f

(k)g(1) + kC1f
(k−1)g(2))

+(kC2f
(k−1)g(2) + kC2f

(k−2)g(2)) + · · ·+ (kCkf (1)g(k) + kCkfg(k+1))
= f (k+1)g + (1 + kC1)f (k)g(1) + (kC1 + kC2)f (k−1)g(2 + · · ·+ kCkfg(k+1).

The coefficients can be written as

1 + kC1 = 1 +
k!

1!(k − 1)!
= k + 1 = k+1C1,

k−1C1 + kC2 =
k!

1!(k − 1)!
+

k!
2!(k + 2)!

= k +
k(k − 1)

2!
=

k(k + 1)
2!

= k+1C2,

and, in general,

kCr + kCr+1 =
k!

r!(k − r)!
+

k!
(r + 1)!(k − r − 1)!

=
k!

r!(k − r − 1)!

[
1

k − r
+

1
r + 1

]

=
k!(k + 1)

r!(k − r − 1)!(k − r)(r + 1)
=

(k + 1)!
(r + 1)!(k − r)!

= k+1Cr+1

Hence

(fg)(k+1) = f (k+1)g + k+1C1f
(k)g(1) + k+1C2f

(k−1)g(2) + · · ·+ k+1Ck+1fg(k+1).
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Hence if the result is true for n = k, then it is true for n = k + 1. We have shown that it is true
for n = 1 (the product rule); therefore it is true for n = 2, 3, . . ..

Chapter 5: Taylor series and approximations

5.1. (a) For f(x) = e
1
2 x,

f ′(x) =
1
2
e

1
2 x, f ′′(x) =

1
4
e

1
2 x,

1
8
e

1
2 x,

so that
f(0) = 1, f ′(0) =

1
2
, f ′′(0) =

1
4
, f ′′(0) =

1
8
.

The Taylor polynomial approximation to four terms becomes

f(x) ≈ 1 +
1
2
x +

1
2!

1
4
x2 +

1
3!

1
8
x3.

We can estimate that the three term approximation will be accurate to two decimal places if for
the fourth term ∣∣∣∣

1
8.3!

x3

∣∣∣∣ < 0.005, or |x| < 0.621 . . . .

(b) For f(x) = (1 + x)
1
2 , the Taylor approximation is

(1 + x)
1
2 ≈ 1 +

1
2
x− 1

8
x2 +

1
16

x3.

The three-term approximation will be accurate to two decimal places if
∣∣∣∣
x3

16

∣∣∣∣ < 0.005 or |x| < 0.432 . . . .

(c) For f(x) = (1 + x)−
1
3 , the four-term Taylor polynomial is

(1 + x)−
1
3 ≈ 1 +

(− 1
3

)
x +

(− 1
3

) (− 4
3

) (
x2

2!

)
+

(− 1
3

) (− 4
3

) (− 7
3

) (
x3

3!

)

≈ 1− 1
3
x +

2
9
x2 − 14

81
x3

The three-term approximation will be accurate to two decimal places if

14
81
|x|3 < 0.005 or |x| < 0.306 . . .

.
(d) The Taylor approximation to four terms for sin 2x can be obtained form the series for sin y
where y = 2x (use (5.4c)):

sin 2x ≈ (2x)− 1
3!

(2x)3 +
1
5!

(2x)5 − 1
7!

(2x)7

≈ 2x− 4
3
x3 +

4
15

x5 − 8
315

x7

The three-term approximation will be accurate to two decimal places if

8
15
|x|7 < 0.005 or |x| < 0.196 . . . .

(e) Using the expansion for cos z, where z = 1
2x (see (5.4d)):

cos
1
2
x ≈ 1− 1

8
x2 +

1
384

x4 +
1

46080
x6.
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The three-term polynomial will be accurate to two decimal places if

1
46080x6 < 0.005 or |x| < 2.475 . . . .

(f) The four-term expansion is (see(5.4e)):

ln(1 + x) ≈ x− 1
2x2 + 1

3x3 − 1
4x4.

The three-term polynomial will be accurate to two decimal places if

1
4
x4 < 0.005 or |x| < 0.376 . . . .

(g) Let f(x) = (1 + x2)
1
2 . Put u = x2. Then, as in (b),

(1 + x2)
1
2 = (1 + u)

1
2 ≈ 1 +

1
2
u− 1

8
u2 +

1
16

u3

≈ 1 +
1
2
x2 − 1

8
x4 +

1
16

x6.

The three-term polynomial will be accurate to two decimal places if

1
16

x6 < 0.005 or |x| < 0.656 . . . .

(h) The four-term Taylor polynomial for ln(1 + 3x) is (put u = 3x, etc. ),

ln(1 + 3x) ≈ (3x)− 1
2
(3x)2 +

1
3
(3x)3 − 1

4
(3x)4

≈ 3x− 9
2
x2 + 9x3 − 81

4
x4.

The three-term approximation will be accurate to two decimal places if

81
4

x4 < 0.005 or |x| < 0.125 . . . .

5.2. The Taylor expansion for f(x) about x = 0 is

f(x) = f(0) + f ′(0) +
1
2!

f ′′(0)x2 +
1
3!

f ′′′(0)x3 + · · · .

(a) Let f(x) = ex. Then f ′(x) = f ′′(x) = · · · = ex. Hence

f(0) = f ′(0) = f ′′(0) = · · · = 1.

(b) Let f(x) = sin x. Then

f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cosx, f (4)(x) = sin x, etc.

so that
f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f (4)(0) = 0, . . . ,

the Taylor coefficients being

1,
1
1!

,
1
2!

, . . . .

