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Chapter 1: Standard functions and techniques

1.1. (a) y=at for —-1.5 < < 1:
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Figure 1: Problem 1.1a

b)y=z(l —x) for -1 <z < 2:

Figure 2: Problem 1.1b

(c)y=1+az+z%for|z—1] <2
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Figure 3: Problem 1.1c

(d)y=]z—1for -3<z<3:

Figure 4: Problem 1.1d
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Figure 6: Problem 1.1f

(e) y=|z|+ |z — 3| + & +2| for -3 <z < 4:
() y=|lz| = 1| for =2 <z < 2:
(8) y = v/(2? +1) for |z < 2:

Figure 7: Problem 1.1g

1.2. (a)y=—-22+3; (b)y=1; (c) y= 3z — 1. The intersections occur at A : (2,1), B: (3, 1),

C':(1,1). The side lengths are: AB \/13 BC =15 CA=1.

Figure 8: Problem 1.2

1.3. (a) Slope is 1, and the line cuts the axes at (0,—1) and (1,0).
(b) Slope is g, and the line cuts the axes at (0, — %) and (2,0).
(c) Slope is —2, and the line cuts the axes at (0, —%) and (2 0).

14. () y=x+1; (b) y=—22—4; (c) y =0.52 — 0.5; (d) y = 3z — 1; (e) the slope of the line
must be —%: Y= —ia: + %

1.5. The products of the slopes in each case must be —1. The slopes are: (a) —3 and 2; (b) 2 and
—2:(c) 2and —1; (d) 1 and —1.

1.6. At the point of intersection, z + y + 1 = 0 and 2x — 3y — 2 = 0, so the line

(x+y+1)+a2rx—-3y—2)=0



must pass through this point, which has coordinates (—$, —%). The straight line joining this point

5
o(1,1)is
2y =3x — 1,

1
with oo = 5

1.7. (a) Centre at (0,0), radius 3; (b) centre at (1,0), radius 2; (c) centre at (1,1), radius /23;
(d) centre at (3, —3), radius 3+/11.

1.8. (z—1)?+ (y+2)*=09.
1.9. Eliminate one of the variables in each case and solve the resulting quadratic equation.

(a) (2,2) and (2, —2);
(b) Eliminate y, so that = satisfies the equation

22+ (20 4+1)% —20+22x+1)—4=0, or 522 + 62 —1=0.
The points of intersection are
(3(=3—/14,-1—=2y/14) and (+(—3 + /14, -1 + 2y/14)

(c¢) (32, 31/2), one point only since the line is tangential to the circle.

1.10. To three decimal places, the distances of the points from the origin are
1.060, 0.993, 1.011, 0.896, 1.124.
The average value of these distances is 7 = 1.017. The equation of the circle is
22 4+ 9% =r? = 1.034.

1.11. (a) e =H(t+1)-H(-1).
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Figure 9: Problem 1.11a

(b) x =sgn(l +1t) +sgn(l—t).

g0

(c) & = tH(t - 1).

(d) (#* = Dlsgn(t + 1) +sgn(1 — t)].

1.12. (a) f(£) = H(2 —t) + H(t + 1) — 1; (b) f(t) = 2H(t);

(d) £(t) = (38— H(3 — ) + (t — 2)H(2 — t) + (t — 1)H[1 — ) — tH(—1).



Figure 12: Problem 1.11d

1.13. (a) g7 radians; (b) 27 radians.

1.14. (a) 1//2; (b) 1; (c) 0; (d) —1/v/2; (e) v/3/2; (£) —/3/2; (8) —v/3/2;
(h) —/3/2.

1.15. (a) Using the identity cos® B = (1 + cos2B)
costA = i(l + cos24)? = i(l +2cos 24 4 cos? 24)
= i(l + 2cos2A + %(1 + cos4A)) = é(?) +4cos2A + cos4A).
(b) Use the identities sin® B = (1 — cos 2B) and cos? 2B = 1(1 + cos 4B):

1 1 1
sin A = 1(1 —2cos2A + cos? 24) = g - §COS2A+ §C084A.

1.16. (a) cos(z + 2m) = cosz cos 37 — sinasin 17 = sinz; (b) cosz; (¢) —cosz; (d) —cosa (for
both); (e) sinz (for both).
1.17. (a)

CcosST + cosy = cos[%(z +y)+ %(az —y)] + cos[%(x +y) — %(x —1)]

= cosl(x + )] cosly ( — )] — sinf (w + y)] snl3 (x — y)] +

cos{3 (2 + )] coslz (¢ — )] + sinfz (& + )] sin[5 (z — )]

2 cos[%(x + )] COS[%(CU =yl

Eb) sinz — siny = 2sin[§(z — y)] cos[3 (z + y)].

¢) cosz — cosy = —2sin[%(z + y)] sin[5 (z — y)].

)
1.18. (a) z =nm, (n=0,%+1,4+,2,...);
(b) z=32n+ )7, (n=0,+1,4,2,...);
(¢) x=2nm, (n=0,£1,£,2,...);
(d)z=12n+1), (n=0,+1,4,2,...);
( x:fmr, (n=0,%£1,%+,2,...);
(f) «



amplitude angular frequency period phase

() 2 0.2 107 3.2
(b) 1.5 0.2 10r  —0.48
(c) 3.87 0.2 100 —0.135
(d) 1 1 27 ™

1.20. (a) F(z) = 3/==; (b) F(z) = 3(z — ?;), (c) F(z) = 1 arcsin;
(d) F(z) = arcsin(l%a:); (e) F(x) = [arccos z]2;
(f) F(x) = arccos [2 arcsin ;

F(z)=2% (h) F(z) = =5 + /(z + 7).

)
1.21. The graph shows y = 2 — 2 + 1 (the dashed curve) and its inverse.
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Figure 13: Problem 1.21

1.22. (a) = 3In3; (b) 2 = 2e% () x =e7% (d) 2 = -1 In3;
(e) the equatlon is the same as (e* — 1)2 = 0: hence z = 0;
(f) =25 (g) © =2/17; (h) x = £/2; (i) x = £/(1 + €°);
EJ)) (11;3)/(1n2); (k) 2 =—(In2)/(2In3); (1) z = § In[4 + /17];
no solutions.
1.23. 2% = evIn2,

1.24. Consider two values of x, say z1 and xo, where x7 > xo. Then if 107t = 2 x 10%2, it follows

that
In2

10°1 772 =2 — Ty = —
, O X1 Io 11110’

an interval which is independent of 1 and x5.

1.25. (a) (z —1)2+4%2 <09.

Figure 14: Problem 1.25a

>0,and x +y < 1.
2/9) <1.

sinhy e¥—e™¥
coshy e¥+e ¥’

r =tanhy =
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Figure 16: Problem 1.25¢

where —1 < x < 1. Hence

1 1
(1—x)e2y:1+xsothaty:21n{ —l—x}

11—z
as required.

1.27. From triangle ABC

AC ABsin6 + /(BC? — AB? cos? §)

= 2.5[sinwt + /(4 — cos® wt)] cm,

where 8 = wt. The angular frequency w = 4007 /3.

1.28. z = 5 cos(wt — 0.927). The amplitude ¢ = 5 and the phase angle is ¢ = —0.927.

1.29. f(0) = 2 implies C = 2 and f(1) = 0.5 implies 0.5 = Ce™ = 2e~*. Hence a = In4. Also
f@2) =5

1.30. The tidal period is 27 /0.5 = 12.57 hours. We require the times when the depth is 2m in one
period, which are given by solutions of

2 =5+ 4.5sin0.5¢ so that sin0.5¢t = —2.

Figure 17: Problem 1.25d



Figure 18: Problem 1.25e

Two consecutive times are 11.11 hours and 7.74 hours. Hence the yacht can float free for 9.20
hours in each tidal period. The yacht floats when sin 0.5¢ > —%. It is helpful to sketch y = sin 0.5¢
and y = —% and plot their intersections.

1.31. (a) The cardioid r = 0.5(1 + cos 6):

Figure 19: Problem 1.31a

(b) The folium r = (4sin® 6@ — 1) cos 6

(c) r =sin26:

Figure 21: Problem 1.31c

(d) The Archimedean spiral r = 0.046:
]

e) The equiangular spiral r = 0.1e

.32. (a) sgn (sinx):

( 0.16.
(b) sgn cos 2x:



Figure 23: Problem 1.31e

(g) H(z — m)sinz:
1.33. Let the points be A : (=7,3), B : (1,—3) and C : (4,1). The slope of AB is —3 and the

slope of BC'is %; the product of the slopes is —1 which means that ABC' is a right angle. Let D
be the fourth vertex. Then the equations of the lines AD and DC are

y—3=3(@@+T7)andy—1=-3(z—4),

or
3y —4x —37=0and 4y + 32z — 16 = 0.

These lines intersect at the point D : (—4,7)

There is a general formula buried here, if you notice that the coordinates of D are (—7 + 4 —
1,34+1—(-3)).
1.34. (a) periodic, period %W; (b) periodic, period 2m; (c¢) periodic, period 2m; (d) not periodic;
(e) periodic, period 27; (f) periodic, period 7; (g) not periodic; (h) periodic, period 7; (i) periodic,
period 7; (j) periodic, period 8; (k) periodic, period %, since sin 3t has period %7‘(‘ and cos 9t has
period 27 but has the period of sin 3t; (1) not periodic.

1.35. (a) neither odd nor even; (b) even; (c) odd since sinz is odd; (d) odd since product of odd
and even functions; (e) even; (f) even; (g) neither odd nor even.

1 1 . 1 2 . 1 1 .
1.36. (2) 55— ~ s5@ry D)~z o2 () 2+ o

Figure 24: Problem 1.32a



Figure 26: Problem 1.32c

(d) %_%Jrl+2(zl+2); (e) 2(:;:171) _%Jrﬁ?
() 4 — smr2? — 1y’ @) 311 = Gig
1) sz + 3y O & — 721 + o
()@= —z+zr

1 z+1 . 1 1—z . 1 246
1.37. (a) 3 — w=iom (0) sy T oz () —sam + setere)
1.38. (a) 25 — 735 (b) # = 3 — =5 + 55

9 1 9
(c) 1+ 83 T 8@tD — 1@3)"
1.39. (a) 4+8+16+32 (b) 1+ 2 +1+ L+ 1,
(c) z + 222 + 323 + 4.

1.40. For (a), (b), (c), (e) and (f) proceed as in Example 1.17.
(a) 2[1 = (3)°] = 3%

(b) 3 3[1=(3)°] = 75
(c) (1—e™?)/(1—e?).
(d) The sum is 642. More generally, let

T+222 4+ -+ =T.

Then
T—2T=(1-2)T=xS—nz"

where S is the sum of the geometric series

1+z+---42"

y
1
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Figure 27: Problem 1.32d
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Figure 28: Problem 1.32¢

Figure 29: Problem 1.32f

For the given problem = = 2.

(©) ~43[1 — (~4)° = — 34k

(F) 2[2=08] 4 31100y — 11958

1.41. The series can be expressed as

x+x5+x9+~--+x41:x2(x4)".

n=0

Using (1.33), the sum of the series is
44

1—x
T
1.42. Let D be the foot of the perpendicular on to the side AC. Then
¢* = DB? + DA? = DB? + (AC — DC)2.
But DB = asinC and DC = acos C. Therefore
A = a*sin®C + (b—acosC)?
a?sin® C + a® cos? C + b — 2abcos C
= a?+b®—2abcosC

1.43. The ratio of any pair of successive terms is

flto+ (n+1)T)  Aecltot(n+1)T)
flto+nT) AecltotnT)

'°;i} \j \/

Figure 30: Problem 1.32g
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which is independent of n. The common ratio is e’ .

1.44. (a) 1.111... =1+ {5 + {55 + -+ is an infinite geometric series with common ratio {5 and
sum 1/(1 — 15) = 11/9. (b) The common ratio is 1/10, and as a fraction the sum is 1; (c) the
common ratio is 1/100, and as a fraction the sum is 1/99; (d) the common ration is 1/100, and
as a fraction the sum is 1/11; (e) the common ration is 1/10 and as a fraction the sum is 2/3; (f)
the notation means 2.72 = 2.727272...: the common ratio is 1/100 and the sum represents the
fraction 30/11.

1.45. The sum of the infinite geometric series is
m

> x
Zmn:l—w’ |z < 1.

n=m

(a) 2; (b) 10/9; (c) e/(e = 1); (d) F; (e) 3/5.

1.46. (a) 24, 720, 5040; (b) 12; (c) 720; (d) 220; (e) 120; (f) 1, 3, 3, 1.
(a) (
(a)

1.47. (a) (i) n(n —1); (ii) (n+ D)n; (b) (i) 2™m!; (ii) (2m + 1)!/(2™m]).

1.48. (a) (i) 120; (ii) 504, (iii) 1205 (iv) 35; (v) 35; (vi) 252; (vii) 4950; (viii) (170) =19 C7 = 120.
(b) P, = (n”i'n), = 01 = n! Also ,P,_1 = ﬁ'ﬂ), = ’f—,‘ = n!l. Consider a collection of n
different letters. The number of different words of length n which can be made without repetition
is P, = nl. Suppose that the letters are A, B,C,... . Suppose that the first letter of an n

character word is A. Then the remaining n — 1 letters can be chosen in (n — 1)! ways. Repeat
the procedure for words with first letters B, C' and so on. We obtain all words with n characters
again, and there are n(n — 1)! = n! of them.

1.49. (a) 4P = 41; (b) 4C5 = 4; (¢) 4* = 256; (d) 20; () 4 Py-+aPs+4Pota P = 4+12+424+24 = 64.
(f) Without repetitions the number of combinations is

1C1+4Cr+4C3+4C4=44+6+4+1=15.

