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Chapter 14: Antidifferentiation and area

14.1. In each case we require the general form of y such that

Y= )
where f(x) is given.

a) 28+ C; 325 + C; $a* + C; §2° + C; 322 + C; 3z + C; C.

411 72+C 22714+ C; 3lnx + C.

c) %m% +C; gzﬁ + C; 213 + C, %x% +C, %:c% +C.

d) —z7'+C=—-1/2)+C; —327% = -1/(32* + C; In(—2) + C

e) %x% +C; 207 +C =2z +C; =222 4+ C.

) 322+ C; La® 4+ C; —1/(32) + C; 2 + C.

) "+ C; —e " + C; 3e** + C —2e73% 4 C; — Se72=,

h) 51nx+C’ 7sm3x—|—C —cosz + C} 7cosx—|—C

v— 322+ Cio+a? -2+ C; 22° — 323 + b + C.

%a: —|—%J:2—|—C,m—§x —|—C’,% 3+3:2+x—|—0; %xQ—lnx—i—C' ix4+%x5+0.
k) z+Inz+C forz > 0; 22 —2\/x+C;Inz — 22! — S22 + C.

1) e — e + C; o2 — &3 4 (; 2027 + 1 + C —le ¥ g4 1e7 4 C.

m) sin 2z + C; —6cos%x—12sin%x+0' 2z — S cos2z + C.

14.2. (a) $(z+1)*+ C; 5Bz + 1)+ C: 53z —8)* +C.

(b) —1(1— )+ C; —2(8 —32)% + C; —z( —2)3 +C.

() =22z +1)"'+C; —2(1 — )7 +C; —2Bz+1)72+C; -1 — )i 4C.

(d) 2sin(3z —2) 4+ C; 3cos(1 — ) + C; 2 cos(2 — 3z) + C.

14.3. (a) In|1+ 2|+ C; In|z — 1|+ C; In |3z — 2| + C; ZIn|5z — 4] + C.

(b) —In[1 — 2|+ C; —LIn|4 — 5z + C.
(¢c)z—Injz+1|+C.
(d) Using

x+171+ 2
x—1 r—1’

the required antiderivative is  +In|l — z| + C.

14.4. (a) 2z 4+ 1sin22 + C; 2z — Lsin22 4+ C; —1cos2z 4+ C.
(b) %x+§bln4x+0, 32 — 15 sin6z + C; 80054x—|—0



(c) Using

1 3 1 1
cos’ z = 1(1 +cos2x)? = = 4 ~ cos 2z + §c0s4x,

8§ 2

the antiderivative of cos? x is
%z + % sin 2z + 3% sindx + C.

14.5. (a) By the product rule:

d d d(e”
a(azem) = %ez +x Elic) =e” + xe”.
By rearranging the terms:
xe 7@@6 )—e dx(xe e”)
Hence the antiderivatives of ze” are
ze” —e” + C.

(b) Since

d—(ﬁe“") = 2ze” + 2",
x

it follows that

d d d d
2'%:7 2, _2 r __— 2,z _2 T _ aT) — 2$_2 x 2’E
x‘e dm(x e”) — 2ze dx(x e”) dx(xe e”) —dx(x e xe” + 2e7),

Therefore, the antiderivatives of x2e® are given by

e (2% — 22 +2) + C.

14.6. In each case the signed area between the curve defined by y = f(z) and the z axis between
r=aand z=>is

A= F(b) - F(a),
where F(z) is any antiderivative of f(z).

(a) For y = x between z = 0 and z = 2, choose F(z) = 1%, Then

A:F(Q)—F(O):%QQ—O:Z

(b) For y = x between 2 = —1 and x = 1, choose F(z) = $22. Then
1 1

—F(1)— F(-1)= - — - =0.
A=F)-F(-1)=1 -]

The graph of y = «x is a straight line through the origin between z = —1 and « = 1: the areas
above and below the x axis cancel

(c) For y = —a? between = 0 and z = 1, choose F(z) = —3°. Then
A=F(1)—-F(0)=—43.
(d) For y = cosz between x = —7 and « = m, choose F'(z) = sinz. Then

A= F(r)— F(—m) =sinm —sin(—7) = 0.
(e) For y = cosz — 1 between x = 0 and = = 27, choose F(z) =sinz — z. Then

A=F(2r)— F(0) =sin2r — 27 — 0 = —2m.



Figure 1: Problem 14.6g: y = sin3x for 0 <z < %7‘(‘.

(f) For y = 27! between # = —2 and x = —1, choose F(z) = In(—x). Then

A=Inl—-In2=—1n2.

(g) For y = sin 3z between x =0 and = = %77, choose F(z) = —% cos 3z. Then

A=F(r)—F(0)=—fcos2r+ 3 =—%+ £ =0.

(h) Fory =1/(1 —2) = —=1/(z — 1) between 2 = 2 and x = 3, choose F(z) = —In(z — 1). Then

A=F3)—F@2)=-In2+Inl=—1In2.

14.7. (a) The function y = —3 is always negative, and an antiderivative is F(x) = —3x. Hence
the geometrical area A is given by

A=A =|F1)—F(0)=|-3-0/=3.

b) The function y = 3 is positive for x > 0 and negative for < 0. An antiderivative is

F(z) = im‘l. Then the geometric area is given by

1 1 1
A= |F(0) = F(=1)| +|F(1) = F(0)| = 0~ 7 +[; — 0] = 5.
(c) In the interval —1 < 2 < 3, y = 4 — 22 is positive for —1 < x < 2 and negative for 2 < z < 3.
Choose the antiderivative F'(z) = 4z — %x?’. Then the geometric area is

A = |[FQ) -F(-1|+|FB3)-F@2)|=8-8+4-1-|12-9-8+§
= 943l
_ 34
=3

(d) In the interval 0 < 2 < 27, y = cos z is positive for 0 < x < %7‘(‘ and %71' < x < 2w, and negative
for 3m < < 37. Choose the antiderivative F(z) = sinz. Then the geometric area is

A = |F(zm) = FO)| +|F(5m) = F(zm)| + |F(27) = F(57)]
= |[sinim — 0| +|sin 27 — sin i7| + |sin 27 — sin 37|
= 14+|-1-1|+1=4.

14.8. (a) The antiderivative of 0 is any constant A, and the antiderivative of A is At + B where
B is any constant. Therefore the most general function which satisfies
d2x



(b) The antiderivative of ¢ is £t* + A, and the antiderivative of $t* + A is $t* + At + B, where A
and B are constants. Therefore the most general solution of

d*z : 1,3
(c¢) The antiderivative of sint is — cost+ A, and the antiderivative of this function is —sint+ At+ B,
where A and B are constants. Therefore the most general solution of
d2
dt?

(d) The most general solution of

=sintis x = —sint + At + B.

d3
S5 =Oisa = APBt+C.
(e) The most general solution of
d3x . . 1.2
s =cost is x = —sint + 5t* + Bt + C.

(f) The most general solution of

d2
d—;:gism:%gt2+At+B.

(g) The most general solution of

d4
i

Chapter 15: The definite and indefinite integral

15.1. (a) For y = 2%, —1 < x < 2, the signed area is given by

r=2 2
_ 3¢ 3
A = 7}L1202x6m—/_1xd$

r=—1

- el i)

o
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Figure 2: Problem 15.1a

r=1 1 1 1
A = lim a:55x=/ 22dr = [xﬁ]
n— 00 w;1 1 6 1
1 1 1
= 5 [2°]_, = 5[1 —(=1)% =0



(c) For y =sinz, -7 <z <0,

=0 0
A = lim Z sinzdzr = / sin zdz
= [~cosz]’, = —[cosz]® = —[1—(-1)] =2
(Fory=e 2 0< o <1,
r=1 1 1
A = nlLrI;OZe*2x5x:/O e Ay = [75672I](1)
x=0
1, 1.
= gl b= gl —1=0432....

15.2. We require the general antiderivative for each integrand.
(a) [z3de = %x% +C.

(b) [(z+1)3dz = 2(z+1)% +C.

(c) [ez*dzx = 2¢3% 4 C.

(d) [sinazdz = —cosz + C.

(e) [(cosz —2sin2z)dz = sinz + cos 2z + C.
(f) [t~2dt =2t7 + C.

(g) [ cos2udu = Lsin2u+C.

(h) [3e~2¥%dy = —6e~ 7Y + C.

(1) A +3t2—2t)dt =t -+t — 12+ C.

() [(1 +4cosdw)dw = w + sindw + C.

(

k) [(~2)2de = 2z(—2)% + C or — 2(—a)%.

15.3. All these integrals use formula (15.4):

b
[ f@te = (@) = P) - Fl@).

! 1,0 1 1
31 |1 4 _ 1 _t_
(a) /fﬁdx—Lx]l 171 0.
! 1.0 1 1 2
b e =|z2®| =-+-==:.
() /_1”” v {3””]1 37373
2
(c) /dxf[x]?):?
0
4 4
(d) / xédx_[%z} _16
0 37 ], 3
! 2 .00 1
(e) [1(1 — 32+ 22%)dx = [3:— %xz + 3563] » = EO



© [ = et =

() /21 rldz = [lnfzf) "L = —In2.
) [t = [ L] "=
) [ o b= Lacos.ﬂz”::4
(m) 1f”améx¢t:[}$n;x]jr:o.

15.4. In each case the antiderivative F(z) of f(z) is required, and then the definite integral is
given by

b
[ e = (F@), = F6) - Flo).

L 1 1 1,]" 13
2 _|ta t o3 Lol _ 10
(a) /o z(z®+z+ 1)de = [433 +3:E +2z}0 2"
! ! 1 ! 4
b r—1)(x+1)dx = 22— Dde = |Z2® — 2 = ——.
(b) ( ) ) (
. - 3 .3
2 Ly, 1, ?
(c) / z(z® — 1)dx = [m —x} =2
0 2 ]y
2 2 2 2
(d) / 33—|—3x d —/ (x_2+x_1)dx: {——i—lnx} = _—+1In2.
1 € 1 1



2 2 2
HE41 25 2.1% 44216
(@) / (t+ )dt:/ (t3 +13)dt = L_)tg—i-?)t;} _4v/2-16
1 1

1 1 15
4 4
-1 1 1 4
") / Vu du:/ (ufﬁ—ufl)du: [2u§—1nu] =2-2n2.
1 u 1 !
0 0
dw 1 1
— 71 2 :71 .
() /71 2w+ 3 {2 n( w+3)}_1 2 "
(1) /1 ~d /1 14—+ |de=[e+Infe—1)"5 = 1+I2—In3
_ = n - = Nz —o.
9 x—1 . -2 r—1 ) ’ ’ -
T 7'r1 1 1 g 1
(1) /0 C082 3tdt = /O 5(1 + cos Gt)dt = |:2t —+ ﬁ sin 6t:| . = 57‘1’.

15.5. These are all improper integrals of the various types discussed in Section 15.6.

o [T R
(b) / Tetrav= [ v] T =2
[l

@ [ wisr s 3)]? =5
® =), -5

[ -

(g) Using the formula (15.11) or the method illustrated in Example 15.12,

. 3
/ e~ 3t cos 2tdt = —.
0 13

(h) Using the formula (15.11) or the method illustrated in Example 15.12,

° 1 2
/ e~ 2t cos 2tdt = —.
0 17



15.6. The mean of f(¢) over an interval 0 < ¢ < T is the quantity

T
% /0 F(t)dt.