(c) Let f(x) = cos x. Then

f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, f (4)(x) = cosx, . . . ,
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so that
f(0) = 1, f ′(0) = 0 f ′′(0) = −1 f ′′′(0) = 0, f (4)(0) = 1, . . . .

(d) Let f(x) = (1 + x)α. Then

f ′(x) = α(1 + x)α−1, f ′′(x) = α(α− 1)(1− x)α−2, . . . .

so that
f(0) = 1, f ′(0) = α, f ′′(0) = α(α− 1), . . . .

(e) Let f(x) = ln(1 + x). Then

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
,

f ′′′(x) =
2× 1

(1 + x)3
, f (4)(x) =

3× 2× 1
(1 + x)4)

, . . . .

so that
f(0) = 0, f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2!, f (4)(0) = 3!, . . . .

Therefore the coefficient of xn for n ≥ 1 is

(−1)n−1 (n− 1)!
n!

=
(−1)n−1

n
.

5.3. (a) The general term for ex is xn/n!. Hence, for four-decimal point accuracy we require n
such that, for |x| = 2,

xn

n!
=

2n

n!
< 0.00005.

For n = 11, 2n/n! = 0.000051 . . . and for n = 12, 2n/n! = 0.0000085 . . . < 0.00005. Hence terms
up to x11 are required.
(b) The general term for sin x is (−1)nx2n−1/(2n−1)!. Hence for four-decimal accuracy we require
the smallest n such that, for |x| = 2,

∣∣∣∣
x2n−1

(2n− 1)!

∣∣∣∣ =
22n−1

(2n− 1)!
< 0.00005.

For n = 6, 22n−1/(2n − 1)! = 0.000051 . . . and for n = 7, 22n−1/(2n − 1)! = 0.0000031 . . .. Hence
terms up to and including x11 are required.
(c) The general term for cos x is (−1)nx2n/(2n)!. Hence for four decimal accuracy we require the
smallest n such that, for |x| = 2,

∣∣∣∣
x2n

(2n)!

∣∣∣∣ =
22n

(2n)!
< 0.00005.

For n = 5, 22n/(2n)! = 0.00028 . . . and for n = 6, 22n/(2n)! = 0.0000085 . . .. Hence terms up to
and including x10 are required.
(d) For (1 + x)

1
2 the general term is

α(α− 1)(α− 2) . . . (α− n + 1)
n!

xn,

where α = − 1
2 . For four-decimal accuracy we require the smallest n such that, for |x| = 0.5,

∣∣∣∣
α(α− 1)(α− 2) . . . (α− n + 1)

n!
(0.5)n

∣∣∣∣ < 0.00005.
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For n = 8 the last term has magnitude 0.000051 . . ., and for n = 9 the magnitude is 0.000021 . . . .

(e) For ln(1 + x), the general term in its Taylor series is (−1)n+1xn/n. For four-decimal accuracy
we require the smallest n such that, for |x| = 0.5,

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ =
0.5n

n
< 0.00005.

For n = 10, 0.5n

n = 0.000097 . . ., whilst for n = 11, 0.5n

n = 0.000044 . . .. Hence terms up to and
including x10 are required.

5.4. (a) Let f(x) = arcsin x. Then

f ′(x) =
1√

(1− x2)
, f ′′(x) =

x

(1− x2)
3
2
, f ′′′(x) =

1 + 2x2

(1− x2)
5
2

so that f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = 1. Hence

arcsinx = x +
1
6
x3 + · · · .

(b) Let f(x) = arccos x. Then

f ′(x) = − 1√
(1− x2)

, f ′′(x) = − x

(1− x2)
3
2

so that f(0) = 1
2π, f ′(0) = −1, f ′′(0) = 0. The Taylor series starts with

arccosx =
1
2
π − x + · · · .

(c) Let f(x) = arctan x. Then

f ′(x) =
1

1 + x2
, f ′′(x) = − 2x

(1 + x2)2
, f ′′′(x) =

−2 + 6x2

(1 + x2)3
.

Hence f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −2. The Taylor series starts with

arctanx = x− 1
3
x3 + · · · .

(d) Let f(x) = e−x sin x. Then

f ′(x) = e−x(cos x− sin x), f ′′(x) = −2e−x cosx.

Hence f(0) = 0, f ′(0) = 1, f ′′(0) = −2. The Taylor series starts with

e−x sin x = x− x2 + · · · .

(e) Let f(x) = e−x cos x. Then

f ′(x) = −e−x(cos x + sin x).

Hence f(0) = 1, f ′(0) = −1 so that the Taylor series starts with

e−x cos x = 1− x.

5.5. (a) Let f(x) = 1/(1 + 3x). Then f ′(x) = −3/(1 + 3x)2, f ′′(x) = 18/(1 + 3x)3 so that

f(0) = 1, f ′′(0) = −3, f ′′(0) = 18.
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The first three terms of its Taylor series are

1
1 + 3x

= 1− 3x + 9x2 + · · · .

Alternatively, the binomial expansion (5.4f) can be used. Also from (5.4f) the expansion will be
valid for

−1 < 3x < 1 or − 1
3

< x <
1
3
.

(b) Adapting (5.4f),

1
2− x

= 2−1
[
1 +

(
−x

2

)]−1

=
1
2

[
1 + (−1)

(
−x

2

)
+

(−1)(−2)
2!

(
−x

2

)2

+ · · ·
]

=
1
2

+
1
4
x +

1
8
x2 + · · ·

the series is valid for −1 < 1
2x < 1 or −2 < x < 2.

(c) Using (5.4f) again

(3− x)
1
3 = 3

1
3 (1− 1

3x) = 3
1
3

[
1− 1

9x− 1
81x2 − · · ·].