With 2 letters the same there are 4 + 12 + 12 = 28 possibilities, and with 3 letters the same there
are 4 + 12 = 16. Hence the total number of combinations is 15 4 28 + 16 = 59

1.50. (a) With no E’s there are 4P5 = 24 words, with 1 E there are 3 x4 P, = 36, and with 2 E’s
there are 3 x4 P, = 12. Hence there are 24 + 36 + 12 = 72 words.

(b) Label six letters A, B,C, D, Ey, E5. Then the number of words treating E; and Fs as distinct
is 6! = 720. The letters F; and E5 can be interchanged in 2! = 2 ways. Hence the number of
six-letter words is 720/2 = 360.

1.51. (a) There are 5Py = 5!/1! = 120 distinct four-digit numbers.

(b) To be divisible by 5, the last digit must be 5. The preceding 3 digits can be chosen in 4 P3 = 24
ways. Hence there are 24 numbers divisible by 5.

(c) To be divisible by 2 the final digit must be 2 or 4. Asin (b) the number of numbers is 24 P; = 48.
(d) The numbers contain either 1, 2, 3 or 4 digits. There are 4 one-digit numbers (excluding
zero). For two-digit numbers we must exclude those starting with zero since they are the same
as the one-digit numbers. Hence there are 16 distinct two-digit numbers. Similarly there are
44P, = 48 three-digit numbers and 4,P; = 96 four-digit numbers. Hence the total number is
4416 + 48 4+ 96 = 164 words.

1.52. (a) Without restriction, the number of distinct combinations of personnel (no distinction
being made as to which particular post is assigned to each person) is ;Cy = 7!/(4!3!) = 35.

(b) There is one selection with 4 females, 12 with 3 females and one male, 18 with 2 females and
2 males and 4 with one female and three males. (b) The posts can be filled in the following ways:
4Cy = 1 with 4 females; 4C53C, = 12 with 3 females and one male; 4C5 3C5 = 18 with 2 females
and 2 males; 4C13C5 = 4 with one female and 3 males. This confirms the 35 combinations of
personnel.

11



1.53. (a) We may model the problem by thinking of an ordered line of N pool balls, of various
colours (types) denoted by A, B, ..., the number of each colour being N4, Ng,... . The number
of possible orders (permutations) for the individual balls is N!, but we cannot distinguish visually
between balls having the same colour, so many of the N! orders will look identical.

Suppose that the number of distinguishable arrangements is M. Each one of of these corresponds

to a possible N4!Npg!... permutations within the separate colours, so that
N!= M[N4!Np!...], or M = L
Ny!Np!. ..
(b) We require the total number of different combinations, involving every number 1,2,..., N of

balls. Consider any one of these: it contains 0 or 1 or 2... or N4 (that is, (1 + N4) possibilities)
of type A; 0 or 1 or 2... or N of type B; and so on. The number of possible combinations is
therefore

(14+ Na)(1+Np)... — 1,

in which the term —1 is introduced to exclude the case of an all-zero ‘combination’.

1.54. (a) The national groups may be ordered (permuted) in 4! ways. By allowing for 5! permu-
tations possible within each group we obtain

5151515141 = 5141 = 2880

distinct line-ups.
(b) The number of distinct orderings of the 4 groups around a circular table is (4 — 1)! = 3! (see

Example 1.23). All possible permutations within the groups are then to be allowed for, so the total
number of arrangements is 5!3! = 720.

1.55. (a) (Prizes identical) The number of combinations of 3 distinct prizewinners out of 10
ehglbles is 1003 = 120.
(b) (Prizes different) Call the Prizes Py, P», Ps. P; may go to any of 10 people; with each allocation
P, may go to any of the remaining 9; then Ps to any of the remaining 8; all of these distributions
being distinct. The total number of possibilities is 10 x 9 x 8 = 720.
(c) (Prizes equal, distribution arbitrary) There are 3 types of distribution which can occur:

(i) One person gets all the prizes: there are 10 possibilities.

(ii) There are 10 persons who might get 2 prizes. With each of these there are 9 persons eligible
for the other prize. There are therefore 9 x 10 = 90 possibilities.

(iii) Three different people get prizes. Part (a) gives the number: there are 120 possibilities.

Therefore the total number of possibilities is

10 +90 + 120 = 220

(d) P, may go to any of the 10; similarly with P; and Ps. Therefore the total number is 10x10x10 =
1000.

1.56. (a) The table shows the permissible numbers in the 3 categories. The number of combinations
possible within each category are given in brackets.

Accountants Lawyers Doctors Committees

2
3

== =N NN
S e e e N
[\
—~
— o Wo NN

NN ===
e R N N N

Check: 7C4 =35
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Committees with exactly 1 accountant: 2 + 12 + 6 = 20.
Committees with exactly 1 doctor: 6 + 6 = 12.
(b) To locate the fallacy consider combinations of the 7 letters A, B,C, D, E, F,G, and take n = 4
and r = 3. Take, say, the r = 3-fold combination ABC and supplement it by, say, the unused letter
D, to form the combination ABC'D. In the fallacious construction this will be counted several
times; for example, the same combination is counted again when it arises from supplementing
BCD by A.

The result is shown to be false by simply substituting the given numbers: only one contradiction
is sufficient to dispose of it.

1.57. (a) Refer back to (1.44).
(b) (1 — )% =1— 6x + 1522 — 2023 + 152* — 625 + 26.

(c)
(x+2 1 = 2°+52% " +102%272 +
1022273 + bz 4 4+ 277
= 2°+52° + 102+ 102~ + 5272 +27°
(x—271)° = 2% 452 (—2)" + 1023 (=) 2 + 102% ()23 +
Sx(—x) "t 4 (—x)°
= 2% —52° + 102 — 100 + x5 — 27"
1.58.
(1.01)* = (1+0.01)"°
= 1410 x (0.01) +45 x (0.01)* + 120 x (0.01)> 4 -
14 0.1+ 0.0045 + 0.00012 4 --- = 1.105
to three decimal places.
Similarly
(0.99)® = (1-0.01)%
= 1-8x(0.01) + 28 x (0.01)* — 56 x (0.01)* +---
1 —0.08 4 0.0028 — 0.00056 + - - - = 0.923

to 3 decimal places.

1.59. Use the binomial theorem in the form
1+2)"=1+4,Cixz+,Co+ -+, Cpz™

(a) Put x = 2, so that
3" =1+4+2,0,42%,Cs+ -+ 2" ,Cra".

For the second result put x = —1:
0=1—-,C1+,Co—---+ (—1)” nCrax™.

(b) Obtain two series with # =1 and z = —1. Then add and subtract the series.
1.60. F(n,k) is defined for n =0,1,2,...,and k =0,1,2,...,n by

F(mk) = nCO+n+1CI +n+202+"'+n+kcko (1)

A certain formula, namely
F(n, k) = nir+1Ck (ii)

13



is suggested for the sum in (i), and its truth for small values of k can be confirmed by calculation;
for example, from (i)

n!
F(n,O) =nCo = oln! =1=,41Co, (111)
!
F(n,1)=,Co+ nt1C1 =1+ (nl—';') =n+2=,..C;

and so on.
To prove the truth of (ii) for all values of 0 < k < n, recast (i) into the form

F(na k+ 1) = F(TL, k) + n+k+1Ck+17 (IV)

a ‘recurrence formula’ enabling us to advance one step at a time in k, starting, for example, with
F(n,0) and finding F(n,1), F(n,2),..., successively.

Now suppose we have verified the formula (ii) for any one particular value of k, say for k = K;
that is, we know somehow that

B _ (n+K+1)!
F(n,K) = n4k+1Ck = m (v)
(for all n). Then from (iv)
Fin,K+1) = F0n,K)+4 n+rx+1Cx+1

= 1k+1Ck + nykx+1Cx 41 from (v)
n+K+1)  (n+K+1)

Kl(n+1)! (K 4+ 1)In!

B (n+K+1)!< 1 n 1 )
Kln! n+1 K+1
(n+ K +2)!

T KA+ DIn+1) n+K+20K+1

We have proved that if (iv) is true for k = K, it is true for ¥ = K + 1, where K may take any
value in 0 < K < n.

But we verified in (iii) that (iv) holds good when k = K = 0. Therefore by (vi) it is true when
k=K +1=1, so by (vi) again it is true when k = K + 2 = 2, and so on. It is therefore true for
all k.

1.61. Using partial fractions

1 1 1 1
2+3z+2 (1+2)2+x) 1+z 2+az
Write as 1 1 1
E—— 71771 - —1
22+ 3x +2 (I+2) 2( +2x) ’

and expand both terms using (1.37) for infinite geometric series. Hence

1 9 3 1 r z? 23
oy e S A 1C il S R R
1 1 1 1
= _ — 1—7 1—7 2— 1_7( 3 Tt
; ~(mgglet (=gl —(l—gog)+

1.62. Vi = A(1+ R), Vo = Vi(1+ R) = A(1 + R)?, etc. In pounds: for 1000 @ 3% p.a.;

Vs = 1000(1 + 0.03)° = 1159.27, Vio = 1343.92; Vi5 = 1557.97.

14



(b) Let the period start at an arbitrary time Tp. Then

VT0+T (1 + R)to T

= = (1 T
VTO (1 + R)To ( * R)
(¢) Let T be the doubling period, so that from (b)
In2
T2 pr— = e—
(1+R) 2 and T5 e

If R = 3%, Ty = 23.4 yr; if R = 6%, Tp = 11.9 yr; if R = 9%, Th = 8.0 yr.
For the ten-times period, T1p = In10/In(1+ R). If R = 6%, then T30 +1n10/1n1.06 = 39.6 yr.

1.63. If the income is withdrawn annually, it has been allowed to accrue to the fund through the
previous year with interest at the going rate R annually, or 7 monthly, the relation being

A1+ R)=A(1+7)"
where A is the value of the fund at the start of that year. By the binomial theorem,
(A+r)2=1412r------ > 1+ 12r,

so R > 12r.

1.64. If the interest is payable monthly at the rate of r3; per month, the interest on a fixed debt
D over any 12-month period is D(1 + rj;)'2. This is equal to D(1 + R) where R is the annual
equivalent rate (AER). Therefore R = (1+7)12—1. If rpy = 1%, R = 1.0112—1 = 0.126 (12.6%).
If rar = 3%, R = 0.425 (42.5%).

1.65. (a) After N complete years the initial payment A has drawn interest for N yrs, the second
payment for N — 1 yrs, and so on, and the (N — 1)th payment for 1 yr. The value Vi of the fund
is then given by the geometric series

AQ+ RN + AQ+ RN 4.+ A1+ R)
= AU+R{1+(1+R) + - +(1+RN1}
= AQ+R{1+RY -1}/R.
(b) N =10, R = 5%. We obtain

100(1.05)(1.05° — 1)
0.05

Vio = = £1320.68,

equivalent to a gain of 32% on the total investment of £1000.

(¢) M investments of 24, at 2-year intervals. Formula (a), with the fund value increasing by a
factor (1 + R)? in each interval, becomes
(24)(1+ R*{((1 + R)*M — 1}

{1+ R)2 -1} '

Vour =

Using the data in (b) we obtain

~200(1.05)%(1.05'° — 1)

= £1352.88.
1.052 — 1

Vio

Chapter 2: Differentiation

2.1. Below are some sample values for three values of x on either side of the point where the
tangent is required. (The exact value of the slope is also given here.)

15



(a) y = 23 at (1,1).
x 094 096 0.98 1.02 1.04 1.06
chord slope ‘ 2.82 288 294 3.06 3.12 3.18
The slope is 3.

(b) y =z at (1,1).
x | 085 090 095 1.025 110 115
chord slope | 0.520 0.513 0.506 0.494 0.488 0.483
The slope is 0.5

(c) y =cosz at (37,1/y/2).
T — i?r -0.09 -0.06 -0.03 -+0.03 0.06 0.09
chord slope | 0.674 0.685 0.696 0.718 0.728 0.738

The slope is 1/4/2 = 0.707

(d) y =€ at (0,1).
x -0.15 —-0.10 -0.05 0.05 0.10 0.15

chord slope | 0.929 0.952 0975 1.025 1.052 1.079
The slope is 1.

(e) y =e** at (0,1).
x -0.15 -0.10 -0.05 0.05 0.10 0.15
chord slope | 1.728 1.813 1.903 2.103 2.214 2.332
The slope is 2.

(f) y =23 + 22 at (1,2).
x 094 096 098 1.02 1.04 1.06

chord slope | 3.33 3.38 3.44 3.56 3.62 3.68
The slope is 3.5, the sum of the slopes in (a) and (b).

(g) y=Inzx at (1,0).
x | 094 096 098 1.02 104 1.06
chord slope | 1.031  1.0206 1.010 0.990 0.981 0.971
The slope is 1

2.2. (a) For y = 3x at (2,6),

%: lim 579_ lim W — 3.
dx sz—0dx  s2—0

(b) For y =3 — 2z at (1,1),

Y B [Bo20r8 03],

= lim — = l1m
dz Sz—0 0 dx—0 ox

(c) For y = 322 at (1, 3),

2 2
% — lm 3(1+dx) 3(1)
dx 52—0 ox
= lim [6 + 3dz] = 6.
ox—0
(d) For y = 23 at (1,1),
% _ oy (1+6z)%—13
de 65210 ox
. {35:5 +3(0z)% + (59:)3}
= lim
dx—0 ox

= [Jim [3+4 30z + (6x)%] =3

16



(e) For y =1/x at (2, %),

(f) For y = 3z + 222 at (1,5),

dy
dx

dy g AL
de sz—0dx |240x 2
—  lim 771 ffl
T a0 |2Q2+0x)| 4
2 _3_
1mﬁxao{ﬂl+&w+2%+5@ 3-2
x

lim [3+ 4 + 262] = 7.
6x—0

(g) For y = (1 +22)? =1+ 4x + 422 at (—1,1),

dy . 1 2
W = 52210 5x[1+4(—1+5x)+4(—1+5x) —14+4—14]
= 5hmo[4 +4(—2+ (02)%] = —4.
2.3. (a) y = 322
S —[3(x + 02)% — 327
dz 6x—0 0T
= lim [6z + 36x]
dx—0
= 6.
(b) y ==2°
dy . 3 3
R (R L
= 611m0[3z2 + 3z6x + (02)?]
= 322
(¢c)y=1/z.
dy _ o1 1 1
dz 6200z x+ér =z
- I -1
T a0 z(x + 0x)
= —1/x2.
(d)y=z+3.
dy 1 1 1
o lim — oy -
dw i, Gl Fowtg) = lw 5]
= 1.
(€)y=z+(1/z).
dy : 1
b~ 5w K“‘S“Haa) B (“xﬂ
. 1
n élzggo [1 2% xém]
1

17
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(f) y =222 - 3.

dy . 1 2 2
T - 5111§0 6x[(2(x+5m) 3) — (22° — 3)]
= lim [4z + 20z]
6x—0
= dz.