(a) For f(t) =t over 0 <t <1, its mean is

1 1
1 1
/ tdt = {tz} =_.
0 2 |, 2
(b) For f(t) =t over —1 <t <1, its mean is
1 1[1,]
f/ tdt = = [=t*|  =0.
2/, 212" |,
(c) For f(t) =sint over 0 < ¢ < 7, its mean is
1 [™ 1 2
f/ sintdt = — [~ cost]y = —.
7 Jo T ™

(d) For f(t) =sint over 0 <t < 27, its mean is

2m
o A sintdt = 0.
(e) The mean of f(t) =t 2 over 1 <t <Tis
Y 1 T 1
— [ At = —— [t = =
T—1), 71t h =g
(f) The mean of f(t) =e *cost over 0 <t <27 is
I 11 - 2]
%/0 e ‘costdt = 55 [e’t(cost—i—sint)]i = —GT.

(g) The mean of f(t) = e 2!sint over 0 < t < oo is defined by the limiting process:

lim
T—o00

1" 11
?/0 e2tsintdt1 :Tlggo |:T5{162T[COST+2S1I1T]}] =0.

(h) The mean of f(t) =1—e " over 0 <t < oo is

lim
T— o0

1/0T(1et)dt] — lim B(THeT)} ~ 1.

T T—o0

(The limiting process is necessary since [, (1 —e~*)d¢ is infinite.)
(i) The mean of f(t) =t ! over 1 <t < oo is

1 T InT
li —— 7| = i =0.
e [Tl/l ] T T — 1

(See the remarks under (h).)
15.7. (a) Since sin® t = sin*(—¢) for all ¢, sin* ¢ is an even function (see (1.12)), so that by (15.17)

s ™
/ sin* tdt = 2 / sin ¢dt,
—m 0




since the interval is symmetrical about the origin.
(b) Since
(~1)? #

L+ (=01 (@+)

this function is odd, so that by (15.15), since the interval is also symmetrical about the origin,

1 t3
——dt=0.
[41+ﬁ

(c) Since (tcost)/(1+ t?) is an odd function and the interval of integration is —7 < x <,

T tcost
——dt =0.
/w1+ﬂ

(d) Since (—t)?sin[(—t)3] = t?sin[—(t?)] = —t%sin(#3), this function is odd. Since the interval of
integration is —%w <zx< %7‘(,

l‘I'l'
/zﬁmﬁwza
Ir

15.8. (a) Below is a simple program in Mathematica using the algorithm (15.2) for the numerical
integration of e_g”/x over 1 <z <2:

flx] = Exp[-x]/x;
a=1;b=2;n=100; h = (b-a)/n;
h*Sum|f[a + r*h], {r, 0, n-1}] // N

The program uses 100 steps and gives the answer 0.17199. If the number of steps is increased to
101, then the estimate becomes 0.17197 to five decimal places, which gives a difference error of
0.00002. However, the correct value is 0.17048 to five decimal places so the numerical estimate is
only correct to two decimal places. For an accuracy to four decimal places we require about 30000
steps using this algorithm.

(b) As in (a), a program is

f[x_] = Sin[x"2];
a=0;b=Pi;n=100; h = (b-a)/n;
h*Sum|[f[a + r*h], r,0,n-1] // N

For 100 steps the estimate is 0.77894 and to 101 steps 0.77889 to five decimal places. The true
value to five decimal places is 0.77265.

(c) Use the method above with f(z) = cos(e™®). To five decimal places the value of the definite
integral is 0.79383.

15.9. (a) If © = 1, then e = =¢ L. Alsofor z > 1, —22 < —z so that e= < e~7.
If b > 1, then, given F < 1,

/ e dz < / e Pdr=eb< E,
b b
ifb>—InkE.

(b) As in Problem 15.8a, use the program

fix] = Explx"2];
error = 0.001; a = 0; b = -Loglerror]; n = 1000; h = (b - a)/n;
h*Sum|[f[a + r*h], {r,0,n-1}] // N



Here the E(error) = 0.001, and b = —In E. The program gives the estimate
/ e~ dz ~ 0.88968 (true value is 1./7 (see Example 32.11)).
0

To five decimal places the the integral takes the value 0.88623.

15.10. The general formula for differentiation of an integral with respect to varable limits is given
by (15.20):

4 [@ do(z) du(x))
i [ o=@ T - )
d [* 2
— todt =
(2 o pa=a
a * 5 — win®
(b) ar /. sin” ¢tdt = sin® x.
xr t X
(©) L T
d e” de®
(d) a /. tintdt = e” In(e") L = e
VD) - 0 s
(e) 4 sin(t2)dt = SnE@ D sz
dz / /. 2y/(x+1) 2z
15.11. (a) We are given
0 ifx<-1
fly=< = if —1<x<1
0 ifz>1

Case x > 1:

B T B 1 T B 121_1
I(:zc)—/o f(t)dt—/o tdt+/1 Odt—[2t]0_2.

I(z) = /Ow f(t)dt = /OI tdt = B#’K = %xz.

I() :/Oxf(t)dt:— :f(t)dt:—/x_lodt—/o bt = &

(b) We are given

Case -1 <z <1:

Case x < —1:

x fo<z<l1
fl@)=4 2—2z ifl<z<;
0 ifa:>%
Casex>%:
@ ! H 1 3 7
I(x):/ f(t)dt:/ tdt+/ (2—t)dt+/0dt:f+f+O:f.
0 0 ' 7278 g

10



Caselﬁxﬁ%:

T 1 T
1 1
I(x):/ f(t)dt:/ tdt+/ 2-t)dt=-+2r— -2 —§:—1+25L'—71'
0 o ) 2 2 2 2

Case 0 <z < 1:

15.12. For t < t:

For t > tq:

1 2 2

¥ 1
I(z) = / tdt = a2
0 2

t

to t

Q) = / Iodu—|—/ Tpe™ Ru=to) /Ly,
0 to

t

L
= I()tO + I() |:_Re_R(u_t0)/L:|
to

= I {to + % (1 - eR(ttO)/L)]

15.13. The function f(z) is defined by

x2, 0<z<1
fwy—{?—x l<z<2

0.5 1 1.5 2

Figure 3: Problem 15.13

The area A is given by

15.14.

A = /:f(x)dm:/lede—i—/lQ@—a:)dx

] o]

/2 dx /“ dz +/2 dx
o |z—1% 0o (1-2) 1 (z—1)F

= [-3(1—2) + Bz - D]
3+3=6

11



Chapter 16: Applications involving the integral as a sum

16.1. Given the resistance R(x) = 100z + 100022, the work done, §W, in compressing it through
a short distance dzx is, approximately,

SW = resistance x distance = Réx = (100z + 100022)dz.

The total work done

0.01 0.01
W = lim Y R(x)éz = / (1002 + 1000z2)dx

0.01
1000
= [50$2 + 3:53} =0.00533....

0

16.2. With v(t) = 20 — 10¢, the displacement d which takes place between ¢t =2 and ¢t = 4 is

4 4 4
d(t) = Tim " v(t)ot = / o(t)dt = / (20 — 10¢)dt = [20¢ — 5¢%]; = —20.

t=2

We require the general indefinite integral of v = 20 — 10¢:
z(t) = /vdt = /(20 — 10t)dt = 20t — 5t% + C.

Since z(2) = 3,
3=40-20+C, or C = —1T7.

Therefore z(t) = 20t — 5t — 17, so that z(4) = —17.

16.3. From (16.1) the volume V of a solid of revolution about the x axis formed by the profile
y = f(x) between = a and z = b is given by

V= /abﬂyzdw = /ab[f(x)]zdfv-

(a) Profiley=e ™, 0<a < 1:

(d) Profile y =sinz, 0 <z < 7
™ . 71'1 1 9
V=n/ sinzdz=n —(1—cos2z)dx = —7~.
(e) Profile y = 23, -1 <2 < 1:
1
2
V:7r/ 28dz = 22
1 7

12



(f) Profiley =z(1 —2),0 <x < 2:

_16n

2 2
V:ﬂ'/ xQ(l—x)de:W/ (22 — 223 4 2*)dx .
0 0 15

(g) Profile y =1/2, 1 <z < oot

(h) Profile y = 23, 0 < z < 1.

1 1 27T
V:ﬂ'/ r2dr = —.
0 3

16.4. A sphere of radius R can be viewed as a surface of revolution about the z axis with a profile
y = +/(R? — 2?). The volume of the sphere is

R R
V = 7T/ yzdx:w/ (R? — 2*)dx

—R R

R
= 7 [R% - 1x3] =27 {R?’ - 1R3} = éwR?’.
37 ] & 3 3

16.5. (a) The required profile for the ellipsoid is
b 2 2
Yy= 5\/ (a® —x%).
Hence the volume of the ellipsoid is

[ (3 -mee (Y e

4

= —gmab?.
3

Vv

(b) The volume of the ellipsoid is

where b
_ b 2 2
y=—y(a”—a%).
2

Change the scale of the y coordinate by writing y = (b/a)y’ so that y/ = \/(a? — z?) is the profile
of a semi-circle of radius a. Hence

2 ra 2
V=mrm (b) / y/2d$: (b> ‘/S7
a —a a

where V, = %77(13 is the volume of a sphere of radius a. Therefore
b\2 4 4
V = <a> §7ra3 = gwabQ.

A similar argument can be devised if the x coordinate is scaled.

16.6. In this problem the line y = %x or ¢ = 2y is rotated about the y axis between y = 1 and
y = 2 to create a truncated cone. Its volume is given by

2 2 2
1 28
V= 77/ 22dy = 47r/ yidy =4 |=y?| = =
1 1 3 1 3

13



16.7. Consider an element of the beam of incremental length §z, distance = from the wall at A.
Its mass is mdz, and its moment about A is mgzdz, where g is the acceleration due to gravity.
The total moment of the beam is the sum of these elements between x = 0 and x = L, which in
the limit becomes the integral

L
1
moment = / mgxdr = imgLQ.
0

16.8. An increment of width dx has mass given

dm = (width) x (cross-sectional area) x (density)
500 x [4 x 1074(1 + 0.422)]6z.

The moment M required to support the beam about A is the sum of the increments xgdm, which
in the limit is the integral

1 1
/ 500 x 4 x 107*(1 + 0.42%)xgdr = g/ [0.22 + 0.082°]d.
0 0

= 0.12g=1.18,

M

assuming SI units with ¢ = 9.81ms~2.
The result will not be affected by different cross-sections or a bent axis provided that each
element §x remains at distance x from the wall.

16.9. Let dz be the width of an increment of the tube. Then the mass of solute in this increment
is
om = c(x) x 0.1 x ox.

The total mass of solute is, with ¢(z) = 0.04e~ 17,

10 10 10 )
/ dm :/ 0.1c(z)dx :/ 0.004e~ **dx
0 0 0

L 710
0.004 [4&2@}
0.015gm,

3
[

0

to two significant figures.

16.10. Consider a horizontal slice of thickness dh of the water clock. The volume of this slice is
approximately, with radius r(h) = 0.39h1,

8V = (cross-sectionsl area) x (thickness) = 7[r(h)]*0h = 7r(0.39)2h%6h.