The series is valid for −3 < x < 3.
(d) Using (5.4f) again

(x− 3)
1
3 = (−3)

1
3

[
1 +

(
−x

3

)] 1
3

= (3)
1
3

[
−1 +

1
9
x +

1
81

x2 + · · ·
]

.

The series is valid for −3 < x < 3.
(e) Adapting (5.4e),

ln(9− x) = ln
[
9

(
1− 1

9
x

)]
= ln 9 + ln

(
1− 1

9
x

)
= 2 ln 3− 1

9
x− 1

162
x2 − · · · .

The series is valid for −9 < x < 9.
(f) From (5.4d),

cos(
1
2
x) = 1− 1

2!

(x

2

)2

+
1
4!

(x

2

)4

− · · ·

= 1− 1
8
x2 +

1
384

x4 − · · · .

The series is valid for all x.
(g) Put u = x

1
2 for x > 0, and use (5.4c):

sin(x
1
2 ) = sin u = u− 1

6
u3 +

1
120

u5 − · · · = x
1
2 − 1

6
x

3
2 +

1
120

x
5
2 − · · · .

Since x
1
2 is not real for x < 0 the series will be valid only for x ≥ 0.

(h) Put u = x
1
2 for x > 0, and use (5.4d):

cos(x
1
2 ) = 1− 1

2x + 1
24x2 + · · · .

The series is valid for all x ≥ 0.
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5.6. Multiply standard expansions for

e−x = 1− x +
1
2
x2 + · · · and

1
1 + x

= (1 + x)−1 = 1− x + x2 + · · · .

Hence

e−x

1 + x
=

(
1− x +

1
2
x2 + · · ·

) (
1− x + x2 + · · ·) .

= 1− 2x +
5
2
x2 + · · ·

(b) As in (a)

(1− x)
1
2 ex =

(
1− 1

2
x− 1

8
x2 − · · ·

)(
1 + x +

1
2
x2 + · · ·

)

= 1 +
1
2
x− 1

8
x2 + · · ·

(c) This time square the series for ln(1− x):

1
x2

[ln(1− x)]2 =
1
x2

[
−x− 1

2
x2 − 1

3
x3 − · · ·

]2

=
1
x2

[
x2 + x3 +

11
12

x4 + · · ·
]

= 1 + x +
11
12

x2 + · · ·

5.7. Start with the Taylor series

1 + ln(1 + x) = 1 + x− 1
2
x2 + · · · .

Then, assuming that the expansion takes the form b0 + b1x + b2x
2 + · · ·,

1
[1 + ln(1 + x)]

=
1

1 + x− 1
2x2 + · · · = b0 + b1x + b2x

2 + · · · .

We now equate coefficients of powers of x in the identity

1 =
(

1 + x− 1
2
x2 + · · ·

) (
b0 + b1x + b2x

2 + · · ·) ,

= b0 + (b1 + b0)x + (b2 − b1 − 1
2
b0)x2 + · · ·

Hence b0 = 1, b1 = −b0 = −1, b2 = b1 + 1
2b0 = 3

2 and the Taylor series starts with

1
[1 + ln(1 + x)]

= 1− x +
3
2
x2 + · · · .

(b) Write tan x = sin x/ cos x and use the series for sin x and cos x. Thus

tan x =
x− 1

6x3 + 1
120x5 + · · ·

1− 1
2x + 1

6x3 + · · ·
= b1x + b3x

3 + b5x
5 + · · · .
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Note that the series will contain only odd powers of x. By cross-multiplying

x− 1
6
x3 +

1
120

x5 + · · · =
(

1− 1
2
x +

1
6
x3 + · · ·

) (
b1x + b3x

3 + b5x
5 + · · ·) .

By matching the coefficients of x, x2, . . . on either side we obtain

b1 = 1, b3 =
1
3
, b5 =

2
15

,

so that
tan x = x +

1
3
x3 +

2
15

x5 + · · · .

(c) From (5.4b)

1 + ex = 2 + x +
1
2
x2 +

1
6
x3 · · · .

Assume that
1

1 + ex
= b0 + b1x + b2x

2 + · · · :
then

1 =
(

2 + x +
1
2
x2 +

1
6
x3 · · ·

) (
b0 + b1x + b2x

2 + b3x
3 · · ·)

= 2b0 + (b0 + 2b1)x +
(

1
2
b0 + b1 + 2b2

)
+ · · ·

Solving for b0, b1, b2 and b3,
1

1 + ex
=

1
2
− 1

4
x +

1
48

x3 + · · · .

(d) Use the definition

tanh x =
sinhx

cosh x
=

ex − e−x

ex + ex
,

where
sinhx = x +

1
6
x3 +

1
120

x5 + · · · , cosh x = 1 +
1
2
x2 +

1
24

x4 + · · · .
Hence, if the required series is b1x + b3x

3 + b5x
5 + · · · (it must be an odd function), then

x +
1
6
x3 +

1
120

x5 + · · · =
(

1 +
1
2
x2 +

1
24

x4 + · · ·
) (

b1x + b3x
3 + b5x

5 + · · ·)

= x + (b1x + (b3 +
1
2
b1)x3 + (b5 +

1
2
b3 +

1
24

)x5 + · · ·

Comparing powers of x, it follows that b1 = 1, b3 = − 1
3 , b5 = 2

15 so that

tanh x = x− 1
3
x3 +

2
15

x5 + · · · .

(e) Since x/ sin x is an even function and sinx = x− 1
6x3 + 1

120x5, then

x =
(

x− 1
6
x3 +

1
120

x5

) (
b0 + b2x

2 + b4x
4 + · · ·)

= b0x +
(

b2 − 1
6
b0

)
+

(
b4 − 1

6
b2 +

1
120

b0

)
x5 + · · ·

Hence b0 = 1, b2 = 1
6 and b4 = 7

360 so that

x

sin x
= 1 +

1
6
x2 +

7
360

x4 + · · · .