2.4. Let = f(t) be the displacement function in each case. The average velocity over the interval
t to t + &t equals

[f(t+6t) — f(t)]/ot.

(a) x = f(t) = 3t. Whent =1
Interval 6t 0.5 0.25 0.1 0.01

f(1+46t) 45 3.75 33 3.03
Average velocity | 3 3 3 3

(Since f(t) is linear in ¢ the velocity 3 at all ¢.)
(b) 2 = f(t) = 5t>. When t = 3.
Interval dt 0.5 0.25 0.1 0.01
f(3+ 1) 61.25 52.81 48.05 45.35
Average velocity | 32.5 31.25 30.5 30.05
The values are approaching the limit 30.
(c) z = f(t) =2t — 5t>. When t = 1.
Interval §t 0.5 0.25 0.1 0.01

F(1+ %) —-825 3.7 —-3.85 —3.08
Average velocity | —10.5 —9.25 -85 —8.05
The limit is —8.
(d) z =2t — 5t2. When t = 0.2.

Interval §t 0.5 0.25 0.1 0.01
£(0.2 4 6t) —-1.25 —-0.3125 —0.05 —0.0005
Average velocity | —25 —1.25 -0.5 —0.05

In the limit the velocity is zero.

2.5. (a) dy/dz =1 for all z; (b) dy/dx = 322 so that dy/dz = 27 at z = 3;
(c) dy/dx = 423 so that dy/dz = 32 at 2 = 2 and —32 at & = —2.

2.6. (a) y = z; dy/dx = 1: the graph is a straight line at 45° to the z axis.

Figure 31: Problem 2.6a

(b) y = 2%; dy/dx = 2z: the slope is negative for < 0 and positive for # > 0, and increases from
—oo to +oo: the curve is a parabola.

18



Figure 33: Problem 2.6¢

(c) y = 23; dy/dx = 3z?%: the slope is positive except at z = 0 where it is zero.
(d) y = z*; dy/dx = 423

© o oo
Nb@mb—‘<

1T -0.5 ‘ 0.5 X

Figure 34: Problem 2.6d

(e) y = 2%; dy/dx = 5z*.

Figure 35: Problem 2.6e

2.7. For the displacement = = t3, the velocity of the point is dz/dt = 3t% and its acceleration is
d?z/dt? = 6t. The graph of acceleration against time is a straight line.

2.8. (a) If V = 2773 then dV/dr = 4712,
(b) If S = wd? then dS/dd = 2nd.

(¢) If E = kT* then dE/dt = 4kT3.

(d) If I = V/R then dI/dV = 1/R.

() If H = RI? then dH/dI = 2RI.

(f) If V = RT/P then dV/dT = R/P.

2.9.

(a) —(3:62—2:64—1)—3—(x2)—2i(x)+i(1)—6x—2
T T T dsz dx dz a



d
(b) — (2" =32+ +1)=72% —182° 4+ 1.

dz
(<) Cero)=1

(d) %[m(x—l)]z%(aﬂ—x)z%a—l.

() ;—x[x2(x2+1) = %[x4+x2+1] — 40?1 20
() %(amQ + bz +¢) = 2ax + b.

(g). %[(zfl)Q]:%(x272x+1):2z72.

2.10. Let m; and msy be the slopes of the curves at the point of intersection, and check that
mims = —1. Then

(a) m; = (d/dz)(1+x—2?)=1-2v=—-latx =1,

my = (d/dz)(1 — 2z +2%) = =1+ 22 =1 at z = 1. Hence mymz = —1 as required.
b)ym=—-z=-1,me=1latz=1.
(c)m=—-zxz=-1,me=xz=1latx=1.

2.11. (a) The curves y = 2% and y = 1 — 2% intersect where 22 = 1 — 22 or where 22 = % Hence
the points of intersection occur at A : (ﬁ, 1) and B; (—ﬁ, ).

The slopes of the curves at A are
my =2x=2/\/2=/2and my = —2x=-2/,/2=—/2.
Let . 1
tanog =42 (0<a; < §7r) and tanag = —4/2 (—§7r <aq <0).
Using the identity from (1.17a):

tana; —tanas /24 /2
1+tanagtanas 1 — V22
= 2,2
We choose a positive value for the angle (a sketch of the intersection of the curves is helpful).

Hence a1 — oy = arctan(—2+/2) = 109.47°.
The slopes of the curves at B are

tan(ag — o) =

np = —2x=-2/y/2=—y/2and no =2z =2//2 = /2.

The two slopes at B are interchanged but otherwise the same. Hence the angle between the
tangents will also be 109.47°. (Note that in both these cases you might obtain the alternative
angles (180 — 109.47)°.)

(b) The curves y = 1z% and y = 22 — 2z + 5 intersect where

2% = 32% — 62 + 4 or where (z — 1)(2® — 2z +4) = 0.

The only real root is « = 1. Hence the point of intersection is at (1, %) The slopes of the curves at
this point are m; = 1 and me = 0. Let tana; = 1 and tanas = 0. Then we can choose o = iw

and ag = 0. The required angle is iﬂ'.
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2.12. Use the limits in Section 2.6. Note that, in all the following, € is never zero, so cancellation
is legitimate.

(a) lim © = lim1=1.
e—0¢ e—0
. 11
) L P
2
(©) lim = = lime = 0
e—0 € e—0
d lim & lim & —1 fi
i = i =1 =2 2.11)).
(d) lim — i » (n = 2¢) (from (2.11))
e et —1
1 =1 = 2 = 2
(e) limy — Jim 2 . o (n=2e)
sin 2¢ . sinpy
() limy —— = lim, T 1, (p=2¢) (from (2.13).
. sin2e . sin
1 = lim 2 =2 =2
(2) Jim — Jin 2= , (= 2e)
In(1 + &2 In(1
(h) tim 2O g oAy 2y (rom (214)).
e—0 £ n—0 17

(i) Note that (2.13) is only true if € is measured in radians. Therefore replace £ degrees by 180e /7
radians. Hence
. sine . sin(me/180) . wsinp
gl—{r(l) € o ;lgtl) € B }33% 180u (p = m=/180)

= 7/180 (from (2.13)).

. tane . sine 1 . sine _, 1
lim = lim = lim lim
e—0 ¢ e—0 € cose e—0 & e—0COSE
= 1x1=1
(k)
sinh 5 —e 2e—1
1 Swhe lim ¢ = lim lime™°
e—0 g e—0 2¢e e—0 2¢ e—0
= 1x1=1
—e—1 c_1
) lim ¢ = lim ¢ lim[—e %] = -1
e—0 g e—0 g e—0
2.13.
4 osa) lim [cos(z + dx) — cosx
dz sz—0 | oz
. [—2sin §(2z + éz) sin %(635)]
= lim
ox—0 L ox
. 1 Sin(%éx)
] B R v
= —sinx
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2.14.

d o e2(z+f) _ 2z o 1 e _ 1 .
@ ) = i [ e [ S e
(from (2.11)).
(b)
i(sian) — lim sin[2(x + €)] — sin 2z
dz e—0 g
25si 1
= lim{ Smgcos(4x+25)}
e—0 2
= 2cos2x
d, _, . e (@te) oo e e —1 .
(c) dx () = LY [ € = i — |7 °°
Thus
L sinha) = 3 (o — o) = (" +0™7) = cosh
3, (sinha) = o= (" —e e’ +e coshz
d d
d—(coshx) = id—(e“c +e ?)=—-(e"—e ¥) =sinhz
x x
2.15.
(a) i(2sin:1c—3cosac)—2£(sinac)—i’)i(sinac)—200896—1—3511136
dx - Tda x B '
d d 1
L n3e) = (I3 +nz)=-.
(b) dx(n?)a:) dx(n3+ nzx) .
d. 4 d 3
(c) @(lnx )—ﬁ(Slnx)—;.
(d) g(sinx—m) =cosx — 1.
d x 1 2\ @
(e) ﬁ(e —1—x—§m)fe 1—z.

2.16. The required tangent lines are
(a)y=3z—2; (b) y=24x—39; (c)y=—z+3m (d) y=x/e; () y=1; (f) y = —x + 3.

2.17.

dy d2y By
(a) Yy = x67 dgj == 6x5, 7d1‘2 = 301’4, @ = 1201’3
dy d%y d3y
b =322 -2242, —Z=6x—-2, —2= —2 =0.
(b) g =3z Tt dx TTA 2 T 3
dy d2y d3y
_ .6 2 @5 _ 4 _ 3
(¢) y=2a°—a°, @—Gx — 2z, @—3&% -2, —d$3—120x.
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dy

(d) y=2sinz —3cosz, d—:200sx+381nx,
x
d? d3
—dx‘z = —2sinx + 3cos z, —dxg = —2cosx — 3sinz.
1 dy d? d3y
—e¥ 11— .2 L et ] — —~ _ —eT 1 —J _ T
(e) y=e T—5rt, oo =e T, S5 =e e el

2.18. To prove that (dz /dz™)(z™) = N! for all integers N > 1!. We can confirm the formula

for the case N = 1: d

as a starting-point in a step-by-step argument.
Suppose that we have somehow established that the result is true for any one particular value
of N, say for N = K, so that

dN N
% = K! when N = K. (ii)
Next, consider the transition to N = K + 1:
it e d [d¥ ey d¥ Td g
) = {de@ >] = LK [dx(x ﬂ
d K
= (K 0aK) (by (29))
(K +1)K! (by (ii))
(K +1)!
In other words, if (ii) is true for some integer N = K, it follows that it is also true for

N = K + 1. Since we now know it is true for N = K + 1, the same argument implies that it is
true for N = (K + 1)+ 1 = K + 2; and so on for all subsequent values of N.

But we have verified its truth in the case N =1 (in equation (i)); therefore (ii) is true for all
values of N. This is proof by induction.

2.19. If y = 2?(2% — 1), then

d

% =423 — 6z,
(a) The slope of the curve is positive where dy/dx > 0 or where z(2x + /3)(2x — /3) > 0. This
occurs where —21/3 < 2 < 0 and 1./3 < z.

(b) The slope of the curve is negative where z(2z + /3)(2z — /3) < 0, that is where z < —3./3
and 0 < z < 1./3.

(c) The second derivative is positive where 12(z + £/2)(z — £1/2) > 0, that is where z > /2 and
T < —3y/2.

(d) The second derivative is negative where —1,/2 <z < 1,/2.

d*y 2

2.20. At = = z( the tangent has slope mo = 2z¢. Hence the slope of the normal is —1/mg =
—1/(2azp). The equation of the normal is therefore

1
y —arg =

(x — xp).

2axq

Chapter 3: Further techniques for differentiation
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3.1.

d

dx

—(xsinz) = xcosx + sinx.
dx

d .
d—(mcosx) = —xsinx + cosx
x

—(e"sinz) = e” cosx + " sinz.

dx

d
@(:rlnx) =1+Inz.

2, .—1

dx

d T
—(e"Ilnzx) = A
x

dz
d
d—(x2e“7) = 12" + 2we”.
x
d—(sinx cosx) = —sin? 2 + cos? & = cos 2z.
x
d 5 3 242 3 a_d 5
— =x°.3 2v.2° =52 = — .
dx(xa:) x°.3x° + 2z x dx(x)

d
—(2®Inz) =2’z '+ 22lnz = 24 2zlnz.

. All these problems illustrate the reciprocal and quotient rules given in (3.2).

d d /cosx sinz(—sinx) — cos z(cos x)
—(cotz) = — (= = —
dx dx \sinz sin®
1 2
= ——5— = —cosec T
sin®

(

X

:c+1) = (le)g ((z+1)(ic(x)x(i;(o:+1)>

d (sinz 1 .
o\ :?(xcosx—smx).

EESE



3.3.

d [t 1 1
a4 (m> = ﬁ(a@ sec’z — 2rtanz) = ;(xseczz — 2tanz).

sinx — cosx

d <sina:+cosx>

(sina — cosx)(cosz — sinx) — (sinz + cos z)(cos x + sin )

(sinz — cosx)?

2
(sinz — cosx)?’

d d 1 sinz
—(secx) = — = —— =secxtanz.

dx dz \ cosz cos? x
d d 1 CcoS X
—(cosecz) = — | — = ——5— = —cotxcosecx.
dx dz \sinzx sin“ x

i T - —2 — 322
de \ 322 -2) (=24 322)2°

=

oL

1 ol 4a?
rz\x(x3+1)) 2223 +1)
d/iy__ 1
dz \Inz )  2(lnz)?’

d—(m”) =4 < n) =na"" ! (by the quotient rule).
x x \ 7

d/ 1y 1
de \z+1)  (z+1)%

d, ., d/1\_  1d, .
ﬁ(e )_dx<ex>_ eQxda:(e)_ ¢

d < 1 > = 4 (cotz) = —cosec2z (as in (a).




d2

(b) d—(xsinx):xcosx—i-sinx; ﬁ(xsinx):2cosx—xsinx;
x x
d3
F(xsinx)z—xcosw—?)sinm.
x
(c) df =z N___t &/l xN_ 2
de \z—-1) (z—-1)2 de2\z—-1) (z—-1)3
BN
de3 \z -1/  (z—-1*
(d) Let y = f(x)g(x). Then
dy df
dz da:+fda:

d%y df dg d2f d%g
29 92l el a4
da? dz dz 9 da2 * fdm2 ’
d3y dg d%f df d%g A3 f d3g

=398 J g8/ C9 a9
da3 dzdx+dxd2+d3+f

3.4. These problems use the chain rule (3.3) in the form

dy dy du
dr ~ dudz’

(a) Let u = sinz. Then y = u?, and

dy dydu _ 9 9
— = —— =2ucosx = 2sinz cosz = sin 2z.
dz  dudz

b) Letu—cosx y = u?. Then (d/dx)(cos? m) —2sinz cosx = — sin 2z.