In the limit, as 6h — 0,

d
d—‘; = 7(0.39)2h3.
Since we are given that
vV 0.003m?,
dt
it follows that
dh dV ,dV

dh _dv ,dv o
% = ar/ an = ~0-003/(w(0.39)%) = —0.00628

which is a constant. This means that the water level height h falls at a constant rate. The clock
‘stops’ when h = 0. Hence it runs for a time T where

0
dh
T=— — 79.6 hours.
/0_5 0.00628 ours

14



The clock will run for about 80 hours given the accuracy of the data.

16.11. The heat generated is

27 fw 27w
H = / Ri*dt = / Ri3 cos® wtdt
0 0

1 27w
= §Rz’§/ (1 + cos2wt)dt
0

= Riln/w.

If the cycle runs from t = to to t = tg + 27 /w, then the heat generated is

to+27/w to+2m/w
Hy, = / Ri?dt = / RiZ cos? wtdt

to to

1 to+2m/w
= fRz'g/ (1 + cos 2wt)dt

since the integral of cos 2wt over any interval of length 27 /w is zero.

16.12. The line y = —z and the parabola y = z(x — 1) are shown in the figure: the parabola cuts
the = axis at + = 0 and at x = 1 (note that the scales differ). Also z(x —1) > —z in the interval
0 < x < 2. Therefore the geometric area is

y
2

-

X

Figure 4: Problem 16.12

2 2 8
A:/ |x(x—1)+x\dx:/ ridr = -.
0 0 3

16.13. For = > 0, 23 > —z, whilst for z < 0, —z > 2%. Hence, for z > 0 an element of area is
§A; ~ (2% + x)ox.

Hence ) .
1 1 3
A = /0 (xg + x)dx = [4334 + 21‘2} = 1

For z < 0, the area is

0 1, 1, 3
= — — 3 = [ ——= 2 —_ = 4 = —
As —/ (—z —2°)dz [ 5%~ 7% }_1 1

-1

Hence the required geometric area is

A:A1+A2:;

15



16.14. The incremental formula for sectorial area is A ~ %7“259, which gives the area

1 [P
A = 5‘/(1 7'2d0,

between the angles § = o and 6 = (.

)9§27T:
/'T

for the curve r = f(6
(a) Curve r =0, 0 <

Figure 5: Problem 16.14a
Sectorial area:

1 2w
A==
2

(b) Curve r =2cosf, —47 < 0 < 3

171 .17 4
02d0 = = | 03| = —x3.
2[3 L 3

0

Sectorial area:

1 1
1 57 57
A= 5/2 4cos29d0:/2 (1 + cos 20)d9 = .
—in —5m
(c) Curve r = /27 0 <0<

0.5 1

Figure 7: Problem 16.14c
Sectorial area:

1

4 1
A=< [ 79 = Zn(e—1).
2/0 e’/"df 27T(e )
(d) Curve r =sin260, 0 < 6 <

1.
. e
Sectorial area:

A:1/2 sin220d0:1/2 (1—cos49)d0:£
2 Jo 4

0

16



Figure 8: Problem 16.14d

16.15. Consider a strip of width dy and length L on the end of the trough at depth y below the
top of the trough. The element of force on the strip is

dF = (pressure) X (increment of area) = (pgy) x (Ldy) = pgyLdy.

The total force on the end of the trough is the limit as dy — 0 of the sum of these elements, which
is the integral

H 1
F= / pgyLdy = 5pgLH”.
0
The moment of the strip about the bottom of the end of the trough is
OM = (0F) x (H —y) = pgyL(H — y)dy.

Hence the total moment is

H
1
M =/ pgL(yH —y*)dy = CpgLH®.
0

16.16. Let the cone be generated by rotating the profile y = (R/H)x about the z axis between
xz =0 and x = H. Take a section of the cone of thickness §x at distance x from the origin. The
mass dm of this disc is

R\ 2
om = pry’dx = pr (H) 2o,

where p is the density of the cone. The mass of the cone is the limit of the sum of these elements:

R\ (" 1
m = pw <H) /0 r?de = g,erQH. (1)

Let the centre of mass be at distance T from the origin: by symmetry the centre of mass will be
on the x axis. Then

_ R\ (7, 1 5y 3
mT = pm <H>/0 T dxfzerH 71Hm,

by (i). Hence T = 3H.

16.17. The figure shows the strip of width dz: the origin is at the centre of the rectangle with the
axes parallel to the sides as shown. The axis of rotation is the y axis. The mass of the rectangle
is m = pab, where p is its density (mass per unit area). The mass of the strip is pbdz, and the
moment of inertia of the strip about the y axis is pbz2dz.

Therefore the moment of inertia of the whole rectangle about the y axis is

3a 1 1% 1 1
I= bax’dx = pb | =ba? = —pba® = —ma?.
/%a por-dxr = p [3 x]_éa 12pa 12ma

16.18. The figure shows the triangle with suitable elements of area in both cases

17



Y ox
X
2b
2a
Figure 9: Problem 16.17
y
oy

Figure 10: Problem 16.18

If p is the density (mass per unit area) then the mass of the triangle is m = % pBH.

(a) From the first figure, the moment of inertia §I of the strip of width dz about the y axis is
B
61 ~ 2*2pydz = p—a’sx.
2"2pydr = ppra”du
where y = Bx/(2H). Hence the moment of inertia is

B (" 1 1
1= pﬁ/ w3 = ZpBH3 = imHQ.
0

(b) From the second figure, the moment of inertia 61 of the strip of width dy about the x axis is

H
51 = y*p(H — x)dy = py {H - By} 8y.

Therefore the moment of inertia is

H\ [P
I = 2p(B> | v =2y

- H[L, 3_11,4}%3

= y
B |3 27 |,
1 1

= —HB3=_—_mB2
48 214"

16.19. The trapezium rule for numerical integration of f(z) over a < z < b is (see (16.14))

b —a
[ e = SR G A ao) + () + flow) 4+ Flona)} + 3 on),

where xg = a and zn = b.
1
(a) In this problem f(x) =e2% a =0 and b = 1. The exact value of the integral is

1
I:/ e3dr =2 /e —2=1.2974.. ..
0

18



Using the trapezium rule, the approximations to the integral for increasing values of N are

N 2 3
approximation, Ay 1.304  1.300
error, 100/ — Ax|/I 0.52% 0.23%

With N = 2, the error is 100|] — Ay| = 0.52%, which is within the 1% accuracy required.
(b) In this example f(z) =sinz, a =0 and b = 7. The exact value of the integral is

I:/ sin zdx = 2.
0

Using the trapezium rule, the approximations to the integral for increasing values of N are

N 2 3 4 10
approximation, Ay  1.571 1.814 1.896 1.984
error, 100|I — Ay|/i  21.5% 9.3% 5.2% 0.8%

N =10 steps are required to reduce the error below 1%.

(c) In this case f(z) = cosz, a = —i7 and b = 7. The exact value of the integral is
m
1= / cosxdr = 2.
i
Since the cosine function is the sine function translated %ﬂ' to the left, and the interval is —%77 <

z < i, the data and errors in the table in (b) will be exactly the same for f(z) = cosz.
16.20. The trapezium rule is given in Problem 16.19.
(a) With f(z) = sin? z,a=0and b= %w, approximations for increasing N are given in the Table:

N 5 10 20 50
approximation, Ay 1.162 1.852 1.197 1.197

To two decimal places the answer is 1.20. Numerical integration using Mathematica gives the
answer 1.19814.

(b) With f(z) = ¢, a =0 and b = 1, approximations for increasing N are:

N 3 6 10 20
approximation, Ay  0.740 0.745 0.746 0.747

To two decimal places the answer is 0.75.
(c) With f(z) =e*/(1 +2%), a =1 and b = 2, a sample of approximations for increasing N are:

N 5 10 20 50
approximation, Ay 1.0482 1.0485 1.0482 1.0482

To 3 decimal places the answer is 1.048.
(d) With f(z) =sinz/x, a =1 and b = 2, approximations for increasing N are:

N 3 5 10 50
approximation, Ay  0.6593 0.6589 0.6592 0.6593

To 3 decimal places the answer is 0.659.

16.21. The formula for Simpson’s rule is given in the question. Since N must be even, put N = 2K
and let the step-length be h = (b—a)/N = (b—a)/(2K). If y = f(x) over the interval a < x <b
is the function to be integrated, then Simpson’s rule can be written as

b
I:/f(m)dx ~ g[f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+--~
+4f(a+ (2K — 1)h) + f(b)].

19



It is easy to compose a short program in Mathematica or another programming language to simulate
Simpson’s rule.

For f(z) = e“"z, a=0and b =1, N =4 and K = 2, Simpson’s rule gives I ~ 0.746855,
whilst for N = 6 and K = 3, I ~ 0.746830. These answers can be compared with the results in
Problem 16.20b where the trapezium rule was used for the same integral.

16.22. From the figure an element of arc-length ds can be approximated by the chord, which by
Pythagoras’s theorem is

Figure 11: Problem 16.22

2
s = /[(02)% + (6y)?)7 = /1 + (gi) oa.

In the limit dx — 0, arc-length s between = = a to x = b is given by the integral

1
b 272
dy
Simpson’s rule given in Problem 16.21 has been used to compute the lengths of the curves. (Note

that the number of coordinates called upon equals 2K.)
(a) For y =sinz, 0 < z < 1, the length of the curve is

1
s:/ V(1 + cos? z)dz.
0

A sample of numerical approximations is given in the table:

K 2 4 6 8
approximation, sy  1.31148 1.31145 1.31144 1.31144

This gives the length to 4 decimal places.
(b) For y = 2%, 0 < o < 2, the length of the curve is

5= /2 V(1 + 42?)dz.
0

A sample of approximations is given in the table:

K 2 4 6 10
approximation, sxg  4.65020 4.64683 4.64678 4.64678

This gives the length as 4.6468 to 4 decimal places.
(¢c) For y = e”, —1 < & < 1, the length of the curve is

5= /_11 V(14 e*)dz.

A list of approximations sk for increasing K is given in the table:

20



K 2 4 6 10
approximation, sx  3.19695 3.19625 3.19621 3.19620

The length is 3.1962 to 4 decimal places.
(d) For the semicircle y = (1 — 2)2, —1 < z < 1, the length of the curve is

1 2 1 1
T dx
§ /_1|: +1_$2:| o /_1\/(1—%‘2)’

16.23. Since z = rcosf and y = rsinf,

which is .

dx = §(rcosf) = drcos — rsinddf, dy = 6(rsinf) = drsin + r cos 656.
Hence

b~ [(0w)” +0y)*)
= [(6rcosf — rsinB50)* + (67 sin b + 7 cos 059)2]%

5r\ 2
2 JR—
T +<60>

In the limit as §6 — 0, the length of the curve defined by r = f(0) is the integral

1
2

= [r?(86) + (67)%)% = 50.

163
5= / (O + [/(O)P) 2 de.

The limits for the cardioid r = a(1 + cosf) are & = —m and 5 = 7. Hence the length of the
curve is

* T /[“2(1+C059>2+a2sin29ﬁd9=2/ a.cos 100

—T —T

= 4alsin $0]" . = 8a.

Chapter 17: Systematic techniques for integration

17.1. (See Section 17.1.) Put az 4+ b = w; then dz = du/a.