52



5.8. The following series provide approximations for large values of x.
(a) Let u = 1/x. Then

(
1− 1

x

) 1
2

= (1− u)
1
2 = 1− 1

2
u− 1

8
u2 + · · · (binomial series)

= 1− 1
2x

− 1
8x2

+ · · ·

which will be valid for |u| < 1, or equivalently, |x| > 1.

(b) Let x > 0 and u = 1/x
1
2 > 0. Then

ln
(

1 +
1

x
1
2

)
= ln(1 + u) = u− 1

2
u2 +

1
3
u3 + · · ·

=
1

x
1
2
− 1

x
+

1
3x

3
2

+ · · · .

This series will be valid for 0 < u ≤ 1, or x ≥ 1.
(c) Let x > 0 and u = 1/x. Then

x
1
2

(1 + x)
1
2

=
1

(1 + 1
x )

1
2

= (1 + u)−1

= 1− 1
2
u +

3
8
u2 + · · · (binomial expansion)

= 1− 1
2x

+
3

8x2
+ · · ·

The series is valid for 0 < u < 1 or x > 1.
(d) Let u = (1/x) + (1/x)2. Then, using (5.4e),

ln(1 + x + x2) = ln(x2) + ln(1 + u) = ln(x2) + u− 1
2
u2 + · · ·

= ln(x2) +
(

1
x

+
1
x2

)
− 1

2

(
1
x

+
1
x2

)2

+ · · ·

= ln(x2) +
1
x

+
1

2x2
+ · · ·

The series is valid for−1 < (1/x)+(1/x2) < 1, that is, when x < − 1
2 (
√

5−1) or when x > 1
2 (1+

√
5).

(e) Let u = 1/x. Then

1
sin(1/x)

=
1

sin u
=

1
u− 1

3!u
3 + 1

5!u
5 + · · ·

=
1
u
· 1
1− 1

3!u
2 + 1

5!u
4 · · ·

=
1
u

[
1 +

(
1
6
u2 +

1
120

u4

)
+

(
1
6
u2 +

1
120

u4

)2

+ · · ·
]

=
1
u

[
1 +

1
6
u2 +

7
360

u4 + · · ·
]

= x +
1
6x

+
7

360x3
+ · · ·

5.9. (a) Using the two-term Taylor expansion for sin x,

1
sin x

≈ 1
x− 1

6x3
≈ 1

x

1
1− 1

6x2
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≈ 1
x

(
1 +

1
6
x2

)
(using (5.4f))

≈ 1
x

+
1
6
x,

for small x. Note that for x = 0.5, the error is
∣∣∣∣sin x−

(
1
x

+
1
6
x

)∣∣∣∣ = 0.0024 . . . ,

that is, about 0.1%.
(b) Write as

(1 + x)
1
2 = x

1
2

(
1 +

1
x

) 1
2

≈ x
1
2

(
1 +

1
2x

)

= x
1
2 +

1
2x

1
2
,

for large x.
(c) Using the result from (b)

(2 + x)
1
2 − (1 + x)

1
2 = 2

1
2 (1 +

1
2
x)

1
2 − (1 + x)

1
2

≈ 2
1
2

[(x

2

) 1
2

+ 1/(2x)
1
2

]
−

[
x

1
2 +

1
2x

1
2

]

≈ 1
2x

1
2
,

for large x.
(d) Using the three-term Taylor expansion for cosx,

1
(1− cos x)

1
2

≈
[
x2

2
− x4

24

]− 1
2

≈ 2
1
2

x

[
1 +

1
24

x2

]
(binomial expansion)

≈ 2
1
2

x
+

2
1
2 x

24
,

for small x.

5.10. (a) Expanding about x = 1,

ln x = ln[1 + (x− 1)] = (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 + · · · (using (5.4e)).

The series is valid for −1 < x− 1 < 1 or 0 < x < 2.
(b) For an expansion about x = 1

2π, write

cosx = cos[
1
2
π + (x− 1

2
π)] = − sin(x− 1

2
π).

Now use the Taylor expansion for the sine:

cosx = − sin(x− 1
2
π) = −(x− 1

2
π) +

1
3!

(x− 1
2
π)3 − 1

5!
(x− 1

2
π)5 + · · ·

The series is valid for all x− 1
2π, which means for all x.
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(c) For a Taylor series centred at x = 1, write

(1 + x)
1
2 = [2 + (x− 1)]

1
2 = 2

1
2 [1 +

1
2
(x− 1)]

1
2 .

Now expand the right-hand side using the binomial series (5.4f):

(1 + x)
1
2 =

√
2 +

1
2
√

2
(x− 1)− 1

16
√

2
(x− 1)2 + · · · .

The series is valid for −1 < 1
2 (x− 1) < 1, that is for −1 < x < 3.

5.11. (a) Since f(x) has a stationary point at x = c, f ′(c) = 0 and its Taylor series about x = c
will be

f(x) = f(c) +
1
2!

f ′′(c)x2 +
1
3!

f ′′′(c)x3 + · · · .
Approximately

f(x) ≈ f(c) +
1
2
f ′′(c)x2,

for |x − c| small. Hence if f ′′(c) > 0, then f(x) > f(c) close to x = c excluding x = c. The
conclusion is that x = c is a minimum. Similarly if f ′′(c) < 0, then x = c is a maximum.
(b) If f ′′(c) = 0, then we must look at the signs of higher derivatives. Suppose that f (N)(c) 6= 0 is
the first non-zero derivative (that is, f (r)(c) = 0 for r = 1, 2, . . . , N − 1). Hence, approximately,

f(x) ≈ f(c) +
1

N !
fN (c)(x− c)N .