Let u = 22, y = sinu. Then (d/dx)(sin x?) = 22 cos 22

Let u = x2, y = cosu. Then (d/dz (cosx ) = —2xsinz2.

)

) )

) Let u = tanz, y = u?. Then d/dx)(tan® x) = 2sec? z tan z.
) )

)

)

Let u = 1/x, y = cosu. Then d/dx)[cos(1/x)] = 2sin(1/x)/x?

Let u = —z, y = e". Then (d/dz)(e™®) = —e™".

i) Let u=1/(z+1), y—u Then (d/dz)(1/(z +1)%) = —=5/(z + 1)S.
) Let uw =2 + 1, y = u*. Then (d/dz)[(z® + 1)*] = 1222 (23 + 1)3.

) Let u = 3z, y = sinw. Then (d/dx)(sin 3x) = 3 cos 3z.

Let u = 1z, cosu. Then (d/dz)(cos iz) = —1siniz.

) 2 2 S5
m) Let u = 2, y = tanu. Then (d/dz)(tan 1z) = 1sec®z.
n) Let u = —3z, y = e*. Then (d/dz)(e™3%) = —3e~32.

)

o) Let u=2x + 1, y = sinu. Then (d/dx)[sin(2z + 1)] = 2cos(2z + 1).
)
)

c
d

e t

f) Let u = 22, y = tanu. Then (d/dz)(tanz?) = 2z sec? 22
g

h

(
(
(
(
(
(
(
(
(i
(k
(1
(
E
(p) Let w =3z — 2, y = cosu. Then (d/dx)[cos(3z — 2)]) = —3sin(3z — 2).
(q) Let u=1—2x, y = tanu. Then (d/dx)[tan(l — 2z)] = —2sec?(1 — 2z).
(r) Let u = 1/z, y = e*. Then (d/dz)(e'/*) = —e'/* /22,

3.5. All these problems use the result that (d/dz)z® = az®~*.

(=) () = 2
(v) S =mp
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R s
dz” 3 '
d 1 1
ﬁ(x_E) — —gx_%
d

d 1. 1 sinz
—(x2sinx) = x2 cosz + —.
dx 2r32

COS T

3sin§z.
(@ + )8

dt

d
— (e tcost) = —e '(cost +sint).

dt

d
&(e*’6 sint) = e ‘(cost — sint).

dt(

dt

2 3

— (sinx cos” x) = cos
d

T

27

i[sin?(?nf +1)] = 6cos(3t + 1)sin(3t + 1).

d

—(e?" cos 3t) = —e ?*(2cos 3t + 3sin 3t).
L -3t .
—(e"" cos2t) = —e "*(3cos 2t + 2sin 2t).

x — 2cos xsin® z.



(i) d—(sin2 xeosx) =2 cos? rsinz — sin® .
x

d sinz? 2cosxsine  2sin’z
(k) 0. l( ) ] = 2 - :

dz x x x3
d
4] — [z(sin® )] = 3z cos xsin® z + sin® z.
x
d
(m) P [z(cos® )] = =3z cos® zsinz + cos® .
x
3.7. (a)
—(cos? ) = il(1 + cos2z) = —sin 2z
dz dx 2 '
d d1
&(sin2 x) = @5(1 — cos 2z) = sin 2x.
(b)
5(0082 x) = a(cosxcos x) = —coszsinx —sinz cosx = —sin 2z.
d (sin® ) (sinz sing) = si + . -
—(sin®z) = —(sinzsinz) = sinz cos x + coszsinx = — sin 2z.
dz dx

(c) To apply the chain rule let u = cosx, y = u?. Then

d
a(cos2 x) = @(uz)a(cos x) = —2usinx = —2cosrsinx = — sin 2z.
Let v = sinz Then
d d d
@(sin2 )= @(uz)—x(sinx) =2ucosz = 2sinx cosx = sin 2z.
3.8.
d?z
(a) " + 4z = (—4Acos2t — 4Bsin2t) + 4(Acos 2t + Bsin2t) =0
4’z 2 2 2p 2 .
(b) w® +nx = (—n“Acosnt —n°“Bsinnt) + n“(Acosnt + Bsinnt) = 0.
in _ _ nt —nty _ nt —nty _
(c) e 9z = (94e™ 4+ 9Be™ ™) — 9(Ae™ + Be™ ™) = 0.
dQJ_ 2., 2 nt 2 —nty _ 2 nt —nt\ _
(d) e n‘e = (n“Ae™ 4+ n°Be™ ™) —n*(Ae™ + Be™ ™) = 0.
d
(e) diotc = (—~A+ B)e 'cost — (A+ B)e 'sint.
d2
d—tf = —2Be 'cost + 2Ae 'sint.
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Hence

A2z dx
S K
aw Tra
[-2Be " cost +2Ae "sint] +

2[(—=A+ B)e tcost — (A+ B)e 'sint] + 2[Ae " cost + Be 'sint] = 0.
(f) The fourth derivative of each term in y returns the same function in each case. Hence

d4y
Y=

3.9. Use the chain rule in the form
dy dydvdu

dz  dvdudz’

The intermediate variables are defined in each problem.
(a) Let u = cosz, v = u?, so that y = e’. Hence

d ,
Y e’ 2u.(—sinzx) = —2e%%" % cog 7 sin 2.
dz
(b) Let u = 22, v = cosu, so that y = e~ . Hence
dy _ —v : _ : 2\ —cos 2?2
1 = (—e™").(—sinu).2z = 2z sin(z”)e .
x

(c) Let u = 22, v = cosu, so that y = Inv. Hence

d 1
ﬁ = E(_ sinu).2z = —2x tan(z?).
(d) Let u =22, v =e* — 1, so that y = v*. Hence
dy
dz

= 40 e 22 = 8we” (emQ —1)3

3.10. Use the result (3.7) which states that if y = u(x)v(z)w(z) then Iny = Inu + Inv + Inw
which when differentiated gives

(a) Let u =z, v = €%, w =sinz. Then

dy . . . .
T = e’.sinx.l +sinz.x.e” + x.€”. cosx = e”[sinz + rsinz + z cos z].
x

(b) Different variables are used. Let o = tef cost, and let u = ¢, v = !, w = cost. Hence

d
d—f =e'.cost.1 + cost.t.e’ +t.e'.(—sint) = e'[cost + t cost — tsint].

1 gt
(c) Let u =22, v = e?*, w = sin? 3z. Then

d 1 3
C'Ty = o*.sin? 337-(595_%) + sin? 3z.27 2% + 27 .¢%*.2 cos 3w sin~ 2 3z
x
e?m
= —————[3zcos3z + (4z + 1) sin 3z].
2z2 sin? x
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This function and its derivative will only be real for restricted values of x—for example, for 0 <
z < im.
=3

3.11. (a) Treating y as a function of x, and using the chain rule for y(z),
d d
a(aﬁz +y?*) =0, or 2x+2y£ =0.

Hence dy/dz = —x/y as required. Solving the equation x? + 32 = 4 for y, it follows that y =
+(4 — 2%)2. Differentiating with respect to x, we have

dy 2y—3 z

- = 4 — T2 = ——

g = Ted—a) "

after substitution back in terms of y. This agrees with the answer obtained by the implicit method.
Note that will always be two points on a circle which have the same slope. The tangent is always
perpendicular to the radius to the point which has slope m = y/z.

(b) In this case for z > 0, y > 0,

d
a(a:% +y?)=0, or

Hence

(c) In this case

d d d
a(a::a—l—xy—yg) =0or 3x2+y+x£ —3y2£.
Hence
dy _y+3x2
de = —3y?

(d) In this case
d d
a(xsinyfysinx) =0or siny+xcosyd—z — ﬁsinxfycosx =0.

Hence .
dy  ycosz —siny

dr zcosy—sinz’

3.12. The expression for dy/dx obtained from the implicit relation f(z,y) = ¢ does not depend
on c. For example for 22 + y? = ¢, we always have dy/dz = —z/y. However, the value of dy/dx
will depend indirectly on ¢ since z and y must always satisfy =2 + y? = c.

3.13. If 2y — 2%y = 1, then

d d
v+ med—z —2xy — x2£ =0. (i)
Hence

dy 22y —y? ..
= =" (i)

dz  2zy — 22

Differentiate (i) again with respect to a:
2@+2 %+2x dy 2+2x @—2 —2x@—2x@—x2@—0 (iii)
Yo T Yar dx Yz~ Y dx dx de2 7

Eliminate dy/dz between (ii) and (iii): the answer is

iny B 6xy(—x3 + 222y — 22y + y°)
do? (2zy — x?)3
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3.14. (a) Let y = arcsinz. Then z = siny. Differentiating with respect to y,

T = cosy = V(1 —siny) = V(1 = 2?)

Hence .
dy _(day 1
de  \dy V(=22

(b) Let y = arccos z so that x = cosy. Then

dy (T 1 1
dr  \dy ~ osing V(1 —22)
(c) Let y = arctan x so that x = tany. Then

%_ dﬁ 71—L—cos2 _ 1
dz  \dy N N v=

(d) Let y = sinh™* z so that & = sinhy. Then

(e
dr  \dy ~coshy  /(1+sinh®y) V(1 +2?)
(e) Let y = cosh™ 2 so that & = coshy. Then

dy (dx)_l 1 1 1
dz  \dy ~ sinhy /(cosh? —1) (22— 1)

(f) Let y = tanh ™'  so that = tanhy. Then

dy(dx)l 1 1 1

dz — \dy Sech2y:1—tanh2y:1—$2'

3.15. (a) If r = sin 36, then the (z,y) coordinates are

1 1
xzrcos@zsin§9c059, y=rsin9:sin§981n9.

Using parametric differentiation,

dy dy /dz %cos%@sin9+sin%t9cosﬂ
dr de/ a8~ 1

de ~ do/ do 1 cos 20 cos ) — sin 20sin 6’

At9:%7r,
%7ﬁ+07 1

dz 0—% 2

(b) If 7 = 1 4 sin®f, then

z=rcosf = (1+sin®6)cosb, y = rsinf = (1 + sin? 0) sin 6.

Hence d 1
€T . -3 2 :
0 —sinf — sin” 6 + 2 cos* #sinh = _27\/2 at f = i”*
and d 1 3 5 1
7d39/ = cosf + 3sin® fcos = E_FT\/Q = m at 0 = ViR
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Hence
@ dy dr _ s
dr — do/ do

3.16. (a) For z = 3 and y = t2,

dy dy dz 2t 2 2

de — dt/ dt ~ 32 3t 3%

(b) For £ = 2cost and y = 2sint,

dy dy dz 2cost x

de  dt/ A&t  —2sint 2y/(4—a2)’

assuming 0 <t < %

3.17. Elimination of ¢ between x and y, using the identity cos®t + sin?t = 1, gives the ellipse

2?2
peR
The derivative is given by
dy dy dr  bcost b

= ——cot t.
de  dt/ dt  —asint a €0

The speed of the point is

dz\? dy ?1” 2 qin2 2 02
T + pn = /[a” sin” t 4 b* cos” t].

3.18. In exponential form a® = e*™¢. Hence

d
dx

|

(a®) = (Ina)e®™* = 2%Ina.

Chapter 4: Applications of differentiation

4.1. f(u) = u?, so f'(u) = 2u and f”(u) = 2 for all arguments u.
(a) Let u=t. Then f'(t) = 2t.
(b) Let u = t2. Then f’(t?) = 2u = 2t2.
@MW&)()(M&W—M?
(d) Let w = t2. Then f/(t2) = 2u = 2t2.
(e) (d/dt)f(tz) = (d/db)t = 1.
3. Then f”(t2) = 2.
4.2. Denote the function in each case by f(z). The stationary points are given by f'(x) = 0. If
A :x = ais a stationary point, then A is a minimum if f”(a) > 0, or a maximum if f”(a) < 0. If

f"(a) = 0, then the stationary point can be a minimum, maximum or point of inflection depending
on the sign of f/(x) on either side of x = a.

(a) Since f(z) = 22 — x, then

() =22 -1, ' (x) = 2.
1
3

Stationary point: z =

32



Test: f”(3) =2 >0soz = 3 is a minimum.

(b) Since f(x) = 2% — 2x — 3, then

Fa) =2 -2, @) =2
Stationary point: = = 1.
Test: (1) =2>0so z =1 is a minimum.
(c) Since f(z) = zlnx, then

f(x)=1+Inx, ' (x)=~.

Stationary point: x = e~ !.
Test: f’(e™!) =e>0s0z=e!is a minimum.

(d) Since f(x) = xze™*, then
fllo) =@ —z)e™™, ) =(-2+2) "

Stationary point: = = 1.
Test: f’(1) = —e~! < 0so z =1 is a maximum.

(e) Since f(x) =1/(z?+ 1), then

—2z 2(3z% — 1)

fa)= W7 f'(@) = W

Stationary point: = = 0.
Test: f”(0) = —2 < 0 so z = 0 is a maximum.

(f) Since f(z) = 2% — 3z + 2, then
Fa)=20-3, @) =2

[\CI[9N}

Stationary point: = =

Test: f(2) =2>0soz =2 is a minimum.