(a) Put 3z = u so dz = ju: /sin3xdz = /%sinudu = —2cosu=—%cos3z+ C;
1

(b) Put 4z = u so dz = }u: /Cos4xdx =1 sindz + C

(c) Put =3z =usodx = —%u: /e*&'ﬂdm = _%e*?ﬂv + C;

(@) Put 140 = u; Jsa)as = 142y 4 05

(e) Put 1 — 2 = /(l—m)gdxz—%(l—x)lo—i—C;
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(f) Put 3 — 22 = w: /(3 —2z)°dz = —5(3 - 22)5 + C;
— - n — 1 n+1 .
(g) Put 142z = u: /(1—1—2:5) dm—2<n+1)(1+2x) +C;

(hyPut z —1=u: /x(m —1)*dz = /(x5 — 42t + 32% — 42® + 2)dx

= o522 (5at — 242® + 4527 — 40z + 15) + C;

1 1 2 3 2 3
(i) Put 1 —x = u so de = —du: /(l—x)ﬁdxz—/uﬁduzyﬂ+C=—§(1—a:)5—|—0;

(j) Put 2z — 3 = u so dz = idw: /(21‘ - 3)_%dx = (2 — 3)% +C;
dz 1
k) Put 3z + 2 = w: =— C;
(k) Put 3z 42 =u /(3x+2)2 3@r+2)
dx 1
) Put 1l — o = u: - _ _ C,
) Putl-z=u /(1—@4 31 a3
(m) Put 1+ 2 =w: /1(fx: d—;:ln|u\+C’zln|1+x|+C;
(n) Put 3z +2 =wu: /(Zx +3)"3dx = i1In(2z+3) + C;
T 1
P 1-— = u: P E——— =Inl|l— o C;
(o) Put xT=u /(1_x)2dx n| 3:|—|—1_x—|- ;
Putl—ax=u: 1+mdx: u_2du:—m—2lnl—x + C;
(p) T
-z u

(q) Put « — 1 = u. Then

d 1 1 2 3 1
/7561 = /[u§ +u 2)du = zu? 4+ 2u? +C
(x —1)2 3
2 1
r) Put 1 —2x = u: cos(1 — 2z)dz = —Lsin(1 — 2z) + C;
2
(s) Put 22 — 3 = w: /sin(2a: —3)dz = —cos(2z — 3) + C.
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17.2. (a) Let u =2t — 5. Then du/dt = 2 and
5 51 L s 1 6
2t—=5)dt= [ v -du=—u"+C=—(2t-5)"+C;
(b) Let u = (3t —1). Then du/dt = 2 and

1 2 2 2 1
in — —1 = S1 — = —— 3 = —— S — —1 .
/81112(37,‘ )dt /blnugdu 3c05u—|—C’ 3c052(3t )+ C;

1 1
(c) / 2w + 1)2dw T T RwsD) ¢
(d) /e_?’"dr = —ée_?”' + C;

(e) Let w = —t. Then du/dt = —1 and

/(ft)%dt: f/u%du: fgu% +C = fg(ft)% +C;
(f) Let w =1 —s. Then du/ds = —1, and
P L SR F R S DS SR S :
/(1_8)3d8—/[ u " +u ]du_2u2 u+0_2(1—5)2 1_S+C,

(g) Use the substitution v = wt — ¢. Then
1.
/cos(wt — ¢)dt = —sin(wt — @) + C;
w
17.3. (See Section 17.2.) (a) Let u = 22 so that du/dz = 2z, and zdz = 1du. Then
1 1 1
/xe_”zdx = / ie_"du = —56_“ +C = ie_a’z + C;

b) As in (a), let uw = 2. Then
( ;

1
/xsin(a?Q)dx =3 cos(2?) + C;
(c) Let u = 2. Then,
1
/xcos(xQ)dx =3 sin(z?) + C;

(d) Let u =22 + 3. Then u = 2% + 3 so that du/dz = 2z, and
) 1 1. 1.,
x cos(z” + 3)dx = §cosudu:§smu+C’:§sm(x +3)+C;
(e) Let u = 1 — 322 so that du/dz = —6z. Then
9 1 1. L. 2
zcos(l — 3z”)dx = ~& cosudu = —gsinu +C = ~& sin(1 — 3z°) + C;
(f) Use the substitution u = 2? — 1 so that dz = 1du. Then

1 1 1
/96(932 —1)'dz = §/u4du = Eqﬁ +0= ﬁ(xQ —-1)° +C;
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(g) Use the substitution u = 322 + 4. Then

f 1 1 1
/50(31’2 +4)de = g/usdu = Ut +C =327 +4) +

(h) Use the substitution u = 1 + 22?2, so that du/dx = 4z. Hence

T 1 (1 1 1
— " dz== [ Zdu=->1 = "1In|l 4 222 :
/1—|—2x2 v 4/u u=glnutC=gnfl+27) + ¢

(i) Let u =1 — 2%, Then du/dx = —2x, and

/x3(1—x2)3dx - —%/(1—u)u3du:—%/(ug—u‘l)du

1, 1

5
- S =P tC
g v T
1 1
— (12 1— 225 4 C-

(j) Use the substitution u = 1 + 2. Then
x 1 fdu 1 1
——de=- [ —=-1 C=-In(1 H4C
/1+x2x 3 ) W T amllFC=ghl+a)+C;

(k) Use the substitution u = 322 — 2. Then

T 1 [du 1
" dr== ] ZZdu= =1 2 _ ]
/3 5 2da: 6/ udu 6 n|3z 2|+ C

17.4. (a) Let u = sinx so that du/da = cosz. Then cos zdx = du, and
. 1, 1.,
sinzcoszdx = [ udu = iu +C = §sm x+ C,
If the substitution v = cos x is used instead, then the answer becomes
1
—3 cos?x + C}.

Since sin? z = 1 — cos? z, the two forms of the solution represent the same family of solutions.
(b) Choose the substitution u = sinx (not cosz). Then cos zdz = du and

1 1
/sinzxcos:z:dx:/UQdu: §u3+C: gsin?’erC’;

(c) Let u = sin 2z so that du/dz = 2cos 2z and cos2zdz = 1du

1 1 1
/sin2 2z cos 2zdx = 5 /uzdu = 6u3 +C = 5 sin® 2z + C;
(d) Let w = cosx so that du/dz = —sinz. Using this substitution
2 2 L3 L3
cos“ rsinzdr = — udu:fgu +C’:f§cos x + C

(e) Let u = cos 3z so that du/dz = —3sin 3z. Therefore, using this substitution

1 1 1
/cos2 3z sin3zdxr = —g/quu = —§u3 +C = -3 cos® 3z + C;
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(f) Let u = sinz. Using this substitution
.3 Lo
sin® z cos zdx = 7Sz + C;

(g) Let u = sin 2z so that du/dz = 2 cos2z. Using this substitution

2 1 [d 1 1
cot 2zdx = C?S Tdz = - —u:71n|u|+0:71n|sin2x\+c;
sin 2x 2 U 2 2

1
(h) /tan §xdx = —2In|cos(3z)| + C;
(i) Use the substitution u = cosx. Hence du/dx = — sinz. Therefore
.3 2
1- 1 1
/sm Tdr = —/ udu:—/[—u]du:—ln|u|+u2+0
cos T u U 2

1
—ln|cosx|+§cos2a:+0;
(j) Let u = cosz. Then du/dz = —sinz, and
-3 2 L3 L 3
sinzde =— [(1—wu )du:—u+§u +C’:—cosx+gcos z+C
(k) Let uw = cosz. Then du/dr = —sinz and

1—u? 1 1 1
3 —_ — = — _—— = = —
/tan zdz = / 3 du / Lﬂ u] du 52 T Inful+C

1
= ise02x+ln|cosa:|+0;

(1) Let w =sinx. Then du/dz = cosz, and

/cos3xdx:/(1—u2)du:u—%u3+(}'=sinx—%sin‘gx—i—C.

17.5. Remember that the limits change with the substitution.
(a) Use the substitution v =1 + .

~1 2
1
/1 (1+2z)7dz = /0 u'du = g[ug]g = 32;

(b) Let uw =1 — z. Then du/dz = —3 so that

1 1 3
1 2 3 2

/ (177x)7dx:72/2 u7du:2/2u7du: f[usﬁ = —05;

L2 s 1 g 13 T 32

- 2 2

(c) Let u = 22 — 1. Then du/dx = 2x and the integral becomes

! : 10 1
/ z(1 - 2?)3de = 77/ wddu = —;

(d) Let w = 2z + 3. Then du/dz = 2 and the integral is

1 5
xdx 1 3 1 3
de=> [ [1-2|du==— 2n[5/3];
/023:+3 * 4/3 [ u} u=g =g/




(e) Use the substitution ©w = 1+ z. Then

-2
dzx
— =[n[l+z[]2=-In2;
/,3 Tz mitels=-m
(f) Use the substitution u = 3z — 2. Then

4
dx 1
— “[In7 — In10];
/32—3:c gl 7~ 10j;

(g) Let u = 22 — 1. Then du/dx = 2z, so that the integral becomes

! 3 2\3 1 3 1
1 dz = + Du du = —;
/0 x°(1 —2z*)°dx 3 /l(u Jutdu 0’
(h) Use the substitution = cost. Then du/dt = —sint, and

ir 1/v2 g 1oy 1
/4 tantdt:—/ & / —uz[lnu]%/\m:fln%
0 1 u 1/y2 U 2
(i) Let u = sin3w. Then du/dw = 3 cos 3w, and

/v2 Y

/6 1[0 d 1 !
/ cot 3wdw = 7/ & [ lnu}
7/12 3N

(j) Let v = sinw. Then

%Tr 1 1
/ sinu cos udu = / vdv = —;
0 0 2

(k) Let v = u+ 7. The integral becomes

/ (sinv)% cosvdv = —/
0

1
—57

s

Nl

(cos u)% sinudu =0
since the integrand is an odd function of u, and the interval is equally disposed about u = O.
(Alternatively, substitute sinv = u.)

(1) Use the substitution « = sinf. Then du/df = cosf, and

T 1
/ cos® 0df = / (1 —u?)du

o 3

1
57\' 1 ™
/ sin 2tdt = f/ sinudu = 1;
0 2 Jo

(n) Use the substitution v = wt 4+ ¢. Then

Nl

(m) Let u = 2t. Then

7/(2w) )
/ cos(wt + ¢)dt = — cos ¢.
—r/(2w) w

17.6. (a) Put sin®¢ = (1 — cost):

T 1 (7 1 1 1
/ sin? tdt = f/ (1 —cos2t)dt = =[t — = sin 2t]j = =m;
o 2 /s 2" 73

T 1 T 1
/ cos” tdt = / (1 + cos2t)dt = —m;
0 2 0 2
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=

1

™ 1 3T 1

sin? 2tdt = f/ (1 —cosdt)dt = —m;
2 J, 4

(©) /

1
27 1 1 1 1
(d) /0 cos? itdt =3 /o (14 cost)dt = " + 3

(e) Since sin 3t cos 3t = § sin 6,
T (" . . I
sin“ 3t cos 3tdt = 3 sin 6¢ sin 3tdt = 1 [cos 3t — cos 9t] = 0;

a product formula from Appendix B(d) has also been used;
(f) Use the identity

1 1 1
cos* u = 1(1 + cos 2u)? = Z(l + 2 cos 2u + cos? 2u) = §(3+4cos2u+cos4u).