If N is even and f (N)(c) > 0 then x = c is a minimum, whilst if f (N)(c) < 0 then x = c is a
maximum. If N is odd then the stationary point will be a point of inflection.

5.12. (Compare eqn (2.15).) Put (ex− 1)/x = f(x) for x 6= 0, and use the Taylor series (5.4b) for
ex:

f(x) = [(1 + x +
1
2!

x2 + · · ·)− 1]/x = 1 +
1
2!

x + · · · ,

for x 6= 0. Therefore limx→0 f(x) = 1, which is the ‘missing value’ at x = 0.
(b) Put (1− cos x)/x2 = f(x) for x 6= 0. From (5.4d)

f(x) =
1
x2

[1− (1− 1
2!

+
1
4!

x4 − · · ·)]

=
1
x2

(
1
2!

x2 − 1
4!

x4 + · · ·)

=
1
2!
− 1

4!
x2 + · · · (for x 6= 0)

Therefore limx→0 f(x) = 1
2 .

(c) Put [ln(1 + x)− x]/ sin x = f(x), x 6= 0. From (5.4c,e),

f(x) =
(x− 1

2x2 + · · ·)− x

x− 1
3!x

3 + · · · =
− 1

2x2 + · · ·
x− 1

3!x
3 + · · ·

=
x(− 1

2 + · · ·
1− 1

3!x
3 + · · · (for x 6= 0).

Therefore limx→0 f(x) = 0.
(Alternatively, rewrite f(x) in the form

ln(1 + x)− x

x

x

sin x
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and use the limits (2.13) and (2.14).)
(d) Put sin x/(1− cos x) = f(x), x 6= 0:

f(x) =
x− 1

3! + · · ·
1− (1− 1

2!x
2 + · · ·) =

x(1− 1
3!x

2 + · · ·)
1
2x2(1− 1

4!x
2 + · · ·)

=
1
x

2(1− · · ·)
(1− · · ·) .

This does not tend to a limit; it approaches ∞ as x → 0. Therefore this function does not possess
a fill-in value at x = 0 which would make it continuous.

5.13. (a)

lim
x→0

(1− x)12 − 1
(1− x)10 − 1

= lim
x→0

−12x + higher powers
−10x + higher powers

=
12
10

,

where the binomial theorem (4.7) was used to expand the powers of (1− x).
(b)

lim
x→0

sin x− x

sin x− x cos x
= lim

x→0

x− 1
3!x

3 + · · ·)− x

(x− 1
3!x

3 + · · ·)− x(1− 1
2!x

2 + · · ·)

= lim
x→0

− 1
3! + higher powers

1
3 + higher powers

= lim
x→0

− 1
3! + higher powers

1
3 + higher powers

= −1
2
.

(c) Put x = π + u. Then

lim
x→π

cosx + 1
x− π

= lim
u→0

cos(π + u) + 1
u

= lim
u→0

cosπ cosu− sinπ sin u + 1
u

(from (1.17a))

= lim
u→0

− cos u + 1
u

= lim
u→0

−(1− 1
2!u

2 + · · ·) + 1
u

= lim
u→0

u(
1
2

+ · · ·) = 0.

(d) Put x = u + 1
2π: then

lim
x→ 1

2 π

sin x− 1
cos 5x

= lim
u→0

sin( 1
2π + u)− 1

cos( 5
2π + 5u)

= lim
u→0

sin 1
2π cosu + cos 1

2π sinu− 1
cos 5

2π cos 5u− sin 5
2π sin 5u

(from (1.17a))

= lim
u→0

cos u− 1
− sin 5u

= lim
u→0

1
2u2 − · · ·
−5u + · · ·

= 0

5.14. Let

f(x) =
ex − 1

ex − 1− x
=

(ex − 1)/x

[({ex − 1)/x} − 1]
.

Since limx→0[(ex − 1)/x] = 1 (see eqn (2.15) or Problem 5.12a), f(x) approaches infinity as x → 0
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To determine the question of signs, return to the original form and take the following steps:
(i) ex − 1 is negative when x < 0 and positive when x > 0.
(ii) (d/dx)(ex − 1− x) = ex, which is greater than zero for all x. Therefore ex − 1− x is a steadily
increasing function for all x. Since also it is zero at x = 0, it must be negative when x < 0 and
positive for x > 0.
(iii) From (i) and (ii), f(x) is negative when x < 0 and positive when x > 0. Therefore f(x) → −∞
as x → 0 from the left, and f(x) → +∞ as x → 0 from the right.

5.15. (a)

lim
x→0

[
sin3 3x

1− cos x

]
= lim

x→0

(3x + · · ·)3
1− (1− 1

2!x
2 + · · ·)

= lim
x→0

27x3 + · · ·
1
2x2 + · · ·

= lim
x→0

27x(1 + · · ·)
1
2 (1 + · · ·) = 0.

(b) Let [(ex − 1)/x]
1
2 = g(x). We know from eqn (2.15) that

lim
x→0

[g(x)]2 = lim
x→0

[
ex − 1

x

]
= 1.

But also
lim
x→0

[g(x)]2 = lim
x→0

[g(x)g(x)] = lim
x→0

g(x) lim
x→0

g(x) = [ lim
x→0

g(x)]2.