(g) Since f(z) =e* 4+ e~ %, then
flla)=e"—e™®  f'(z)=e"+e "

Stationary point: = = 0.
Test: f(0) =2 > 0so z =0 is a minimum.

(h) Since f(z) = 22 + 4z + 2, then
f(x) =2z +4, ' (x) = 2.

Stationary point: z = —2.
Test: f” —2)=2>0s0x=—2is a minimum.

(i) Since f(x) =z — 23, then
f(z) =1— 322 1" (z) = —6z.

Stationary points: z = +1/4/3.
Tests: f"(1/4/3) = —6/y/3 <0, so z = 1/4/3 is a maximum.
f"(=1/y/3)=6/y/3>0s0x=—1//3 is a minimum.
(j) Since f(z) = z2(x — 1), then

fl(w) =32® =22, f"(z) =6 —2.
2

Stationary points: z = 0 and z = 3.
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Tests: f”(0) = —2 < 0 so x = 0 is a maximum.
f"(3)=2>0s0x =2 is a minimum.

(k) Since f(z) =sinz — cosz, then

f'(x) = cosz +sinw, f"(x) = —sinz + cos .
Stationary points: x = %7‘(‘ and %7‘(‘ for 0 <z < 2m.
Tests: f”(37) = —/2 < 0so & = 27 is a maximum;

f"(In) = /2> 050z = Iris a minimum.
1
2

f'(x) = cos 2z, 1" (x) = —2sin2x.

(1) Since f(x) = sinzcosx = 3 sin 2x, then

Stationary points: x = —%77, T = —%71’, T = iﬂ', T = %ﬂ' for —m <z <.
Tests: f”(—3m) = -2 < 0soz=—=2r is a maximum;
f"(=4m) =2>0s0 x = —17 is a minimum;

17m) = —2 < 0sox = 17 is a maximum;

(1
f”(%w) =2>0soz = 37 is a minimum.

(m) Since f(z) = e *sinz, then
f(x) =e *(—sinz + cosx), f'(x) = —2e " cos x.

Stationary points occur where tanz =1, at z = (n + %)’/T, (n=0,£1=£2,...).

Tests: f"[(n+ 3)n] = —/2(=1)"e~ ("1™ < 0 or > 0 according as n is even or odd. Hence the
stationary point is a maximum z = (n + %)w is a maximum if n is even, and a minimum if n is
odd.

(n) Since f(x) = e~ 3% sin 2z, then
f(z)= %e_%‘”(— sin 2x + 6 cos 2z), f(z) = %e_%”(—w cos 2z — 35sin 2x).

Stationary points occur where tan 2z = 6 at © = a+%n7r, (n=0,£1%2,...), where o = % arctan 6.
Tests: f"(a+ inm) = —222¢~ 3@t 3nm™) (1) /[9,/37] < 0 or > 0 according as n is even or odd.
Hence the stationary point x = o + n7 is a maximum if n is even, and a minimum if » is odd.

(o) Since f(x) = x — cosx, then
f'(z) =1+sinz, 1" (x) = cosz.

Stationary points occur where sinz = —1 at z = (2n — %)7‘(‘, (n=0,£1,£2,...).

Tests: f”[(2n — 4)n] = 0 for all n. Hence the test fails. But f’(z) = 1 +sinz > 0 for all z. Hence
all the stationary points must be points of inflection.

(p) Since f(z) = 2e” — £€?*, then
f'(x) = 26" — 22, f(x) = 2e® — 2%,

Staionary point occurs where e* = 2 at = In2.
Test: f"(In2) = —4 < 0 so x =1n2 is a maximum.

(q) Since f(z) = 22e™®, then
f@) =z (2-2),  f(2) = e (2 —do+2?).

Stationary points at x = 0 and = = 2.
Tests: f”(0) =2 > 0 so that x = 0 is a minimum; f”(2) = —2e~2 < 0 so that = 2 is a maximum.

(r) Since f(z) = (Inz)/z, then

1
E(—B—&-Zlnx).

F@)= —(1-Inz), ') =

34



Stationary point where Inz =1 at z = e.
Test: f"(e) = —e™3 < 0 so x = e is a maximum.
(s) Since f(z) = (1 — z)3, then

flla)=-31-2)°  f'(z) =6(1-2)°

Stationary point: = = 1.
Test: f”(1) = 0 and the test fails. However, f/(z) < 0 for all z. Hence 2 = 1 is a point of inflection.

(t) Since f(z) = sin® z, then
f'(x) = 3sin® z cos , f"(x) = 3sinz(2 — 3sin® z).

Stationary points occur where sinz = 0, at © = nm, and where cosz = 0, at z = (n + %)77 for
n=0,+1,42,....
Tests: f”(nm) = 0 so that the test fails. However, if n is even, then f’(x) is positive in a small
interval including = nm, and if n is odd, then f’(x) is negative in a small interval including
x = nm. In both cases, therefore, the stationary point is a point of inflection.

f"[(n+ 4)m] = =3(=1)" so that = (n+ 3)7 is a maximum if n is even, and a minimum if n
is odd.

(u) Since f(z) =e~*", then
fl(z) = —22e™, #(z) = 27" (222 — 1).

Stationary point: x = 0.
Test: f(0) = -2 < 0 so x = 0 is a maximum.

(v) Since f(z) = e~ then

o) =z —1)e" ", f'(z) = (4a® — 4z + 3)e” .

Stationary point: = = %
Test: f"(3) = 2% > 050z = 3 is a minimum.

(w) Since f(z) = x + 271, then
f@ == @)=
x) = el )= 3.
Stationary points: x = +1.
Tests: f”(1) =2 > 0so =1 is a minimum; and f”(—1) = =2 < 0 so x = —1 is a maximum.
(x) Since f(z) = x%¢™%, then

f/(z) = 2%e (3 — 2), f"(x) = ze (6 — 6x + 2°).

Stationary points: x = 0 and =z = 3.

Tests: f”(0) = 0 and the test fails. In a small interval which includes the origin f’(z) > 0 which
means that £ = 0 is a point of inflection.

f(3) = =973 < 0 so x = 3 is a maximum.

4.3. If y = flu(z)], then by the chain rule

dy dfdu ,
T deds =7 (wu'(z),
and
% = %[f/(“)ul(x)] = %[f’(u)]u'(x) + f'(u)u” (z) (product rule)



Since f’(u) > 0 for all u, then dy/dz can only be zero if v/(x) = 0 (by the chain rule (3.3)). Hence
flu(x)] and u(z) have stationary points only at the same values of x.
In 4.2(v), f(u) = e* and u = 2% — .

4.4. If the sides have lengths z > 0 and y > 0, then the given area A = xy. The length of the
perimeter is P = 2z + 2y. Eliminate y so that

24
P=2z+ —.
T

The first and second derivatives of P are
dP_, 24 PP _dA
de x2’ dz2 37

Hence the perimeter length is stationary where dP/dx = 0: at x = ++/A. Since x > 0, choose the
stationary value z = y/A. For this value

e
dz?2 A3 ’

so that the perimeter is a minimum when x = y = \/A. The piece of ground must be a square.

4.5. Let the the base of the cross-section be z > 0 which will also be the diameter of the semicircle,
and let the height of the rectangle be y > 0. The given area A of the tunnel cross-section is

A=zxy+ %7‘(’1‘2.

The length of the perimeter is P = z 4+ 2y + %7?3:. Eliminate y, so that

2 1 1 2A 1
pP= - (A— 87rx2> +z(l+ 577) = +(1+ Zw)x
This is stationary where
dpP 2A T4 1 0
—_ —TT =
dx x2 4 ’
which occurs at x = ﬁ—AW (choosing the positive root). The perimeter is a minimum since
d2p _4A 50
daz? 23

at the stationary point.

4.6. Let r be the radius of the base and h the height of the drum. The volume V of the drum is
given by V = 7r2h and its prescribed surface area by A = 2712 + 27rh. We are given that A is a
constant, so eliminate h in the expression for V:

1
V= §[A7‘ — 2773,

Differentiating

1
((11—‘: = 5[14 — 6777, v —6mr.

The volume is stationary where
v _ 0, at r =4/ A
dr 7 V6’

choosing the positive root. Obviously d2V/dr? < 0 which proves that this radius gives a minimum
volume. The height of this drum is h = /[2A4/(37)] which is equal to its diameter.
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4.7. Similar to 4.6: the volume is given by the same formula but the prescribed A is different:
V =7ar?h, A=nr®+2rrh.

Elimination of h leaves 1
V= 57’(14 —7r?).

Differentiating
v 1 d?v
— = —[A - 3mr? —_—
a2 AT g

Hence the radius and height of the drum of minimum volume are

= 3nr.

X

°z =2 i 2 7

Figure 36: Problem 4.8a

(©)y=uz/(x—-1)

Figure 38: Problem 4.8c

=zlnz —x for z > 0:

(d) y = ze™™:

() y=a%e""

(f) y = 232

() y = ¢ — 4o

Eh) y = (Inz)/x for z > 0:
(

i) [In(—z)]/x for x < 0:
)y
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Figure 40: Problem 4.8e

4.9.

(b) y=x/(z* 1)

(c) 1/[z(z —2)]

(d) y=2*/(1 - 2):

() y=(z+2)/(z—1):
Hy=1/(z+1)+1/(x+2):

4.10. The incremental formula given by (4.4) is
oy ~ f'(a)dx at x = a.

The exact value is given by

oy = fla+ dz) — f(a).

(a) f(x) = 23: §y ~ 3225z. With z = 2 and dz = 0.1, the approximate and exact values are given

by

Sy ~ 1.200, Sy = (2.1 -2 =1.157....
(b) f(z) = zsina: dy ~ (sinz + zcosz)dz. With 2 = 17 and dz = —0.2 the approximate and

exact values are given by

1 1

1
0y ~= (sin —m + —mcos —m)(—0.2) = —0.2,

2 2 2

1 1 1 1
oy = (57 —0.2) Sin(i” —0.2) — ~7sin 5T =-0227....

2 2

y
1

0.75
0.5
0.25

-1 -0,
-0.25
-0.5
-0.75
-1

Figure 41: Problem 4.8f

-

0.5 1
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Figure 43: Problem 4.8h

(c) f(z) = cosa: 0y ~ —sinzdz. With z = r and éz = 0.1 the approximate and exact values
are given by

1
dy =~ (—sin Zw)(O.l) = —0.0707...,

1 1
oy = cos(iw +0.1) — COS(ZT(') =—-0.0741....

(d) f(x)=(1+2)/(1 —2z): 6y =2/(1 —z)?5x. With z = 2 and dx = —0.2 the approximate and
exact values are given by

2
Sy ~ L (-0.2) = —0.4, 6y=—0.5.

(e) y = tanz: dy =~ sec? xéx. With z = %w and dx = 0.1 the approximate and exact values are
given by

1 1 1
Sy ~ (sec? Z7r)(0.1) =02, dy= tan(zw +0.1) — tan 77 =0.223...

) f(z) =1/(1 — 2?): f'(x) = 2x/(1 — 2?)%. With 2 = 0.5 and dx = £0.1 the approximate and

exact values are given by
1

(1 0.52)2
1 1

0y = 2 2

1-(0.05£01)2 1—(0.05)

Sy ~ (£0.1) = £0.177... .,

=0.229... or —0.142....

4.11. (a) With f fixed,
dv f2

du  (w— )

BN W s g o

- - - -U. x
[ —————— g} 05_1E

Figure 44: Problem 4.8i
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Figure 45: Problem 4.8j

119.20/50.40.50.60.7"

Figure 46: Problem 4.8k

Hence, with f = 0.75, v = 1.25 and du = 0.05,

_ fPu —(0.75)%(0.05)
v~ GOm0 - —0.112....

(b) The voltage is given by
E(R1Ry — R2R3)
(R1 + RQ)(R3 + R4) '

v =

Its derivative with respect to Ry is

dv ER2

diRl (R1 +R2)2.

Hence
ERy 5

(R, + R2)? 18
(c) With b and A constant in a = bsin A/(sin B),

oV =~ (SRl

da —bsin Acos B ot B
— = = —a .
dB sin® B
Hence
da ~ —acot BéB.

(d) In terms of a, b, c,

A=Vl +bta)(—atbte)a—b+eatb—o

Figure 47: Problem 4.81
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Figure 49: Problem 4.8n

Logarithmic differentiation (see equation (3.7)) gives

R S S B
Ade 2|la+b+c¢ —a+b+c a—b+c a+b—c

The incremental formula for § A becomes, at a =2, b=4,c=5

A 2
P (0.1) = 0.0822....

~ —dc
de 2v/231

0A

4.12. Given C = P(1 +r)™.
(a) With n and P fixed,

ac _
dr

(b) With r and P fixed,

Pn(1+7r)""1, so that 6C ~ Pn(1+r)""tér.

dc d
i Pd—e"h‘(“”) =P(1+4+7r)"In(l+r) see Problem 3.18.
n n

Hence
0C ~ P(1+7)"1n(l +r)dn.

(c) Suppose that P = £100, r = 0.05 (5% ) and n = 10 years. The tables below show comparisons
between the approximate increments dC' for decreasing values of ér (n fixed) and én (r fixed).

-1

Figure 50: Problem 4.9a
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Figure 52: Problem 4.9¢

or approximate increment in C' | exact increment in C
Pn(1+47)"1tér Pl+r+dr)" =P +r)"
0.01 15.513... 16.195. ..
0.005 | 7.756... 7.925...
0.001 | 1.551... 1.557...
0.0001 | 0.155... 0.155...
on approximate increment in C' | exact increment in C'
P(1+7)"In(1+r)dn P(1+7r)"t0n — P(1+7)"
1 7.947. .. 8.144 ...
0.1 | 0.79... 0.797...
0.01 | 0.080... 0.080...
4.13. The iterations in Newton’s method are
Tpi1 = Ty — , n=0,1,...,
i f'(wn)

for a given initial value x¢. (a) Let f(z) = 2* + 222 — 2 — 1. Then

f(x) =42® +4 - 1.