Hence . | g 5
/ cos* udu = — / (3 + 4 cos2u + cosdu)du = —.
0 8 Jo 8

17.7. (a) For the substitution x = e*, do/du = e* = . Therefore
Inx 1, 1 5
“dr = == = —(1 .
/ . dz /udu 5 U +C 2(nx) +C
(b) (i) For u = (1 — 2?), du/dz = —2z. Then
1 1 1 1 1 :
/x(l —2?)ider = —= /ufdu =——ul4C= ——(1- xQ)% +C.
2 3 3
(ii) For the alternative substitution = = sinu, dz/du = cosu. Therefore
2\3 2, o 1 3 1 2\%
(1 —2%)2dz = [ cos®usinudu = —3 cos u+C = —g(l —z%)2 + C,

using the result from Problem 17.4(d).
(c) Using the substitution v = e, du/dx = e* = u. Therefore

1 d
/fdx = / - arctan(u) + C = arctan(e”) 4+ C.
et +e7® 1+ u?

(d) (i) For & = sinu, do/du = cosu. Then

d d
/%Z/%:/duzu-ﬁ-C:amsinx—i—C.
(1—22)2 (1 —sin“wu)2

(ii) For the alternative substitution = cosu, dz/du = — sinu. Therefore
dx
/71 = f/du: —u+ C = —arccosz + C.
(- a2)}
The results are the same since arcsinz = <7 — arccos .

2
(e) Using the substitution v = tanx, du/dz = sec? z = 1 + tan? x = 1 + u?. Then

2
tan?zdx = Ldu = 1—; du
1+ u? 1+ u?

= wy—arctanu+C =tanx —z+C
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(f) Using the substitution z = 1/u, dz/du = —1/u? = —2°. Then

dz u?du 1
/m = —/m =u—arctanu + C = - —arctan(l/x) + C.

(g) This integral is a standard form (see Appendix E). Let 2 = tanu so that dz/du = sec’>u =
1+ tan?u = 1 + 22. Therefore

/ de :/du:u+C:arctana:+C.
1+ 22

(h) Using the substitution u = tanz, du = sec? zdz = [1/ cos® z]dz. Therefore

/ dz :/du:u—i—C:tanx—i—C’.

cos? x

(i) Let t = u? so that dt = 2udu. Then

dt d ;
/17:2/77”&2:2arctanu+C=2arctan(t§)+C.
tz(1+1t) L+u

(j) Using the substitution ¢ = 1/u, it follows that dt = —t>du. Therefore

1 1
/t2 bln( )dt /sinudu:cosu+C’:cos (t) + C.

(k) Let = sinu. Then dz = cosudu, and

1
/(1 fo)%d:r = /0052 udu = 5/(1 + cos 2u)du

1 1 1 1
§u+ 1sin2u—|—C= §u+ isinucosu—&—C’

1 1
3 arcsinx + 53:(1 - x2)% +C

1) This is a standard integral in Appendix E. Let # = tanwu, so that dz = sec? udu. Then
g
/ dx / sec? u / du
—— = du —
(14 22)2 secu cosu
cosu dv )
/ COSQUdu = / T2 (v =sinu)

_ 1/{ LI ]dv— (1 + v) — In(L — v)] + C

1+wv 1—
1 1 3

_ +sinu ( +1:)j+a: LC
1—sinu (1+:c2)§ T

= Infz+ (1+2?) %]+C
An alternative substitution is # = sinh u which leads to the alternative answer sinh ™'z + C' with
less working.

17.8. (See partial fractions, Section 1.14.)
(a) Using partial fractions, let

B
m2—47x—2+x+2 or1=A(z+2)+ Bz —2).
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Put z = 2; then 1 = 4A. Put x = —2; then 1 = —4B. Hence A = i and B = —

becomes
/ doe 1/ 1 Ly
2-4  4)|e—2 z42|¥

1 T —2
= 4[1n(x—2)—1n(m+2)+0]:ln{ }—i—C.

. The integral

=

(b) Using partial fractions
1 1 1

w(x+2) 20 2x+2)

/x(;@):/{;_@} dx:%[lnx—ln|x+2|]+0.

(c) Using partial fractions

Hence

1 1 1 1

2x—1) z—1 z x2

[y = [l e w)e

1
= Injz—1—-In|z|+-+C
x

Hence

(d) Using partial fractions
T 1 1

2e+1)(z+1) z+1 2z+1

[ o™ = s wele

1
ln\x+1|—§1n|2x+1|+0

Hence

(e) Using partial fractions

x+1 ) + 1
422 -9 122z —3)  12(22+3)°
Hence, its integral is
/731C + 1 de = / > + !
472 — 9 N 12(2z —3)  12(2z + 3)
5 1
= ﬂ1n|2m—3|+ﬂln|2x+3\+c

(f) In terms of partial fractions

1 A Bx+C

_—— — 1:A 2 1 B .
x(z? +1 :1:+x2—|-1 o (" +1) + (Be+ O)x

Put = 0 in this identity; then A = 1. Now put £ = 1 and z = —1 leading to
1=2+B+C, 1=24+B-C.

Therefore B = —1 and C = 0. The integral of the function becomes

dx 1 x 1 9
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(g) Factorizing; 222 + 3z + 1 = (22 + 1)(z + 1). Hence the integral can be written

rdx xdx 1
_ —1 1 - -2z +1]+C
/2x2+39:+1 /(2x+1)(x+1) nle+1] =52z 41+ C,

as in Problem 17.8d.
(h) Using partial fractions

/dixfifg+ 4 +C
22z +1) 22z 2241 '

(i) Let w = sinz. Then du/dx = cosz. Hence, changing the variable

/dx _/du_l/ L1y
cosx 1—u2 2 1+u  1—wu b

_ %[m@ Yu)—In(l—w)]+C

1 1+ sinx
= —In|——
2 1 —sinx
(j) Let u = cosz. Then
dz du 1 1 1 —cosz
=— = ——[In(1 —In(1 - =——In|—
/sinx /1—u2 Q[H( +u) — (1 —u)]+C 2 n{l—i—cosx

as in the previous problem.

17.9. (Use the method of Example 17.16.)
(a) Let u = 2% — 1, so that du/dx = 3x2. Then

1
22 (23 —1)° = guSdu/dx = g(u)du/dz,
where g(u) = 2u®. Then
I:/zZ(a:B— 1)dz = 1/u‘r’duz iu6—|—C'= i(563— DS +C.
3 18 18

(b) Let u = 22 — 2z + 3, so that du/dz = 22? — 2. Then
1du du
—1)(z%2 -2 o (222 )yt = -
(o= 2097 = (3 ) ! =g 3

where g(u) = 2u~'. Then

225 +370°7 73

|+c.

—1 1 fdu 1 1
I:/xid - ;u:§1n|u|+C:§1n(a:2—2x+3)+C.

(c¢) Let w = Inz, so that du/dxz = 1/2. Then

and d d 1 1
X u
/aﬁaé—/af—‘a+c—‘m;+c

(d) Let u = 322 + 2, so that du/dz = %x%, and g(u) = %u%. Then



(e) Let u =e” + e %, so that du/dz = e —e™*, and g(u) = 1/u. Then

/%dm:/%zlnu—#C’:ln(e”—i—e*m)—&—C.
et +e™ " u

(f) Let u =22 + 1, and g(u) = 2/u. Then

xz(z2 +1) u

(g) Let w=2® + 1. Then

x2dx 1 du 1 1
- @ - _ 7:71 :71 3 1 .
/x3—|—1 3 ” 3n|u\+C 3n|:r+ |+ C

17.10. The integration by parts formula is

dv du
/uadx =uv — /v@dx +C.

(a) Let u =z and dv/dx = e~®. Then

d
£ =1, v = /e_”dx = —e "

Hence
/xe_“dx = —we " — /(‘e_x)lda? +C=—2e " —e "4+ C.

(b) Let v = o and dv/dz = e3*. Then

d 1
d—z =1, v = /e?’xdx = 563’”.

Hence ) ) ) )
/xeSxdx = 511363“ ~3 /e?’xdx +C = ggce?’x — 5633’j +C.

(c) Let u = x and dv/dz = e~3*. Then
1 1
/xe*:h’do: = —ggce’g’”” — §673I +C.
(d) Let w =  and dv/dz = cosx. Then
d
—U:L v:/cosxdxzsinx.
dx
Hence
/mcosxdx =xsinz — /sinxdx +C =zxsinx +cosz + C.

(e) Let w = z and dv/dz = sinx. Then
/xsinacdx = —xcosx + /cosxdx—l— C=—xcosx+sinx+ C.
(f) Let u = 2 and dv/dz = cos 2. Then
%:1, v:/cos%xdm:2sin%x.
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Hence 1 1 1 1 1
/cos §xdx = 2xsin §x72/sin§xdx+0 = 2xsin§x+4cos§a:+6’.

1 1 1
(g) /xsiandx = —ixcos2x+ /cos2xdx—|— C= —5.130082.2?4— Esin2x—|— C.

(h) Let u = x and dv/dz = (1 — x)!°. Then
du _ _ 104, 1 11
=L vf/(l z)Vde = 11(1 x) -+ C.
Hence
1
1 — )10 - 1 7/1_ 11
/x( x)dx Hac( x) +11 (1—2)"dz+C
1
A N 12
= 11x(l )+ 132(1 )+ C.
(i) Let u = Inz and dv/dz = z. Then
d 1
—u:f, vz/:r:dyc:fnc2
dz =z
Hence
1, 1 [ ,1 1 )
clnzdr = —2’Ine — = [ 2’—de = =2’lnz— = [ ade = =2’ Inz =+ C
2 2 T 2
(j) Let u = Inz and dv/d = 2™. Then
d 1 1
2B =, v= /x”dx = "t
de = n+1
Hence
n 1 n+1 1 n+1
2"lnzdr = ——x — dx—l—C
n+1 n+1
,’L‘n+1 mn-&-l
= 1 C.
ntl C(n+1)2 +
(k) Let w = Inz and dv/dz = 1/x. Then
du 1 _ (4 Inx
dr o’ N -
Hence | !
/ﬂdm— (lnx)z—/%dx—l—QC
or |
/de— (Inz)? + C.
17.11. (a) Let u = (Inx)? and dv/dxz = 1. Then
du _ 2lnz S
de z -
Hence
1
/(lnx)2dx = x(lnx)2—2/%xdx+c

r(lnz)? — 2xlnx—|—2/1dx+0

z(lnx)? - 2zInz + 2z + C,
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where a further integration by parts been used for [ Inzdz.
(b) Let u = arcsinz and dv/dz = 1. Then
. . d .
/ arcsinezdr = warcsinz — T [arcsin z]dx + C
x

: / xdx
= garcsineg — | —dz
(1—a2)3

= zarcsinz + (1 —xQ)% +C

(c¢) Let u = arccosz and dv/dz = 1. Then

/arccos xdx = warccosx — /xd—[arccosx]dx
x

T

= rarccosr + | ——dx
/(1:1:2)2

= wxarccosz — (1 — xQ)%.
(d) Let u = arctanx and dv/dz = 1. Then

dui 1
de 1422’

Hence

d 1
/arctanxdx = xarctanz — / T | O =zarctanz — - In(1 4 2%) + C.
(14 22) 2

17.12. (a) Let w = sinz and dv/dz = €*. Then

U
— =cosz, v =ce".

dz
I = /e”sinxdx :exsinx—/ex cosxzdx + 2C.

In the integral on the right, now put w = cosz and dz/da = e*. Then by integrating by parts for
a second time

I =¢e"sinz —e*cosz — /e”’sinxdx—l—ZC’zem(sinx—cosx) —I+2C.

Therefore )
I= iex(sinx —cosz) 4+ C.