Therefore
lim
x→0

g(x) =
√

1 = 1,

the positive square root being taken because g(x) is never negative.
(c)

lim
x→0

[
(2 + tan x) sin x

x(3− tan2 x)

]
= lim

x→0

[
2 + tan x

3− tan2 x

]
lim
x→0

[
sin x

x

]

=
2 + 0
3− 0

· 1 =
2
3

(where we refer to eqn (2.13))

5.16. Let f(x) = 3x− sin x and g(x) = x. Then

lim
x→0

f(x)
g(x)

= lim
x→0

f ′(x)
g′(x)

=
3− cosx

1

∣∣∣∣
x=0

= 2.

5.17. In the following, S represents the required sum.
(a)

S =
∞∑

n=0

1
n!

xn −
∞∑

n=0

(−x)n

= ex − (1− x + x2 − · · ·) = ex − 1
1 + x

,

the second term being a geometric series with common ratio (−x): see (5.4a).
(b) S = x3 + 1

2x4 + 1
3x5 + · · · = x2(x + 1

2x2 + 1
3x3 + · · ·). From (5.4e),

ln(1− x) = −x− 1
2
x2 − 1

3
x3 − · · · .

Therefore S = −x2 ln(1− x).
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(c) S = 1 + 1
2!x

2 + 1
4!x

4 + · · ·. But from (5.4b),

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + · · · and e−x = 1− x +
1
2!

x2 − 1
3!

x3 + · · · .

Therefore ex + e−x = 2S, and

S =
1
2
(ex + e−x) = cosh x

from (1.26).

5.18. In the following, S represents the required sum.
(a) From (5.4b)

e2 = 1 + 2 + 22

2! + 23

3! + · · ·,
and

e−2 = 1− 2 + 22

2! − 23

3! + · · ·,
so that

e2 − e−2 = 2
(
2 + 23

3! + 25

5! + · · ·
)
,

or
S = 1

2 (e2 − e−2).

(b) From (5.4b), S = e
1
2 .

(c) S is geometric with common ratio (− 1
4 ). Therefore, by (5.4a),

S =
1

1 + 1
4

=
4
5
.

Chapter 6: Complex numbers

6.1. (a) x = −1± i; (b) x = 3± i; (c) x = i or −3i.

6.2. The equation is a quadratic equation in x2. Hence x2 = −4 or 1. Taking square roots

x = ±1 or ± 2i.

6.3. The standard form of a complex number is a + ib, where a and b are real numbers. Thus the
answers are (a) 4 + 3i; (b) 3− 5i; (c) −11 + 15i; (d) 9 + 3i; (e) 1

2 + 1
2 i; (f) 1 + 6i; (g) −3− 4i: (h)

− 78
25 − 96

25 i; (i) −4− 4gm.

6.4. The boundary between real and complex roots in the (p, q) plane is the parabola p2 = 4q:
the roots are real if p2 ≥ 4q and complex if p2 < 4q. The roots are both real and negative in the
quadrant p > 0, q < 0.

6.5. (a) 4 + i; (b) 5 + 5i; (c) 1
5 − 7

5 i; (d) − 13
25 − 9

25 i.

6.6. (a) −4i; (b) −7 + 4i; (c) − 1
5 + 8

5 i; (d) − 1
5 − 8

5 i.

6.7. (a) 1− i; (b) 2i; (c) −2i; (d) 1
2 (1 + gm); (e) i.

6.8. Numerically to 3 decimal places the answers are: (a) 4.482 + 2.218i; (b) 16.233 − 0.167i; (c)
−1.248 + 2.728i; (d) 88.669; (e) 266.050 + 0.512i.

6.9. (a) |z1| = 2
√

2, Arg z1 = 3
4π; (b) |z2| = 8, Arg z2 = − 1

3π; (c) |z3| = 5, Arg z3 = − 1
2π; (d)

|z4| = 3, Arg z4 = π; (e) |z5| = 5, Arg z5 = arctan( 4
3 ).

6.10. The curves are: (a) the circle x2 + y2 = 1; (b) the straight line y = 2; (c) The circle
(x − a1)2 + (y − a2)2 = 1 where a1 = Re(a) and a2 = Im(a); (d) the parabola y2 = 4x; (e) the
ellipse 3x2 + 4y2 = 12 (need to square twice to remove the square roots); the complex formula
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expresses the well-known property of ellipses that the sum of the distances from any point on an
ellipse to the foci is a constant; (f) the straight line y = x for x ≥ 0; (g) the archimedean spiral
r = θ.

6.11. (a)
√

2 exp( 3
4 iπ); (b) 2 exp(iπ); (c) 3 exp(− 1

2 iπ);
(d) 14 exp(− 1

3 iπ); (e) 2
√

2 exp(iθ) where θ = arctan[(
√

3− 1)/(
√

3 + 1)];
(f)

√
2

1+
√

3 exp(− 1
4 iπ); (g) e2 exp(i);

(h)
√

2 exp(iθ) where θ = arctan[(cos 2 + sin 2)/(cos 2− sin 2)]; (i) 512 exp(iπ);
(j)

√
2 exp( 3

4 iπ).

6.12. Use the identity
ei(θ1+θ2) = eiθ1eiθ2 .

Hence

cos(θ1 + θ2) + i sin(θ1 + θ2)
= (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)
= cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2).

Equating real and imaginary parts it follows that

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

and
sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

For the other identities use
ei(θ1−θ2) = eiθ1e−iθ2 .

6.13.

z1

z2

z1+z2

z
-

1

z
-

2

z
-

1+z
-

2

-z2

z1-z2

z
-

1+z2

-z
-

2

z1-z
-

2

Figure 58: Problem: 6.13

6.14 For the general case with f(θ) = a cos θ + b sin θ,

f ′(θ) = −a sin θ + b cos θ,

and
f ′′(θ) = −a cos θ − b sin θ = −f(θ).