For example, if we start with zg = 0.75, we obtain

1 =0.75 —

£(0.75)

=0.833....

7(0.75)

Figure 53: Problem 4.9d
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Figure 54: Problem 4.9e

Figure 55: Problem 4.9f

Repeat the process starting with x1 to obtain x5, and so on. The solution is x = 0.825.. ..
1
(b) Let f(z) =2* + 23 — 1. Then

1
f(x) = 42® + §$_%'

The solution is x = 0.619.. ..
(c) Let f(z) = zlnz + 0.3. Then
fl(x)=1+Inx.
The solution is £ = 0.168.. . ..
(d) Let f(x) = e® — 423, Then
f(x) = e — 1222
The solution is £ = 0.831 .. ..

(e) Let f(z) = tanx — 2z. Then
f'(x) =sec’ x — 2.

By Newton’s method the solution is = 1.165...4
(f) Let f(x) =e%sinz/(1+ ). Then

flx) . (14 2)[2(1 +z)e” ™ — sinz]
f'(x) (14+x)cosx +zsinz

Let xg = 1.85. Then
r1 = 1.663, x5 =1.689, x3=1.690

to three decimal places.

4.14. Since f(z) = ze~® + 1 then f'(z) = (1 — z)e~®. The function has its only stationary point
at x = 1 which is a maximum. The slope of y = f(z) in the neighbourhood of the solution of
f(z) = 0 is therefore positive whilst that for any value of x greater than 1 will be negative. By
the geometrical construction of Newton’s method illustrated in Figure 4.15, any tangent which
starts for z > 1 will produce iterations which diverge from the required solution. The graph of
y = xe~ ¥ — 1 is shown in the figure.

4.15. (a) The graph shows a continuous function in which f(a) and f(b) have opposite signs.
(b) Let g(x) = e — 3z. The table gives a sequence of values for g(z) at intervals 0.25.

¢ |0 025 05 075 1.0 125 15

g(x) ‘ 1 0.534 0.149 -0.133 -0.282 -0.260 -0.018
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w N

Figure 56: Problem 4.14

—
a /f (b)
X
/ b
f(a

Figure 57: Problem 4.15

x |17 20 225 25
g(z) | 0.505 1.389 2.738 4.682

Evidently the solutions of the equation lie between x = 0.5 and z = 0.75, and between z = 1.5 and
x = 1.75. Note also that the function has a minimum value at x =1n3 = 1.098. .., which means,
for example, that any initial value for the smaller solution must start at a value of x < In 3 for the
reasons outlined in Problem 4.14. Similar conditions apply to the other solution.

The solutions are x = 0.6190..., and z = 1.5121.. ..

4.16. (a) Calculate f(a+nkFE) for n =1,2,.... Stop the program at n = N, when f(a+ NE) and
fla+ (N — 1)E) have different signs.
(b) In the following table the interval is bisected four times with £ = 0.125 and N = 8.

x 0 0125 0.250 0.375 0.500 0.625
fla+NE) | -1 -0.983 -0.929 -0.829 -0.676 -0.457

x 0.750  0.875 1
fla+ NE) | -0.162 0224 0.718

The solution of the equation lies between z = 0.75 and x = 0.875. The computed solution is

x=0.806....
(c) Four decimal accuracy is obtained after 10 iterations using the bisection method, whilst New-

ton’s method achieve the same accuracy after just 4 iterations

4.17. The slope of the normal at x = zq is —1/f'(zo) and at & = xo + 0z is —1/f'(zo + dxo).

Hence their equations are
1

[ (o)
-
f'(xo + dz0)

(.73 - 1‘0),

y— f(zo) = —

y — f(xo + dxp) = — (x — zp — dxp).

Solving these equations for  and y:

J'(@o)[f' (zo + 0x0){ f(x0 + 0x0) — f(70)} + d20)]
f'(wo + o) — f'(20)

r =T —

)
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[f/ (w0 + 630){ f(z0 + dz0) — f(m0)} + d0]

f'(@o + dwo) — f'(xo) 7
Divide the numerators and denominators by dzg and let the increment tend to zero, so that the
centre of curvature (x.,y.) is located at

(x ~ f'(@o)[1 + f'(x0)?]
0 £ (o)

y = f(xo) +

. flwo) + MW) )

f//(xo)
The radius of curvature
_ 2 oy 1+ f'(x0)%)?
R=V[(xc—20)" + (ye —v0)7)| = T Pm)
For the parabola y = x2,
f@) =2 fla) =20, ["(x)=2

Hence the centre of curvature of the point (xg,23) is located at

1
[wo = wo(1 + 4a5), 25 + 5 (1 + 4ag)],

and its radius of curvature is R = 1(1 4 423)%.

4.18. We shall prove Leibniz’s formula by induction. For n = 1, the formula is true since

(fo)V = fMg+ fg'

by the product rule: note that {C7 = 1. Assume that the given formula is true for n = k and all
z. Then
(fg) ) = [P g+ ,CofF Vg 43 CofF2g3 4o 4, Cp fg™).

Differentiate both sides with respect to z:

(fg)**Y) =
(fH g+ fB M) + (6, f P g 40 fED )
+(5Co fEg® 4 Co fE=D gy o 4 (O f P g W) 4, O fg D)
= [P+ (14,00 P gD + kCr + 1Co) fF Vg - 4 (O fgF .

The coefficients can be written as

k!
1+k01:1+m:k+1:k+1017
k! k! k(k—1) k(k+1)
— = = k = =
O R Ce = T T e TR T o~ knle
and, in general,
k! k!

T TN e ) Ty ]

B k! 1Ll
ol k—r =) k—r r+1
El(k+1) B (k+1)!

rk—r—Dlk—-7r)(r+1) (r+Dl(k—r)!
= k+10r11

Hence

(fo) ") = fEg 4 g Crf R M 4 Cof B0 g®) o 4 O fg .
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Hence if the result is true for n = k, then it is true for n = k + 1. We have shown that it is true
for n =1 (the product rule); therefore it is true for n = 2,3, .. ..

Chapter 5: Taylor series and approximations

5.1. (a) For f(z) = e27,

1 1 1
f/(x) — 7651‘7 f//(x) — ZGECE, 765(1?,
so that
O =1 FO=3 FO=1 fO=;
’ 2’ 4’ 8
The Taylor polynomial approximation to four terms becomes
11 11
fa) ety sy Ths

2 214 3!'8

We can estimate that the three term approximation will be accurate to two decimal places if for
the fourth term

3] < 0.005, or |z| < 0.621....

‘8.31“"
(b) For f(z) = (14 )2, the Taylor approximation is

1 1 1
(1—1—1‘)%%1—1— —r— -2+ —a23
2 8 16

The three-term approximation will be accurate to two decimal places if

< 0.005 or |x| < 0.432.

3
?

(¢) For f(z) = (14 )~ 3, the four-term Taylor polynomial is

Gt = 1 (e (D (9 (5) + (DD
1 2., 14,
~ l—-x+-2°— —x
3 9 81

The three-term approximation will be accurate to two decimal places if

Wl

) (%)

14
g|x|3 < 0.005 or |z| < 0.306...

(d) The Taylor approximation to four terms for sin2z can be obtained form the series for siny
where y = 2z (use (5.4¢)):

. 1 1 1
sin2r = (2x)—5(230)3—#5(2@5—%(23:)7
4 4 8
~ g g8 tos O
TR T T3

The three-term approximation will be accurate to two decimal places if
8 7
E|x| < 0.005 or |z| < 0.196....

(e) Using the expansion for cos z, where z = Jx (see (5.4d)):

coslx 1—1302—1—L —i—éﬁ
2"~ 8 384 46080
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The three-term polynomial will be accurate to two decimal places if

mfﬁ < 0.005 or |z| < 2475...

(f) The four-term expansion is (see(5.4e)):

In(l+z)~z— 2%+ %$3 _ 1,4

4

The three-term polynomial will be accurate to two decimal places if

1
1334 < 0.005 or |z| < 0.376. ...

(g) Let f(z) = (1+22)2. Put u = 22. Then, as in (b),

1 1

(1+2%)7 = (1+u)%z1+§u—gu2
1 1 1

~ 1422 — ot 4+ —ab

TR TR T g”

1 3
“FEU

The three-term polynomial will be accurate to two decimal places if

1
Ex(; < 0.005 or |z| < 0.656....

(h) The four-term Taylor polynomial for In(1 + 3z) is (put u = 3z, etc. ),

1 1 1
In(1+3z) ~ (3z)— 5(39c)2 + g(39c)3 - Z(3x)4
1
~ 3r-— ng + 923 — %x‘l.

The three-term approximation will be accurate to two decimal places if

81
Zx‘* < 0.005 or |x| < 0.125....

5.2. The Taylor expansion for f(x) about =0 is

J(@) = J(O0)+ J'(0) + 3 (0)a% + 1" (00 + -

(a) Let f(z) = e. Then f'(x) = f"(x) = - = e®. Hence
f0)=f(0)=f"0)=-=1
(b) Let f(x) = sina. Then
fl(z) = cosw, f'(z)=—sinz, f"(z)=—cosz,

so that
f(o) = Oa f/(o) = 17 f”(o) = 07 f///(o) = _17
the Taylor coefficients being

1 1 1
) F7 ia
(c¢) Let f(z) = cosx. Then
f(x)=—sinz, f[’(x)=—cosz, f"(z)=sinuz,

f®(z) =sinz, ete.

@) =o, ...,

f(4)(x) =cosz,...,



so that
fO)=1, fO)=0 f'0)=-1 f"0)=0 fH0)=1,....

(d) Let f(z) = (1 4+ 2)*. Then
fl@)=al+2)*t, () =ala—1)1—-z)*2 ...

so that

fO)=1, f0)=a, [f(0)=a(@-1),....
(e) Let f(z) =In(l + ). Then

/ o 1 17" . 1
1 2x1 4) _3x2x1

so that

f0)=0, f0)=1, f"0)=-1, f"0)=2, fH0)=3,....

Therefore the coefficient of ™ for n > 1 is

(_1)n—1 (’I’L — 1)' — (_1)71—1 )

n! n

5.3. (a) The general term for e* is 2" /n!. Hence, for four-decimal point accuracy we require n
such that, for |z| = 2,

x’ﬂ n

2
ooy < 0.00005.

For n = 11, 2" /n! = 0.000051 ... and for n = 12, 2"/n! = 0.0000085... < 0.00005. Hence terms
up to x'! are required.

(b) The general term for sin z is (—1)"z?"~!/(2n—1)!. Hence for four-decimal accuracy we require
the smallest n such that, for |z| = 2,

2n—1 22n—1
‘ ’ = < 0.00005.

(2n —1)! (2n —1)!

For n = 6, 221 /(2n — 1)! = 0.000051 . .. and for n = 7, 22"~1/(2n — 1)! = 0.0000031 .. .. Hence
terms up to and including x!! are required.

(c) The general term for cosx is (—1)"x?"/(2n)!. Hence for four decimal accuracy we require the
smallest n such that, for |z| = 2,

ZL’QTL

(2n)!

2n

2

For n = 5, 22" /(2n)! = 0.00028 ... and for n = 6, 22" /(2n)! = 0.0000085 . ... Hence terms up to
and including z'° are required.

(d) For (14 x)2 the general term is

ala—1D)(a—2)...(a=n+1)
n!

z",

where o = —%. For four-decimal accuracy we require the smallest n such that, for |z| = 0.5,

ala—D)(a—=2)...(a=—n+1)
n!

(0.5)"| < 0.00005.
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For n = 8 the last term has magnitude 0.000051 ..., and for n = 9 the magnitude is 0.000021....

(e) For In(1 + z), the general term in its Taylor series is (—1)"*12" /n. For four-decimal accuracy
we require the smallest n such that, for |z| = 0.5,

n|o.5n
‘(—1)"“96 = < 0.00005.

n

For n = 10, 2% = 0.000097 ..., whilst for n = 11, %% = 0.000044.... Hence terms up to and
including 21°

are required.
5.4. (a) Let f(x) = arcsinz. Then

1 1" _ €z /”Jj — 1+2I’2
va-a DTy Ty

so that f(0) =0, f/(0) =1, f’(0) =0, f”(0) = 1. Hence

f'(x) =

. 1,
arcsmx:x—i—ém + e

(b) Let f(x) = arccosz. Then

/ _ 1 "ip) = — €
f(x)* \/(1—.1‘2)7 f ( ) (1—.’1)2)%

so that f(0) = i, f/(0) = —1, f”(0) = 0. The Taylor series starts with

1
arccosmziﬁ—x+~-~.

(c) Let f(z) = arctanz. Then

1 2x =24 62

12 f'(x) = —m7 (@) = m

Hence f(0) =0, f/(0) =1, f”(0) =0, f”'(0) = —2. The Taylor series starts with

f'(x)

arctanx = x — 1333 4

(d) Let f(z) =e *sinz. Then
fl(x) =e *(cosx —sinz), [f’(x)=—2e "cosz.

Hence f(0) =0, f/(0) =1, f”(0) = —2. The Taylor series starts with

e Tsing =z — a4+,

(e) Let f(x) =e *cosxz. Then
f(z) = —e "(cosx + sinz).
Hence f(0) =1, f/(0) = —1 so that the Taylor series starts with
e Pcosx=1—uzx.

5.5. (a) Let f(x) = 1/(1 +3z). Then f'(z) = —3/(1 + 32)?, f”(z) = 18/(1 + 3z)? so that

f0)=1, f"(0)=-3, f"(0)=18.
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The first three terms of its Taylor series are

1
14+ 3x

=1-3z+92% +---.