(b) Let w = sinz and dv/dxz = e™*. Then

du -
— =cosz, v=—e".

dx
I = /e_“: sinzdr = —e *sinx + /e_”” cos zdx + 2C.

In the integral on the right, now put w = cosz and dz/dx = e~*. Then by integrating by parts
for a second time

I=—e""sinz—e “cosz — /e_x sinzdz 4+ 2C' = —e ™ *(sinx — cosz) — I +2C.

Therefore )
I= —ie_w(sinx +cosz)+C.
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(c) These integrals can be integrated by parts using the alternative choices for v and v. Let u = e™®

and dv/dz = cosz. Then
du —a .
P v =sinz.
Hence
1= /e*z cosxdx = e “sinx + / e “sinxdx + 2C.

x

In the integral on the right, put w = e™* and dz/dz = sinz. Then by integration by parts for a

second time
I=e¢*sinx —e *cosx — /e*z coszdr = e “sinx —e “cosx — I +2C.

Therefore 1
I= §e_x(sinx —cosz) + C.

17.13. (a) The integration by parts formula for definite integrals is
b b
d d
/a uédx = [uwv)? — /a vﬁdx.
(a) Let u = 2 and dv/dx = cosz. Then
du 1 .
— = v =sinz.
dz 7’
Hence
1 1
27 ir EA 1 i 1
/ zcosxdr = [rsinx] — / sinzdr = —m + [cosz]g = -m— L.
(b) Let w = « and dv/dz = cos2z. Then
g 1. 1 (" . 1
xcos2z = —[zsin2z]f — = sin 2zdx = —[cos 2z]f = 0.
. 2 2/ 4

(c) In the following there are two successive integrations by parts, leading to:

™ ™
/ r?cosxdr = [2?sina]] — / 2z sin zdz
0 0

0+ [2zcosz]] — / 2 cos zdx
0
= 27— [2sinz]j = —27.
(d) From Problem 17.12b,
e 1 : 1
/ e “sinazdr = —=[e""(cosz +sinz)|5° = =.
A 2 2
(e) From Problem 17.12c,
(e e) _ 1 _ .
/ e *cosxdr = 5[6 F(sinz — cosz)]5° = =.
0
(f) Let w = Inz and dv/dz = 1/x. Then
du 1

— == v=Inz
de =z’
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. Therefore

1 1 1
/de— lnx /Edm— ln2 /de

/ ln—fdz = 1112)

(g) Let u = arcsinz and dv/dz = 1. Then

Hence

d 1
£ = m, (see Appendix D) v = z.
Hence
1 1 .
/ arcsinzdr = [z arcsinz]) — / ——dz
0 o (1—22)2
1
= Srtll-a)Ep=gr 1

(h) Let u = arccosz and dv/dz = 1. By a method similar to that given in (g),

1
/ arccos xdx = .
-1

(i) Let uw = arctanz and dv/dz = 1. Then

d 1
ﬁ =i (see Appendix D) v =
Hence
! Yo 11
/0 arctanxzdr = [z arctan x| _/0 mdx =" g[ln(l + 228
1 1
2 2
%) / lnxdxz[xlnx]f—/ x;dx:anQ—[x]%:2ln2—1.
1 1
17.14. Let v = z¥ and dv/dx = e®. Then
d
ézkxkil, v=-e".

Therefore, for k > 1

1 1
F(k) = / zFe®dr = [zFe?)} — / kx*le®dz = e — kF(k —1).
0 0
Repeating the formula

F(4) = e—4F(3)=e—4[e —3F(2)] = —3e+ 12F(2)
= —3e+ 12[e — 2F(1)]
9¢ — 24[e — F(0)] = —15¢ + 24F(0),

where

F(0) :/o e"dr = [e’]g =e— 1.
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Therefore
F(4) = —15e+24(e — 1) = 9e — 24.

17.15. Let u = cos* !z and dv/dz = cos . Then

du . .
i —(k —1)cos* 2 zsinz, v =sinzx.
x

Therefore, for k > 2, we may integrate by parts:

Flk) = /O

in
= 0—-(k-1) / cos® "2 (1 — cos® x)dx
0

= —(k—1)F(k—2)— (k- 1)F(k).

s 1 %71’
— . 5T — .
cos” xdx = [cos* ' wsinz]g" — (k — 1) / cos* 2 xsin? zdx
0

N

Hence E 1
F(k) = %F(k —-2)

as required. The first two integrals in the sequence are
1 1
27 1 3T 1.
F(0) = / dr = 3™ F(1) = / coszdr = [sinz]g" = 1.
0 0

Using the reduction formula

1 1 2
F(2)= =F(0) = -7, F(3)=-F(1)=2
@) =1p0)=1r P =2ro)=2
3 3 8
F(4)=°F@) = —r, F()=-F(3)=—.
@W=2r@)=2r FE)=1FE) =
17.16. (a) Integrating by parts
2 2 1 k—1
F(k) = / (Inz)*dz = [z(nz)*)? - / mk&dm
1 1 z
= 2(In2)F —kF(k —1).
Therefore )
/ (Inz)*dz = 2(In2)* — 6(In2)? + 121n2 — 6.
1
(b) Let u = 2* and dv/dz = sinz. Then
d
—u:kxkfl, U = — COS .
dx
Therefore,
Fk) = / 2F sinzdzr = —[2* cos z]T + k/ 21 cos zda
0 0

2m 4 k[z*sin2]T — k(k — 1)/ 282 sin zda
0
= 27F —k(k - 1)F(k —2)

Special cases are

F(2)=27T2—F(0)=27T2—/ sinzdr = 272 —4, F(3) = n(7* —6)
0
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F(4) =7 — 1272 + 48, F(5) = m(7* — 2072 + 120.

(¢) Let v = sin* ! 2 and dv/dz = sinz. Then
d
d—u = (k—1)sin* 2z cosz, V= —COST.
x

Therefore, for k > 2,

(NI

Fk) = / sin® zdx
0

1
571'

1
= —[sin"'azcosz]g" + / (k —1)sin"~2 z cos z cos xdx
0

1x
= (k-1 /2 sin* 2 (1 — sin® z)dz
0

= (k—1)F(k-2)—(k—1F(k).

Finally
k—1
F(k):( A )F(k;—Q)
The first few integrals in the sequence are
1 2 3 8
F(2)= - F = — F(4) = — F = —.
(@)=m F@)=3. F)=-—m FO)=1

ab b
dx du
F(ab) = /1 713 = y TL
b 1/a
du du
— - _ —_F F
/1 P A (b) + F(a)

using (a).
(c) Let x = u/b. Then

F(a/b) = F(a)+ F(1/b)  (by (b))

(d) Let = u™
an a n—1
F(a"):/ d—x:/ u:nF(a).
1 1

un

17.18. Let v = z and dv/dz = e”. Then du/dz = 1 and choose v = e” + A. Integrate by parts,
choosing v = e* + A:

/ze‘”dx =z(e® + A) — /(e"” + A)dz + C,
where C' is arbitrary. Also

/(em—i—A)dx: /emda:—i-Ax—i—B,
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where B is arbitrary. Therefore
/xe”“'dx =zxe® —e*+ D,

where D = B + C is arbitrary, and this matches Example (17.7).
The formula for integration by parts given in (17.7) is

dv du
/u@dx = uv — /vadz + C.

Suppose that we now replace v by the indefinite integral v + A where A is any constant. Then
(17.7) is replaced by

dv du
—d A) — A)—d
/u —de u(v+ A) /(fqu )dx x4+ C
= uv—|—uA—/vd—udx—uA—B—|—C'
dx

U — /vd—udm + D.
dx

Here, D = B + C, where B is the arbitrary constant of integration arising in
d
/ A dz = Au+ B.
dz

So D is arbitrary, and the formula is equivalent to eqn (17.7).

17.19. Any indefinite integral can only be found to within an arbitrary constant. Hence an
indefinite integral evaluated by two different methods can lead to answers which apparently differ
by a constant.

17.20. (a) Circular disc, mass m, radius a about a diameter. Take an origin at the centre of the
disc with = axis along the diameter. Take an increment of width dy parallel to the diameter. The
density per unit area of the disc, assumed to be uniform, is m/ma?. Hence the moment of inertia

of the increment about the z axis is
m
@[(2\/(612 - yz)5y}y2~

The total moment of inertia I is therefore the sum of these increments

2m (¢
I=— [ *V(®-y*)dy.
ma? J_,
Use the substitution y = asint. Then
2m4%”,2 9 2ma* %”,2
I = —a sin“ t cos” dt = / sin” 2tdt
a2 i dr J_ 1.
2 2
ma? [37
= — (1 — cosdt)dt
am J_1.
2
L5
= Zma

(b) Uniform sphere, mass m, radius a, about a diameter. Let the centre of the sphere be the origin
with the z axis along the diameter. Consider a circular slice of thickness dx distance = from the
origin and cut perpendicular to the diameter. The density of the sphere is p = 3m/(47a®). The
circular disc has radius y/(a? — 2?) and mass approximately pm(a? — 22)dz. Its moment of inertia
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about the diameter of the sphere is (see Example 16.10) is £pm(a? — %)*6z. Hence the moment
of inertia of the whole sphere is

1 [ 1 4 2
I = §[a pr(a® — 2?)?)dx = 2P 2a° — §a5—|—§a5
8 5_8 5 3m
= —pra’ = —ma’.
15" 15 4ma®
2
= Zma®
5

(c) Spherical shell, mass m, radius a about a diamater. Let the origin be at the centre of the shell
with x axis along the diameter. Take a thin section of the shell perpendicular to the diameter
distance x from the origin. This problem involves area rather than volume: the density of the shell
is p = m/(47a?). Imagine the shell as surface generated by rotating a circle about the x axis. The
thickness of the shell is §z along the diameter, but its mass is

(density) x (surface area) = (density) x (circumference) x (§s) = 2m+/(a* — x?)ds,

where s is an increment of arc-length of the circle. Since all points on the section are equidistant
from the axis, the total moment of inertia is

I = /z 21py/(a® — %) (a® — mz)ﬁdx

= 27rpa/ (a® — z?)dz = %Wpa4

—a

2
= -ma
3

(d) Rectangle, mass m, side-lengths 2a and 2b about a diagonal. Let the diagonal be the z axis,
and the line through the centre perpendicular to the diagonal be the y axis. Take a strip of width
oy parallel to a diagonal as shown in the figure. Let d be the distance of one of the opposite corners
from the diagonal.

/

/ 2a
Figure 12: Problem 17.20d
The moment of inertia of the rectangle will be twice that of one of the triangles touching the

diagonal. If y is the distance of the strip from the diagonal then, by similar triangles, the length s
of the strip is given by

d—vy 5 2 9 59
= = —(d— b).
d 2/(a2 + b2)’ or § d( y)v(a”+b7)
Hence
d
m 1 2m 1
I = 4— | =(d- 240 ldy = == /(a® 4+ b*)—=d*
2ab J, g d=y)v(a” +b7)y dy = —/(a” + %) 5
md? 9
= b2
6ab (™ +57)
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From the figure d = 2ab/\/(a® + b*). Hence

4 a’b?