The first case can be obtained by putting a = 1 and b = i.

6.15. Using exponential forms for cos and sin, it follows that

tan a =
sin ia
cos ia

=
2[exp(ai2)− exp(−ai2)]
2i[exp(ai2) + exp(−ai2)]

=
1
i
· exp(−a)− exp(a)
exp(−a) + exp(a)

= i
exp(a)− exp(−a)
exp(a) + exp(−a)

= i tanh a.
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6.16. (a) The equation cosh z = 1 implies

1
2
(ez + e−z) = 1 ⇒ e2z − 2ez + 1 = 0 ⇒ (ez − 1)2 = 0.

Hence ez = 1. If z = a + bi (a, b real), then eaeib = 1 = e2nπi, (n = 0,±1,±2, . . .). Thus a = 0 and
b = 2nπ. The roots are given by z = 2nπi, (n = 0,±1,±2, . . .).
(b) Similarly sinh z = 1 implies

e2z − 2ez − 1 = 0.

Hence ez = 1±√2. If z = a + bi, then

ea+bi = ea(cos b + i sin b) = 1±√2.

It follows that sin b = 0 so that b = nπ, n = 0,±1,±2, . . .). Hence

ea cos b = ea cos(nπ) = (−1)nea = 1±√2,

so that
a = ln[

√
2− 1], (n odd) a = ln[

√
2 + 1] (n even) .

The complex roots are

z = ln[
√

2− 1] + inπ, (n odd) z = ln[
√

2 + 1] + inπ (n even).

(c) ez = −1 = e2n+1πi , (n = . . .− 2,−1, 0, 1, 2, . . .). It follows that the roots are

z = (2n + 1)πi (n = . . .− 2,−1, 0, 1, 2, . . .).

(d) cos z =
√

2 implies that

1
2
(eiz + e−iz) =

√
2 ⇒ e2iz − 2

√
2eiz + 1 = 0.

Hence
eiz =

√
2± 1 = (

√
2± 1)e2nπi, (n = 0,±1,±2, . . .).

If z = a + ib, then
e−b = (

√
2± 1), and a = 2nπ.

Hence the roots are
z = 2nπ − i ln[

√
2± 1].

6.17. (a) Log(1 + i
√

3) = ln(
√

(1 + 3)) + iArg (1 + i
√

3) = ln 2 + 1
3 iπ.

(b) We can write log z = Log|z| + i(Arg z + 2kπ) where k is an integer. Hence if log z = πi, then
|z| = 1 and Argz + 2kπ = π so that k = 0 and z = πi is the only solution.
(c) Log(ei) = ln(e) + 1

2πi = 1 + 1
2πi.

(d) elog z = eln r+iθ+2kπi = eln reiθ = reiθ = z. Therefore log z defines the set of functions inverse to
ez, as is suggested by the notation.

6.18. (a) 2i = ei ln 2 = cos(ln 2) + i sin(ln 2).
(b)

ii = ei ln i = exp[i ln(e
1
2 πi)] = e−

1
2 π.

This number is real: hence Arg(ii) = 0.
(c) The equation becomes

zi = ei log zei[Log|z|+i(Arg z+2kπ0] = e−(Arg z+2kπ)eLog|z| = −1 = e(2n+1)πi,

where n and k are integers. Hence

Log |z| = (2n + 1)π, Arg z = 0, k = 0.
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Therefore, the solutions are given by z = e(2n+1)π, where n is any integer.

6.19. Write the equation as

z5 = −1 = e(2n+1)πi, n, any integer.

The solutions are given by

z = exp
[
1
5
(2n + 1)πi

]
, (n = 1, 2, 3, 4, 5).

Other values of n merely repeat these solutions. On the Argand diagram the solutions all lie on
the unit circle centred at the origin at polar angles 1

5π, 3
5π, π, 7

5π, 9
5π.

-1 -0.5 0.5 1
x

-1

-0.5

0.5

1

y

Figure 59: Problem: 6.19

6.20. Denote the complex number by z in each case.
(a) z = 2e3+2i = 2e3[cos 2 + i sin 2]. Hence

|z| = 2e3, Arg z = 2, Re z = 2e3 cos 2, Im z = 2e3 sin 2.

(b) z = 4ei = 4[cos 1 + i sin 1]. Hence

|z| = 4, Arg z = 1, Re z = 4 cos 1, Im z = 4 sin 1.

(c) z = 5 exp[cos( 1
4π) + i sin( 1

4π)] = 5 exp(1/
√

2)[cos(1/
√

2) + i sin(1/
√

2)]. Hence

|z| = 5 exp(1/
√

2), Arg z = 1/
√

2,

Re z = 5 exp(1/
√

2) cos(1/
√

2, Im z = 5 exp(1/
√

2 sin(1/
√

2).

(d) z = e1+i = e(cos 1 + i sin 1). Hence

|z| = e, Arg z = 1, Re z = e cos 1, Im z = e sin 1.

6.21. Let z = ceα+iβ = ceα[cos β + i sin β]. Comparing with

x = 0.04e−0.01t sin 12t,

we can identify

c = 0.04, α = −0.01t, β = 12t +
1
2
π.

6.22. We have to express the sine as a cosine. Hence

i(t) = ce−0.05t sin(0.4t + 0.5) = ce−0.05t cos(0.4t + 0.5− 1
2
π),

= Re[ce−0.05tei(0.4t+0.5− 1
2 π)],

= Re[ce−0.05t+i(0.4t+0.5− 1
2 π)]
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6.23. (a) z2 = (x + iy)2 = (x2 − y2) + i2xy. Hence

Re(z2) = x2 − y2, Im(z2) = 2xy.