Alternatively, the binomial expansion (5.4f) can be used. Also from (5.4f) the expansion will be

valid for ) .
—1<3x<1 ——<zr< .
T or 3 T 3

(b) Adapting (5.4f),

s - e ] e () R ()]

- il ey
T ytTR”

the series is valid for —1 < %z <lor—2<ax<2.
(c) Using (5.4f) again
(3-2)5 =35(1-Lta)=35[1—do— La?—--].

The series is valid for —3 < z < 3.
(d) Using (5.4f) again

w9t = o1 (5)

The series is valid for —3 < x < 3.
(e) Adapting (5.4e),
1 1 11,
In(9—2z)=1In [9 (1—9%)} —1n9—|—1n<1—9m> —21n3—§1‘—@x —

The series is valid for —9 <z < 9.
(f) From (5.4d),

(1) _ 1<x)2+1(33>4
costgt) = 21 \2 0 \2
1 1
— 11— 24— 4
s T3

The series is valid for all z.

(2) Put u =22 for z > 0, and use (5.4c):
1 1 .

sin(x%)—sinu—u—ftﬁ—&——u — =g —
B 6 120 B

Since x2 is not real for < 0 the series will be valid only for z > 0.
(h) Put u = 2 for > 0, and use (5.4d):

cos(z?) =1—3x+ La? 4.

The series is valid for all z > 0.
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5.6. Multiply standard expansions for

1 1
ez:17x+§x2+~~andl =14z t=1—z+22+---.

+x
Hence
e’ = 1_$+1x2+... (1—£C—|—(E2-|----)
1+ 2 '
5 9
= 1-2z+ -2+ ---
2
(b) As in (a)
1 1 1
(1—x)%e"L = (1—216—81‘2—'--) (1+x+2x2+--~>
S N
2" 8"

(c) This time square the series for In(1 — x):

2
1 2 1 Lo 15,
1

5.7. Start with the Taylor series

1
1—&—111(1—}—30):1—1—33—53024—---.

Then, assuming that the expansion takes the form bg + byx + bax? + - - -,

1 1
l+In(1+z)] 1+z—322+

:bo+b1(£+b2$2+"'.
We now equate coefficients of powers of = in the identity
L o 2
1 = 1—|—1:—§a: 4o ) (bo + brz 4 boz® + -+ ),
1
= %+wm+b@x+wy—mf§mﬁ9+~~

Hence bg = 1, by = —bg = —1, by = by + %bo = % and the Taylor series starts with

1

————————1—x+§ﬁ+
[1+In(l+2)] 2

(b) Write tanx = sinz/ cos z and use the series for sinz and cosxz. Thus

_ 134 1 .5, ..
T — 2% + 552° +
_1 1.3 ...
1 3T+ gx° +

= blx+b3x3+b5z5+~~.

tanx =

o1



Note that the series will contain only odd powers of x. By cross-multiplying

L 3 L s 1 L 3 3 5
DT +~~(12x+6x + o) (i@ + b3x® + bsa® 4 -+
By matching the coefficients of x, 22, ... on either side we obtain
1 2
b = ]_ b: = — b —_
1 ) 3 37 5 157

so that

(c) From (5.4Db)
1 1
1+ew:2+x+§x2+6x3---.
Assume that

—b0+b1.1‘+b2$2—|—~~-:

1+er
then
Lo, 13 2 3
1 = 2+x+§m —l—gm (bo—l—blx—f—ng + b3z )

1
2b0+(b0+2bl)f£+ (2b0+b1+2b2) + -

Solving for by, by, b and b3,

1 1 1 L 1 4 n
=-—-zr+—x
14+er 2 4 48
(d) Use the definition
sinhz e*—e™®
tanhz = = ,
cosh x e + e
where
sinhm—m+1x3+ix5+~~ coshx—1+1w2+ix4+~-
76 120 ’ 2 24 '
Hence, if the required series is byx + bzx® + bsa® + - - - (it must be an odd function), then
x+}x3+ix5—|—-~ — 1+11‘2+im4—|—--- (b1x+53x3+b5x5+...)
6 120 2 24
= 2+ (bhiz+(b +1b) S (b FETS 1) >+
= Z 1T 37T 50 € 5T 59T o4 €
Comparing powers of z, it follows that by =1, bg = f%, bs = % so that

1 2
tanhr =2 — =23 + — 2% 4 ...
anhx =x 3x+15x+

(e) Since x/sinz is an even function and sinz = — §2% + 52°, then

L3 L s 2 4
xr = (x—Gx —|—120m>(b0—|—b2x + bzt +--)
1 1 1
= b by — b by — ~by + —=bo | 2® 4 -
033+<2 60>+(4 62+1200)l‘+
Hence by =1, bgz%and b4:%sothat
x

1 7
— 142y
simz 67 Tae0" T
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5.8. The following series provide approximations for large values of x.
(a) Let w =1/x. Then

(1 - 1) - (1- u)% =1- 1u - 1u2 + -+ (binomial series)
T 2 8
B 11
T 22 822

which will be valid for |u| < 1, or equivalently, |z| > 1.
(b) Let # > 0 and uw = 1/2% > 0. Then

1 1 1
n(1+—) = In(l+u)=u— >+ -u®>+---
x2 2 3
1 1 1
= S-St t-

This series will be valid for 0 <u <1, or x > 1.
(¢) Let 2 > 0 and w = 1/z. Then

1
€xr2 1
e
(1+a)2 (1+1)z e
1 3 2 . . .

= 1- §u+§u + -+ (binomial expansion)
=1 ! + 5 +
N 2z 8z

The series is valid for 0 <u <1 or z > 1.
(d) Let u = (1/z) + (1/z)?. Then, using (5.4e),

1
In(1+z+2%) = ln(a:2)+ln(1+u):1n(x2)—|—u—§u2—|—~--
11\ 1/1 1)
= In(z2 I R e H
n(m)+(x+x2> 2<x+x2> +
1
= In(z?)+ =+ —
n(m)+$+2x2+

The series is valid for —1 < (1/z)+(1/2?) < 1, that is, when z < —3(,/5—1) or when z > 3 (1+/5).
(e) Let w=1/z. Then

1 1 1
sin(1/x) T sinu u— Ul + fud 4
o 1
IRTINS RS SVE R W

1 1 1 1 1 2

= Z |1 =2 - .4 -2 - .4
" +(6u +120u>+<6u +120u +
1 1 7

= 14w+ —uta...
u[+6u+360u+ ]

= :v—&-i—l—i-l-

B 6z 360z3

5.9. (a) Using the two-term Taylor expansion for sin z,

1 1 1 1

~ ~
~

sinx xr —

1,37 .1_ 1.2
5T z1 5L
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Q

|l 8|+

<14—ém2) (using (5.4f))
+ =z,

Q

S| =

for small z. Note that for x = 0.5, the error is

sinx — <1+1x)‘ =0.0024.. .,
z 6

that is, about 0.1%.
(b) Write as

(1+a)% Sl ) mat (14
x =z - =z —

x 2z

1 1
= 2+ 15
2z2
for large x.
(¢c) Using the result from (b)
2+2)7 —(1+2)2 = 23(14-2)7 — (1+x)?

%
[\
ol
—
/
| 8
N—
=
+
—_
~
—~
[\
8
~
N
| |
[
—
8
ol
+
—_
| I

Q

for large x.

(d) Using the three-term Taylor expansion for cosz,

1 1.2 1.4 2
(1 —cosxz)z - [2_24]

22 P .
- 1+ 2t ] (binomial expansion)
23 23y
¥ T T

for small z.

5.10. (a) Expanding about x =1,

1 1
e =Ml + (2 = 1] = (= 1) = 5 (o = 1 + 5z — 1)° + - (using (5.4¢)).
The series is valid for —1 <z —-1<lor0 <z < 2.

(b) For an expansion about z = 3, write

1 1
cosx = cos[iﬂ + (z — 57r)] = —sin(z — iﬁ)

Now use the Taylor expansion for the sine:

. - 1 1 1 .4 5
cosx-—sm(m—yr)——(x—gw)—i—g(x—iw) ——(z—zm)°+---

The series is valid for all x — %7‘(‘7 which means for all z.
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(c) For a Taylor series centred at x = 1, write

Nl

214 L(a— 1))t

(1+2)? =12+ (x—1)° 5

Now expand the right-hand side using the binomial series (5.4f):

1

(1+x)%:\/2+2\/2(x—1)—ﬁ

($_1)2_|_...

The series is valid for —1 < 1(z — 1) < 1, that is for —1 < z < 3.

5.11. (a) Since f(x) has a stationary point at © = ¢, f'(¢) = 0 and its Taylor series about z = ¢
will be

F@) = 1)+ 51"+ ) +
Approximately .
fl@) = () + 5" ()2,

for |z — ¢| small. Hence if f”’(c) > 0, then f(z) > f(c) close to x = ¢ excluding z = ¢. The
conclusion is that = ¢ is a minimum. Similarly if f”(c) < 0, then z = ¢ is a maximum.

(b) If f”(c) = 0, then we must look at the signs of higher derivatives. Suppose that f")(c) # 0 is
the first non-zero derivative (that is, f(")(¢) = 0 for r = 1,2,..., N — 1). Hence, approximately,

1
flx) = fle) + mfN(C)(m — oM.

If N is even and f¥)(c) > 0 then 2 = ¢ is a minimum, whilst if f)(¢) < 0 then 2 = c is a

maximum. If N is odd then the stationary point will be a point of inflection.

5.12. (Compare eqn (2.15).) Put (e* —1)/x = f(x) for x # 0, and use the Taylor series (5.4b) for
x

(S

f(a;):[(1+x+%x2+-~-)—1]/x=1—1—%95—1—---,

for  # 0. Therefore lim,_,o f(z) = 1, which is the ‘missing value’ at = 0.
(b) Put (1 — cosx)/x? = f(x) for & # 0. From (5.4d)

1 1
flx) = ﬁ[l—(l 54'5934— )]
1.1, 1,
= a2 gt )
11,
= 5ot (for z #£0)

Therefore lim, ¢ f(z) = 3.
(¢) Put [In(1 + z) — z]/sinz = f(x), z # 0. From (5.4c,e),

Y S R e
x(_%_i'_...
= ———— (fo 0).

Therefore lim,_,¢ f(z) = 0.
(Alternatively, rewrite f(x) in the form

In(l+z)—z =
x sin
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and use the limits (2.13) and (2.14).)
(d) Put sinz/(1 — cosx) = f(x), z # 0:

B x_L!_A'_... B x(l_l!x2+...)

flz) = 1_(1_3%£2+_._)_%xz(lj’%xz_‘_.,_)
12(1—--)
z (1—-)"

This does not tend to a limit; it approaches co as x — 0. Therefore this function does not possess
a fill-in value at x = 0 which would make it continuous.

5.13. (a)
. (1=-2)2-1 . —12z + higher powers 12
hm — — |1Im - = —,
=0 (1 —2)19—1 250 —10z + higher powers 10

where the binomial theorem (4.7) was used to expand the powers of (1 — x).
(b)

. 1
sinz — . T— gt +) —x
im ——— = lim - ' S
—0sinx — T cosx =0 (1 — g3 +--0) —2(l — g2 +--)

—% + higher powers

z—0 % + higher powers

—% + higher powers

im — -
@—0 3 + higher powers

_ 1
= 5
(¢) Put = 7 + u. Then
. cosz+1 . cos(m4u)+1
lim —— = lim ————
T—=T X — T u—0 u
_ hmo cosmcosu —sinmsinu + 1 (from (1.17a))
u— u
= lim —cosutl = lim _(1—%u2+--~)—|—1
u—0 U u—0 u

. 1
= gli%u(§+~-)—0.

(d) Put = u+ 47 then

sinz — 1 . osin(Ar+u) -1
im ———— —
@—1n CcOSDT u—0 cos(57 + 5u)
1

.1 .
sin smcosu + cos smsinu — 1
= lim 2 P (from (1.17a))
u—0 €08 37 COS du — sin 37 sin Su
cosu — 1 . %u2—~-~
= 1m - = l1m
u—0 —sinbu u—0 —du + - - -
= 0
5.14. Let
e’ —1 (e —=1)/x

f@)= a3~ [({er — 1)/} — 1]

Since lim,_,o[(e” —1)/z] =1 (see eqn (2.15) or Problem 5.12a), f(x) approaches infinity as z — 0
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To determine the question of signs, return to the original form and take the following steps:
(i) €® — 1 is negative when = < 0 and positive when z > 0.
(ii) (d/dz)(e® — 1 —x) = e*, which is greater than zero for all z. Therefore e* — 1 — x is a steadily
increasing function for all . Since also it is zero at x = 0, it must be negative when z < 0 and
positive for = > 0.
(iii) From (i) and (ii), f(x) is negative when x < 0 and positive when = > 0. Therefore f(z) — —o0
as x — 0 from the left, and f(z) — +o00 as x — 0 from the right.

5.15. (a)

lim

x—0

sin® 3z ) Bz +---)3

—_— im T
2723 4 - -

;1;1—>n10 %l‘2+"'
27x(14 )

1—coszx

(b) Let [(e* —1)/x]2 = g(x). We know from eqn (2.15) that

lim [g(z)]2 = lim [em - 1} ~ 1

x—0 x—0 x
But also
lim[g(x)]* = lim[g(2)g()] = lim g() lim g(z) = [lim g(2)]*.
Therefore

lim g(z) = /1=1,

z—0

the positive square root being taken because g(x) is never negative.

()
. [(2+4tanz)sinz ) 2+tanz | .. [sinz
lim (~——>5—| = lim |———|lim
z—0 | z(3 —tan®x) z—0 |3 —tan®z | 2—0 | =
240 2

= 3°9 1= 3 (where we refer to eqn (2.13))

5.16. Let f(x) = 3z —sinz and g(x) = . Then

!
3
im 7f(:r) = lim f/(x) = cos T = 2.
x—0 g(a’,‘) x—0 g (.T,') 1 =0
5.17. In the following, S represents the required sum.
a)
S _ S 1 n S n
IEEE Y
n=0 n=0
= "~ (1l-—az+2>—)=¢"— !
1+’

the second term being a geometric series with common ratio (—z): see (5.4a).