C3a2+ b2
(e) Cone, mass m, base radius a, height h about its azis. Let vertex of the cone be the origin
and let the axis of the cone be the x axis. Consider a circular section of the cone of thickness
dx cut perpendicular to the axis at a distance x from the vertex. Its radius is xtana where

tan o = a/h. The moment of inertia of the disc about the axis is %,0:13‘1 tan* adz, where the density
p = 3m/(ma?h). Hence the total moment of inertia is

" 1 h° 3
I= 5/0 p(tan @)ztde = ip(tan4 a)— 3 Emcﬂ

17.21. Let
F(t) = /e*‘” cosbtdt = Ae™% cos bt + be ™ sin bt + C.

Then differentiating both sides, we have
e cosbt = (—aA + bB)e * cos bt + (—Ab — aB) sin bt.
Hence equating like terms on both sides
1=—-aA+bB, 0=—-bA—aB.
Solving these equations
—a b
a? + b2’ a? + b2
which agrees with eqn (15.11).
17.22. Let
2 —azx d2 —ax
I(a):/ze dx+C:/@e dz + C,

with C arbitrary. Interchange integration and differentiation:

d2 —ax d2 1 —ax
o 2 20 2
= e [‘aez‘az‘a] +C

17.23. Let x = a/u. Then dz/du = —a/u?, and

dz 1 . 1 .
/ = /\/1—u2 fffarcsmquC'ff;arcsm(a/x)JrC

x/(22 — a?) a

using a standard integral from Appendix E.
(b) Let = a/u. Then, as in (a),

/m dxfﬁ) N ‘1/¢<udu1>

_ —é Infu+ /(u® = 1)+ C
RN [W} L

a
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(c) Let uw = (atanz)/b. Then du/dz = (asec®)/b. Using this substitution

/ dz i du
a2 cos2z + b2 sin’ x ab ) w241
1 1
/ — arctanu + C' = — arctan [g tan a:} +C.
ab ab b

(d) Using the substitution u = tan 3,

sin 1

1
2sin 5 COS §:r

d 2 cos? Lrdu du 1
/ x / 2 “ =1In|u| + C = In|tan —z| + C.
U 2
(e) Using the substitution u = tan 1z,
2 cos? xdu

3+5coswr 3+5200521x—1)
du 1 1
- - 4 |4
/4—u2 /{2—u+2+u} "

1 2+ u 1 2+ taniz
~In C=-lh|—2"|4+C
4 [2 ]+ 4 [Ztanéx] *

(f) Using the substitution u = tanh 1z,
u

dz
/5coshx—|—4sinhx N /10—5sech21x+8tanh x
2
= / arctan[3(4+5u)]+0
2.
3

5u2+8u+5 3

rctan[3 (4+ 5tanh x)] +C

(g) Express the integral in the form

[ /Secxdx:/secm(secx+tanx)dx

secx + tanx

Now use the substitution

du
u=secr + tanr, — = secztanerseczx,
T

so that d
]:/ﬂ:1n|u|+C:ln|socas+tanx|+0.
u

(h) Using the substitution z = u?,

1 da 2 2udu 2 2
= = 2— ——|du
o 1+x o 1+u Jy 1+u

= [2u—2In(14+u)2=4-2In3

(i) Using the substitution z = u3 — 1,

3 3
/ac(l +2)ide = /3u3(u3 —1)du = ?u7 - ZU4 +C

1 4
= 28(1+.’E) (122 —9)+ C

41



(j) Let u = z — 1 /2 so that du/dz = 1+ 1/22%. Then

2 (2?4 1)dx ot A
/1 zy/[rt + T2 +1] /O V27272
H du ) s
= [t = il v 40
In[(1+4+/5)/2]

(k) Let w = 1+ 22, so that du/dz = %x_%. Then

4 S g 2 5 2 5)°
/ VA + yx)de = 2/ [u?—u2]du:2[u2—u2}
0 1 3 5 1
8 16
= 55V

17.24. Use repeated integration by parts starting with

du dv
uy = p(x), o =7 (x), o =e%, wv=c"

Therefore

/emp(x)dx = e"p(z) — /e‘"”p’(m)dx +C.

Repeat the integration by parts with us = p’(x), v = €® so that
/e$p(as)d:c = e"p(z) — e"p'(x) + /e””p”(x)da: +C.

Continue n times until p(™ (z) is reached. Since p(z) is a polynomial of degree n, p™ () must be
a constant which means that

[ @ =),
apart from a constant. Finally
[eptore =elpta) ~ p(a) 4 4" (@) = -+ (1) @) 4 C.
In the Problem

1
/ (2% —22% + 2 — 2)dx =
0

[e®{(2® —22% + 2 — 2) — (3% — 4z + 1) + (62 — 4) — 6}]}
= 13 —6e

For the next case, the procedure is as in the first part except the v = —e™: the signs now

alternate in the opposite way. Hence
/ e p(x)de = e [=p(x) +p'(x) = p"(2) + - + (=1)"p" (@)] + C.

The definite integral takes the value

/0 e"p(a)dz = e[~p(1) +p/(1) = p"(1) + -~ + (=1)"p™ (1)] -

[—p(0) +p/(0) — -+ + (=1)" '™ (0)].
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Figure 13: Problem 17.25
From the previous formula
oo
/ o“p(a)da = p(0) — p'(0) +p"(0) — -~ + (=1)"p"(0).
0

17.25. The plate is shown in the figure.
By symmetry the centroid must lie on the x axis. Take a strip of width dx parallel to the y
axis. We first require the area A of the plate:

o
wjw

h h 1 1 12 h
A=/ 2ydw:2/ 2a5x5dx:4a5§[x o=
0

0

w| oo
S
Wl
>

The distance T of the centroid from the origin is given by

h h
Az = 2/ yidr = 8@/ rda = 4ah’.
0 0

Therefore

Chapter 18: Unforced linear differential equations with constant coefficients

18.1. The following equations are linear, unforced with constant coefficients: (b), (e), (f), (i), (j),
(k).

18.2. All the solutions are given by (18.4).

(a) General solution of 2’ + 5z = 0 is z(t) = Ae 5.

b) General solution of z' — 32 =0 is z(t) = Aez?,

) General solution of 2/ — 2 = 0 is z(t) = Ae’.

) General solution of 2’ + 3z = 0 is x(t) = Ae 3.

) General solution of 32" + 4z = 0 is 2(t) = Ae4!/3,
) General solution of 2/ = 2z is z(t) = Ae*’.
General solution of 2’/ = 3z is z(t) = Ae3'.

)

) The equation (z'/x) = —3 can be rewritten as z’ + 3z = 0, which has the general solution
—3t

e

(
(c
(d
(e
(f
(g
(h

xr =
i) The equation (2’ +1)/(z + 1) = 1 is the same as ' — z = 0, which has the general solution

x(t) = Aet.

18.3. The general solution of these first-order equations is given by (18.4).

(a) The general solution of 2’ + 2z = 0 is () = Ce™2!. The initial condition is z(0) = 3. Hence
C = 3 and the required solution is z(t) = 3e~?".

(b) The solution of 32’ — x = 0 subject to 2(1) = 1 is x(t) = e(t=1)/3,

(c) The solution of 3’ — 2y = 0 with the condition y(—3) = 2 is y(x) = 216,
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(d) The solution of 2’ + x = 0 with the condition z(—1) = 10 is x(t) = 10e 1.
(e) The solution of 2y’ — 3y = 0 subject to y(0) = 1 is x(t) = e3*/2.
(f) Since the slope is 5y, it follows that
dy
o
The general solution is y = Ce®®. Hence, since the curve passes through (1, —2), that is, y(1) = -2,
the curve is given by y = —2e% 75,

5Y.

18.4. The equation for the current x(¢) in the circuit in Fig. 18.1 is

dx
L— = FE(t).
T + Rz (t)

Assume that the applied voltage becomes zero at ¢ = 0. Then we have to solve

d
L= +Re =0, (0) = L.
The general solution is z = Ae~ /L, The initial condition gives A = Iy. The required solution is
x = Ipe Bt/L,
Let the current halve in time 7. Then %Io = Jpe BT/L g that

L
T = R In 2,
which is independent of Ij.
18.5. Given that dA dA
EO(A, OIE:—ICA.

(a) The solution is A = Age*t.
(b) The half-life T = (In2)/k. We are given that 82.5% of uranium-232 remain after 20 years.
Hence with ¢t measured in years, the constant k is given by

82.5
£29 4y = Age— 20k,
100 710 T Fo¢

Solving this equation k = 9.6 x 1073 (years)~!. Finally, the half-life of uranium-232 is T =
(In2)/k = 72 years.

18.6. Let N(t) be number of rabbits at time ¢ with ¢ measured in years. If the number of rabbits
increases by d N in time §t, then

1
6N = 20(; N)dt = 10Nst.

Let dt — 0, so that the differential equation for N(t) is

dN
e 10N with initial value N(0) = 100

The solution of this initial value problem is
N(t) = N(0)e' = 100e'°".

At time t = 4, N(4) = 100e%° = 2.35 x 10%°.
If the rabbits only live for a year, then N (¢) satisfies

dN
— =9N.
dt
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Hence N (t) = 100e3¢ = 4.31 x 1017 which is still a very large number.
18.7. (a) For the differential equation

2 =3z +2x =0,
its characteristic equation is
m? —3m + 2 = 0, which has solutions m; = 1, mg = 2.

Hence, the general solution is
z(t) = Ae' 4 Be?'.

(b) For the differential equation
2+’ —2x =0,

its characteristic equation is
m? +m — 2 =0, which has solutions m; = —2, my = 1.

Hence, the general solution is
(¢) For the differential equation

its characteristic equation is
m2—1= 0, which has solutions m; = —1, my = 1.

Hence, the general solution is
x(t) = Ae™" + Be'.

(d) For the differential equation
2 —4x =0,

its characteristic equation is
m?—4= 0, which has solutions m; = —2, my = 2.

Hence, the general solution is
z(t) = Ae™? + Be?".

(e) For the differential equation

1
32" — -2 =0
x i ,
its characteristic equation is
1
3m? — 1= 0, which has solutions m; = —1/(24/3), m2 = 1/(2+/3).
Hence, the general solution is
z(t) = Ae™t/ (V3 4 Bet/(2V3),

(f) For the differential equation
2" — 9z =0,

its characteristic equation is

m? —9 =0, which has solutions m; = —3, my = 3.

45



Hence, the general solution is
z(t) = Ae 3" + Be¥.

(g) For the differential equation
2 422 —x=0,

its characteristic equation is
m? 4+ 2m — 1 = 0, which has solutions m; = —1 — /2, my = —1 + /2.
Hence, the general solution is
2(t) = ATVt 4 Bel=1HV2)L

(h) For the differential equation
2" — 22" —2x =0,

its characteristic equation is
m? — 2m — 2 = 0, which has solutions m; = 1 — /3, my =14 /3.
Hence, the general solution is
z(t) = Ae =Vt 4 Belltva)t,

(i) For the differential equation
22" + 22 —x =0,

its characteristic equation is
2 . . 1 1
2m* + 2m — 1 = 0, which has solutions m; = 5(—1 —/3), mg = 5(—1 +3).
Hence, the general solution is
x(t) = Aez(T1=V3)t | Bes(—1H+vA)t,

(j) For the differential equation
32" — 2’ — 2z =0,

its characteristic equation is

3m? —m—2= 0, which has solutions m; = —%, mo = 1.
Hence, the general solution is 2
x(t) = Ae”3' + Be'.
(k) For the differential equation
' + 42’ + 4z =0,
its characteristic equation is
m?24+4m+4= 0, which has solutions m; = my = —2.