(b) First
z3 = (x + iy)(x2 − y2 + i2xy) = (x3 − 3xy2) + i(3x2y − y3).

Thus
z + 2z2 + 3z3 = (x + 2x2 − 2y2 + 3x3 − 9xy2) + i(y + 4xy + 9x2y − 3y3).

Hence
Re(z + 2z2 + 3z3) = x + 2x2 − 2y2 + 3x3 − 9xy2,

Im(z + 2z2 + 3z3) = y + 4xy + 9x2y − 3y3.

(c)

sin z = sin(x + iy) =
1
2i

[ei(x+iy) − e−i(x+iy)]

=
1
2i

[e−yeix − eye−ix]

=
1
2i

[e−y(cos x + i sin x)− ey(cos x− i sin x)]

= e−y sin x.

Hence
Re(sin z) = e−y sin x, Im(sin z) = 0.

(d)

cos z =
1
2
[ei(x+iy) + e−i(x+iy)] =

1
2
[eixe−y + e−ixey]

= cos x cosh y − i sin x sinh y.

Hence
Re(cos z) = cos x cosh y, Im(cos z) = − sin x sinh y.

(e) Using (d)

ez cos z =
1
2
ex+iy[cos x cosh y − i sin x sinh y]

=
1
2
ex(cos y + i sin y)[cos x cosh y − i sin x sinh y]

=
1
2
ex[(cos y cosx cosh y + sin y sin x sinh y) +

(sin y cos x cosh y − cos y sin x sinh y)].

(f) exp(z2) = exp(x2 − y2) exp(2xyi) = exp(x2 − y2)[cos 2xy + i sin 2xy]. Hence

Re[exp(z2)] = exp(x2 − y2 cos 2xy, Im[exp(z2)] = exp(x2 − y2 sin 2xy.

6.24. w = u + iv = f(z) = z2 = (x + iy)2 = x2 − y2 + 2xyi. Hence, equating real and imaginary
parts

u = x2 − y2, v = 2xy.

The hyperbolas map into the straight lines u = 1 and v = 2 respectively in the w plane.

6.25. Substituting for z it follows that

w = z +
c

z
= x + iy +

c(x− iy)
x2 + y2

=
(

x +
cx

x2 + y2

)
+ i

(
y − cy

x2 + y2

)
.
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For the circle |z| = 1, x2 + y2 = 1, so that

w = x(1 + c) + iy((1− c).

Hence u = x(1 + c) and v = y(1− c). Thus, on the circle |z| = 1

x2 + y2 = 1 =
u2

(1 + c)2
+

v2

(1− c)2
,

which is the equation of an ellipse.

6.26. The derivation of the formula for cos6 θ is given in Example 6.20. For sin6 θ use the identity

sin nθ =
1
2i

(
zn − 1

zn

)
,

where z = cos θ + i sin θ. Then

(2 sin θ)6 = −
(

z − 1
z

)6

= −
(

z6 +
1
z6

)
+ 6

(
z4 +

1
z4

)
− 15

(
z2 +

1
z2

)
+ 20

= 2 (− cos 6θ + 6 cos 4θ − 15 cos 2θ + 20) .

Finally
sin6 θ = 1

32 (− cos 6θ + 6 cos 4θ − 15 cos 2θ + 20).

6.27. The displacement is given by

x = Re z = e−0.2t cos 0.5t.

Hence x = 0 where cos 0.5t = 0. The required zeros of x are given by

0.5t =
1
2
(2n + 1)π, for integer n .

Hence t = (2n + 1)π, (n = 0,±1,±2, . . .).
The velocity is given by

dx

dt
=

d

dx

[
e−0.2t cos 0.5t

]
= −e−0.2t[0.2 cos 0.5t + 0.5 sin 0.5t],

or, alternatively, by

Re
dz

dt
= Re

[
d

dt
e(−0.2+0.5i)t

]

= Re
[
(−0.2 + 0.5i)e−0.2t(cos 0.5t + i sin 0.5t)

]

= −e−0.2t[0.2 cos 0.5t + 0.5 sin 0.5t].

6.28. If z = 2 + i is a solution then so is its conjugate 2− i since the coefficients of the polynomial
are real. Therefore (z − 2− i)(z − 2 + i) = z2 − 4z + 5 is a factor. Hence

z4 − 2z3 − z2 + 2z + 10 = (z2 − 4z + 5)(z2 + 2z + 2).

The other solutions are given by z2 + 2z + 2 = 0, that is, z = −1± i.

6.29. (a)

S = 1− sin θ +
1
2!

sin 2θ − 1
3!

sin θ + · · ·

= Im

[ ∞∑
n=0

(−1)neniθ

n!

]
= Im

[ ∞∑
n=0

zn

n!

]
,
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where z = −eiθ. The infinite series is the Taylor series for the exponential function ez (see Section
5.4). Hence

S = 1 + Im[ez] = 1 + Im[exp(−eiθ)]
= 1 + Im[exp(− cos θ − i sin θ)]
= 1− e− cos θ sin(sin θ).

(b) In this case

T = 1 + 2 cos θ +
22

2!
cos 2θ +

23

3!
cos 3θ + · · ·

=
∞∑

n=0

2n

n!
cosnθ = Re

[ ∞∑
n=0

2n

n!
eniθ

]

Using the Taylor series for an exponential function;

∞∑
n=0

2n

n!
eniθ =

∞∑
n=0

(2eiθ)n

n!
= exp[2eiθ] = exp[2 cos θ + 2i sin θ]

= e2 cos θ[cos(2 sin θ) + i sin(2 sin θ)]

Hence
T = e2 cos θ cos(2 sin θ).
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