(b) S=ad+ fat + 1a° + - = 2% (2 + $2® + $2° + --). From (5.4e),
1 1
1n(1—x)=—x—§x2—§x3—~-~

Therefore S = —z2In(1 — z).
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(c) S =1+ 52* + fa* +---. But from (5.4b),
x 1 2 1 3 —x __ 1 2 1 3
e —1+x+§x —|—§x +---ande —1—x—|—5x — 57 + o
Therefore e* +e~% = 25, and
1
S’zi(e”—ke_x):cosh:v
from (1.26).

5.18. In the following, S represents the required sum.
(a) From (5.4b)
=142+ 42 4.

and , s
6_221—24'227_%‘1’""
so that . .
e2—e’2=2<2+§7+%+"'>,
or

S = %(e2 —e ).

(b) From (5.4b), S = et
(c) S is geometric with common ratio (—%). Therefore, by (5.4a),

Chapter 6: Complex numbers

6.1. (a) x =—-1=+1i; (b) 2 =3+1; (¢) x =1ior —3i.

6.2. The equation is a quadratic equation in z2. Hence 22 = —4 or 1. Taking square roots

r =241 or +2i.

6.3. The standard form of a complex number is a + ib, where a and b are real numbers. Thus the
— I8 — 904 (i) —4 — 4gm.

6.4. The boundary between real and complex roots in the (p,q) plane is the parabola p? = 4¢:
the roots are real if p? > 4¢q and complex if p? < 4¢. The roots are both real and negative in the
quadrant p > 0, ¢ < 0.

6.5. (a) 4 +1i; (b) 545i; (c) £ — Li; (d) —32 — 1.

6.6. (a) —4i; (b) —7+4i; (¢) =% + 8i; (d) —% — i

6.7. (a) 1 —1i; (b) 2i; (c) —2i; (d) 3(1 4 gm); (e) i.

6.8. Numerically to 3 decimal places the answers are: (a) 4.482 4 2.218i; (b) 16.233 — 0.167i; (c)
—1.248 + 2.728i; (d) 88.669; (e) 266.050 + 0.512i.

6.9. (a) [21] = 2/2, Argz = 37; (b) [22] = 8, Argzo = —3m; (c) |23] = 5, Argzg = —3m; (d)
|z4| = 3, Argz4 = 7; (e) |z5| =5, Argzs = arctan(%).

6.10. The curves are: (a) the circle 22 + 32 = 1; (b) the straight line y = 2; (c) The circle
(x —a1)? + (y — az)? = 1 where a; = Re(a) and az = Im(a); (d) the parabola y? = 4z; (e) the
ellipse 322 + 4y? = 12 (need to square twice to remove the square roots); the complex formula

58



expresses the well-known property of ellipses that the sum of the distances from any point on an
ellipse to the foci is a constant; (f) the straight line y = x for « > 0; (g) the archimedean spiral
r=20.

6.11. (a) \/2exp(3im); (b) 2exp(ir); (c) 3exp(—3ir);
(d) 14exp(—li7r); (e) 24/2exp(if) where § = arctan[(/3 — 1)/(v/3 + 1)];

(1) /2 exp(—~Lim)s (8) ¢ expli);
(h) /2 exp(19) where 6 = arctan[(cos2 + sin 2)/(cos 2 — sin 2)]; (i) 512 exp(in);
(3) V2 exp(Fim).

6.12. Use the identity
ei(91+02) — eiel ei@g.

Hence

cos(f1 + 03) + isin(6; + 69)
= (cos B +isin b )(cos by + isinby)

= cos 01 cos O — sin 0y sin O3 + i(sin Oy cos B2 + cos Oy sin bs).
Equating real and imaginary parts it follows that
cos(f1 + 02) = cos b1 cos Oz — sin 07 sin Oy,

and
sin(6y + 02) = sin 0y cos b5 4 cos 61 sin Os.

For the other identities use

61(91—02) — ei01 e—i02 .

6.13.

Figure 58: Problem: 6.13

6.14 For the general case with f(6) = acos@ + bsin#,
1 (0) = —asin@ + bcos b,

and

f"(0) = —acosf —bsinf = — f(6).
The first case can be obtained by putting ¢ = 1 and b =i.

6.15. Using exponential forms for cos and sin, it follows that

sinia  2[exp(ai?) — exp(—ai?)]

tana = cosia  2i[exp(ai?) + exp(—ai?)]
1 exp(—a) —exp(a) .exp(a)— exp(—a)
i exp(—a) + exp(a) - 1exp(a) + exp(—a)
= itanha.
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6.16. (a) The equation cosh z = 1 implies
1 z —z 2z z z 2
5(6 t+e ) =1=2e*-2"+1=0= (¢*—1)"=0.

Hence e* = 1. If z = a + bi (a, b real), then e%e® = 1 =e?"™ (n=0,+1,42,...). Thus a = 0 and
b = 2nm. The roots are given by z = 2nwi, (n =0,+1,£2,...).
(b) Similarly sinh z = 1 implies

e?* —2e* —1=0.

Hence e* =14 /2. If z = a + bi, then

e — e%(cosb +isinb) = 1+ /2.
It follows that sinb = 0 so that b = nm, n = 0,+1,4+2,...). Hence

e cosb = e cos(nm) = (—1)"e* =1+ 4/2,
so that
a =1In[\/2 —1], (n odd) a = In[\/2 + 1] (n even) .
The complex roots are
z=1In[y2 — 1] +inw, (n odd) z = In[\/2 + 1] + in7 (n even).
(c)e* =—1=¢e* g (n=...-2,-1,0,1,2,...). It follows that the roots are
z=0C2n+1ri (n=...—-2,-1,0,1,2,...).

(d) cos z = /2 implies that
§(e‘z +e ) = /2= P —2,/2¢" +1=0.

Hence _ _
e =2+1=(y2+£1)e*™, (n=0+1,£2,...).
If z = a+ib, then
e ’=(y/2+1), and a = 2nr.

Hence the roots are
z =2nm —iln[y/2 £ 1].

6.17. (a) Log(1 +iy/3) = In(y/(1 + 3)) + iArg (1 +iy/3) = In2 + fim.

(b) We can write log z = Log|z| + i(Arg z 4+ 2km) where k is an integer. Hence if log z = =i, then
|z| =1 and Argz + 2km = 7 so that k = 0 and z = =i is the only solution.

(c) Log(ei) = In(e) + 27mi =1+ ini.

(d) elog? = elnr+if+2kmi — olnreld — 46l — > Therefore log z defines the set of functions inverse to
e”, as is suggested by the notation.

6.18. (a) 2! = e'®2 = cos(In2) + isin(In 2).

(b)

q o ilni . Lo 1
il = ' = exp[iln(ez™)] = e 2",
This number is real: hence Arg(il) = 0.
(¢) The equation becomes
Zi _ ei log zei[Log|z|+i(Arg 2+2k7m0] _ ef(Arg z+2k7r)eLog|z| - 1= e(2n+1)7ri,

where n and k are integers. Hence

Log|z| = (2n+1)m, Argz=0, k=0.
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Therefore, the solutions are given by z = (2"t where n is any integer.

6.19. Write the equation as
2% = —1=entUm 5 any integer.

The solutions are given by
1 .
z =exp [5(211 + 1)7r1} , (n=1,2,3,4,5).

Other values of n merely repeat these solutions. On the Argand diagram the solutions all lie on

the unit circle centred at the origin at polar angles %ﬂ', %ﬂ', , %77, %77.

Figure 59: Problem: 6.19

6.20. Denote the complex number by z in each case.
(a) 2 = 2e3121 = 2¢3[cos 2 +isin 2]. Hence

|z| =23, Argz=2, Rez=2ccos2, Imz=2e>sin2.
(b) 2z = 4e' = 4[cos 1 + isin1]. Hence
|z| =4, Argz=1, Rez=4cosl, Imz=4sinl.
(c) z = 5explcos(im) +isin(fm)] = 5exp(1/y/2)[cos(1/4/2) + isin(1/y/2)]. Hence
2| = 5exp(1/v/2), Argz=1/y2,

Rez =5exp(1/y/2)cos(1//2, Imz=5exp(1/y/2sin(1//2).

(d) z =e!'t =e(cos1 +isin1). Hence

|z| =e, Argz=1, Rez=-ecosl, Imz=esinl.
6.21. Let z = ce®™¥ = ce®[cos 8 + isin B]. Comparing with

x = 0.04e 7901 gin 12¢,

we can identify
1
c=0.04, «a=-001t, pB=12t+ 5™

6.22. We have to express the sine as a cosine. Hence

1
i(t) = ce "% sin(0.4t + 0.5) = ce "% cos(0.4t + 0.5 — 571'),

_ —0.05¢ ,i(0.4¢+0.5— %
= Refce ell 2],

Re[ce—0.05t+i(0.4t+0.5—%Tr)]
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6.23. (a) 22 = (z +iy)? = (2 — y?) + i2zy. Hence

Re(2?) = 2% — 42, Im(z?) = 2.

(b) First ‘
23 = (x +iy)(z? — y? +i2zy) = (2® — 3zy?) +i(32%y — ¢°).
Thus
24222 +32% = (z + 202 — 2y% + 323 — 929®) +i(y + 4oy + 92%y — 3y°).
Hence

Re(z 4+ 222 +32%) = o + 222 — 2y + 3% — 9z?,
Im(z + 222 + 323) = y + day + 922y — 33°.
(c)

1 ., . o

sinz = sin(zx+iy) = g[el("”ly) — e i@Hiy))
i

—_ 7[efyeiw o eyefim]

2i

E[e_y(cosx +isinz) — eY(cosz — isinx)]
= e Ysinuz.

Hence
Re(sinz) = e Ysinz, Im(sinz)=0.

cosz = l[ei(”*‘iy) + e_i(’”+iy)] = l[ei’”e_y + e %Y
= coszcoshy —isinzsinhy.
Hence
Re(cosz) = coszcoshy, Im(cosz)= —sinzsinhy.
(e) Using (d)
e“cosz = —e®W[cosx coshy — isinxsinhy]

e”(cosy + isiny)[cos x cosh y — isin z sinh y]

e”[(cos y cos x cosh y + sin y sin x sinh y) 4+

N RN~ DN

(siny cos x cosh y — cos y sin z sinh y)].
(f) exp(2?) = exp(2? — y?) exp(2xyi) = exp(x? — y?)[cos 2zy + isin 2xy]. Hence
Refexp(2?)] = exp(z? — y* cos 22y, Imlexp(z?)] = exp(z? — y? sin 2zy.

6.24. w =u+iv = f(2) = 22 = (v + iy)? = 2% — y? + 22yi. Hence, equating real and imaginary

parts

w=2xz>—y% v=2xy.

The hyperbolas map into the straight lines w = 1 and v = 2 respectively in the w plane.

6.25. Substituting for z it follows that

B [ . c(x —1iy)
w = Z+z —x+1y+7x2+y2

+ =L ) Y
T 1 - .
2 +y? R
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For the circle |z| = 1, 22 + y? = 1, so that
w=z(1+c)+iy((1—c).
Hence u = z(1 4 ¢) and v = y(1 — ¢). Thus, on the circle |z| =1
2 2

1+o?  (1-0

24yt =1=

which is the equation of an ellipse.

6.26. The derivation of the formula for cos® 6 is given in Example 6.20. For sin® @ use the identity

. 1 < n 1 >
sinnf = — | 2" — — |,
2i 2"
where z = cos +isinf. Then

(2sinf)® = — (z— 1)6

1 1 1
—<z6—|—6)—|—6(z4+4> —15<z2+2>+20
z z z

= 2(—cos60 + 6cos40 — 15 cos 260 + 20) .

Finally

sin® g = 35 (— cos 66 + 6 cos 46 — 15 cos 260 + 20).

6.27. The displacement is given by
z=Rez =% cos0.5t.

Hence z = 0 where cos 0.5t = 0. The required zeros of = are given by
1 .
0.5t = 5(271 + 1)m, for integer n .

Hence t = (2n+ 1)m, (n =0,£1,42,...).
The velocity is given by

dx d

prialem [e7%%" cos 0.5t] = —e™?"[0.2 cos 0.5¢ + 0.5sin 0.5¢],
i
or, alternatively, by
dz d ;
Re—~ = Rel|— (—0.24-0.51)¢t
“at ¢ [dte

Re [(—0.2 + 0.51)e "% (cos 0.5¢ + isin 0.5t)]
= —e %2%0.2cos 0.5t + 0.5sin 0.5¢].

6.28. If z = 241 is a solution then so is its conjugate 2 — i since the coefficients of the polynomial
are real. Therefore (z —2 —i)(z — 2 +1) = 22 — 42 + 5 is a factor. Hence

2t =228 22 422410 = (22 — 42+ 5) (2% + 22+ 2).

The other solutions are given by 2% + 2z + 2 = 0, that is, z = —1 % 1.

6.29. (a)
S =1 in 0 ! i 20 ! 0
= — Sin +asm —gsm —+ .-
> (_1)nen19 0 prg
- | 52,
n=0 n=0
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where z = —e'?. The infinite series is the Taylor series for the exponential function e* (see Section
5.4). Hence

S = 14 Im[e*] =1+ Im[exp(—e'?)]
= 1+ Im[exp(— cosf — isin0)]

1 — e Ysin(sinh).

(b) In this case

22 23
T = 1—1—20059+§c0529+§cos39+---

oo

2" ni
Zﬁe 0]

n=0

2
= Z — cosnb = Re
n=0

n
n!

Using the Taylor series for an exponential function;

2" nif  __ - (2€i9) _ 9 07 D) 0 %isin 6
Z e = ZO = exp[2e”] = exp[2 cos O + 2isin ]
= e2%%cos(2sinh) + isin(2sin h)]

Hence
T = <% cos(2sin §).
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