This is the special case of equal or coincident roots. Hence, the general solution is
z(t) = Ae™ " + Bte ?' = (A + Bt)e 2.

(1) For the differential equation
" +6x' + 9z =0,

its characteristic equation is

m? + 6m + 9 = 0, which has solutions my = ms = —3.
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This is the special case of equal or coincident roots. Hence, the general solution is
x(t) = Ae 3 + Bte 3" = (A + Bt)e 3"

(m) For the differential equation
42" + 42’ + 2 =0,

its characteristic equation is

4m? +4m+1= 0, which has solutions m; = my = —%.

This is the special case of equal or coincident roots. Hence, the general solution is
z(t) = Ae 2" 4+ Bte 3! = (A + Bt)e 2"

(n) The differential equation 2" = 0 has the characteristic equation m? = 0 with solutions m; =
mg = 0. Hence the general solution is z(t) = A + Bt. Alternatively the solution can be obtained
by direct integration of z” = 0.

18.8. The characteristic equation of

" +bx' +cx=0
is

m2+bm+c=0.

Suppose that b?> = 4c which means that the equation has equal roots m; = mg = myg, say. One
solution is x = e™°!. Let x = te™°!. Then

7' = (1 + mot)e™", 7" = mg(2 + mot)e™".
Therefore
2" +ba' +cx = [2mo+mit +b(1 + mgt) + cJe™o?
= {[2mo + b] + t{md + mob + c|}e™! =0,
since myq satisfies the characteristic equation, and mg = f%b. Hence x = te™! is a second

independent solution.
18.9. (a) The characteristic equation of
2 —4x =0
is m? —4 = 0, which has solutions m; = —2, my = 2.Hence the general solution is
r = Ae %' 4 Be?.
For the initial conditions z(0) = 1, 2’(0) = 0, the solution is
T =

1.-2t , 1.2t
5€ +2e .

(b) The characteristic equation of
2+ —2x=0

is m? +m — 2 = 0, which has solutions m; = —2, my = 1. Hence the general solution is
x = Ae 2" + Be'.

For the initial conditions x(0) = 0, 2'(0) = 2, the solution is



(¢) The characteristic equation of
y' =4y +4y =0

is m? — 4m + 4 = 0, which has coincident solutions m; = my = 2. Hence the general solution is
y = Ae** 4 Bre®®,

For the initial conditions y(0) = 0, y/(0) = —1, the solution is

2z

y = —xe

(d) The characteristic equation of
y'+2y +y=0
is
m2+2m+1= 0, which has coincident solutions m; = mo = —1.

Hence the general solution is
y= Ae * 4+ Bxe .

For the initial conditions y(1) = 0, y'(1) = 1, the solution is
y=—e'"""(x—1).
(e) The solution of the initial value problem
2’ — 9z =0, z(1)=1, 2'(1)=1,

is
(f) The characteristic equation of

2 =42’ =0
is m? — 4m = 0, which has solutions m; = 0, my = 4. Hence the general solution is

= A+ Be'.

For the initial conditions (1) =1, /(1) = 1, the solution is = 1.

18.10. (See Section 18.4.) (a) The differential equation 2" + z = 0 has the characteristic equation
m? + 1 = 0, which has the complex solutions m; = i, ma = —i. A complex basis is (e'f,e~1), so
(cost,sint) is a real basis. Therefore the general real solution is

xr = Acost+ Bsint.

(b) The differential equation 2 + 92 = 0 has the characteristic equation m? + 9 = 0, which has
the complex solutions m; = 3i, my = —3i. The general real solution (compare (a)) is

x = Acos 3t + Bsin 3t.

(c) The differential equation z” + +x = 0 has the characteristic equation m? + § = 0, which has
the complex solutions my = £i, my = —3i. The general real solution (compare (a)) is

T :Acos%t—i—Bsin%t.

(d) The differential equation 2 + wgz = 0 has the characteristic equation m? + w2 = 0, which has
the complex solutions my = iwg, ma = —iwg. The general real solution (compare (a)) is

x = Acoswgt + B sinwgt.
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(e) The differential equation 2’ + 22’ + 2z = 0 has the characteristic equation m? + 2m + 2 = 0,
which has the complex solutions m; = —1 +1i, ms = —1 —i. The complex solution basis is
(e(=14Dt o(=1-Dt) " from which a real solution basis is (e ¢ cost,e~*sint). The general real solution
is

x=e '(Acost + Bsint).
(f) The differential equation y” — 2y’ + 2y = 0 has the characteristic equation m? — 2m + 2 = 0,
which has the complex solutions m; = 1 + 1, me = 1 —i. The general real solution is

y = e'(Acost + Bsint),

derived from the complex form
z = CeltDt 4 pel—i+1)t,
(g) The differential equation y” +y' +y = 0 has the characteristic equation m? +m+ 1 = 0, which
has the complex solutions m; = —% + i%, me = —% - i@. The general real solution (compare
(e)) is
y = e 2%(Acos %t + sin %t)

(h) The differential equation 2z + 22’ + x = 0 has the characteristic equation 2m? +2m +1 =0,

which has the complex solutions m; = —% + %L me = —% — %i. The general real solution (compare

(e)) is

x = e 3% (Acos 1t +sin 1t).

(i) The general real solution (compare (e)) of 3z” 4+ 42’ +2 =0 is

r=e"3[A cos(%t) + B sin(%t)].

(j) The general real solution of 3z — 4z’ + 2 = 0 is (compare (e))

z = e3t[A cos(%t) + B sin(%t)].

18.11. (a) The characteristic equation of 2" + z = 0 is m? + 1 = 0, which has the complex
solutions my = i, my = —i. The general real solution is * = Acost + Bsint. For the initial
conditions z(0) = 0 and 2/(0) = 1, A =0 and 1 = B. Therefore the solution is z = sint.

(b) The characteristic equation of 2" + 4z = 0 is m? + 4 = 0, which has the complex solutions
mqp = 2i, mg = —2i. The general real solution is x = A cos 2t + B sin 2t. For the initial conditions
x(0) = 1 and 2/(0) = 0, the solution is z = cos 2t.

(c) The characteristic equation of 2/ + w2z = 0 is m? 4+ w? = 0, which has the complex solutions
my = iwg, me = —iwg. The general real solution is x = Acoswyt + Bsinwgt. For the initial
conditions z(0) = a and 2/(0) = b, A =0 and 1 = B. Therefore the solution is

T = acoswot + bwal sin wot.

(d) e k% > 1. The characteristic equation of 2" + 2ka’ + 2 = 0 is m? + 2km + 1 = 0, which has the

real solutions
my = —k+(k*—1),  mo=—k—(k*—1).

The general solution is
= Ae"™" + Be™2!

For the initial conditions x(0) = 0 and 2/(0) = b, the solution is

b 2 2
— = elRrVE-DE _ RV =D
SRS/ CREy [e e } :

e k? < 1. The solutions of the characteristic equation are complex

m1:—k+i\/(1—k2), mgz—k—i\/(l—kﬁQ).
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For the given initial conditions

x = ﬁe_kt sin[y/(1 — k?)t].

e k2 = 1. The solution is x = bte "t
18.12. The linearized pendulum equation is
d20 g
— +=6=0.
de? + l
The general solution of this equation is
6 = Acos|(g/l)?t] + Bsin[(g/1)?t]
The initial conditions for the pendulum are § = o and df/dt = 0 at time ¢ = 0. Hence
0= acos[(g/l)%t].
Thed pendulum oscillates with amplitude «.
18.13. The general solution is given in the previous answer. However, in this case the initial

conditions are # = 0 and df/dt = v/l at time ¢t = 0. Hence

0= i sin[(g/1)2t].

18.14. With friction included the linearized pendulum equation becomes

20 do g
ST r K=+ Zp=0.
ae TRt =o

The characteristic equation is

m2+Km+%9=0,

which has the solutions

1

my =g [FK (K —4(g/1)] . ma = % [—K = (K* = 4(g/1)]

The friction is small so that we may assume that K? < 4(g/l), which means that the roots are
complex. Let w = 1./[4(g/l) — K?]. Then the general solution is

6 =e 2K [Acoswt + Bsinw].

Initially, = 0 and d#/d¢ = v/I. Hence

6= 7D sin[(g/1)2¢].

The given data are g = 9.7, 1 = 20, K = 0.066 and v = 1. Hence w = 0.70 (all calculations are to
2 significant figures). Hence

0 = 0.072e 033 5in(0.70¢).

18.15. The differential equation
d3y
da3

has the characteristic equation m3 — 1 = 0. Hence m? = 1, which has the roots

—y=0

.Ewi__;+i¢§ drni 1 i3
) 2 2 -
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Hence the general real solution is therefore
y = Ae® + Be 2" COS[?ﬂ'.’L‘] + ez Sin[?ﬂ‘l’}.

18.16. The characteristic equation of

d3y
L ry=0
da3 y
is m3 +1 = 0. Its roots are
mp=—1, mp=e3" =241 py—esmi=1_1v3

The general real solution is therefore

S

y = Ae™® + Be® cos[%mv] + Ce2® sin[ Y3 ).

18.17. The characteristic equation of
dly
dat

is m* — 1 = 0. The four roots of this equation are

—y=0

my =1, me=-1, mg=1, my=—i.
Hence the general solution is therefore

y=Ae” + Be™® + Ccosx + Dsinx.

18.18. Let du be an vertical increment of height in the column. Then the mass of the column

above a height y is
H
o[ Awdn
Yy

where A(u) is the cross-sectional area at height u. Let the cross-sectional area of the column be
such that the pressure on any section is a constant P independent of u. Then on the section at
height y

pressure X area = weight of statue + weight of column above.

or

H
PA(y) = Mg+ pg/ A(u)du.
Y
Differentiate both sides with respect to y. Then

dA

= _pgA
m PgA(Y),

using (15.20). This an equation of type (18.4.) with general solution
Aly) = Be—pgy/P,

where B is a constant. The constant B is determined by the condition that the top of the column
should just support the statue, that is, PAH = Mg. Hence B = Mge9"/P  Finally, the cross-
sectional area is M
— M9 pg(H—y)/P
Ay) = D © .
Note that the formula does not specify what the cross-sectional shape should be: the cross-section
could square, circular or some other shape, or could vary up the column.
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Chapter 19: Forced linear differential equations
19.1. (a) Try z = pe*’. Then
o' 4+ —3e* = 2pe®’ + pe?t — 3e?' = e**(3p —3) =0

for all t if p = 1. Therefore x = 2

is a particular solution of the equation
'+ x = 3.
(b) As a trial solution for the equation
! __ 43
=3 =t"+1
we must include a constant and every power of ¢ up to and including t3. Let
x:p+qt+rt2—|—st3.
Substituting into the differential equation

v —3r -3 -1 [q + 2rt + 3st?] — [3p + 3qt + 3rt* + 3st3] — 13 — 1

[q—3p—1]+[(2r — 3q)t + (3s — 3r)t* + (=35 — 1)¢*
= 0

for all ¢ if
q—3p—1=0, 2r—3¢=0, 3s—3r=0, —3s—1=0.

The solution of these linear equations is

(c) Try the solution z = A+ Bt + Ce'. Then
22’ +3x —t — 3¢’ = (2B +3A) + (3B — 1)t + (5C — 3)e’ =0
forall tif A=—2, B= 1 and C = 2. Hence a particular solution is
v=—2+3t+ 36
(d) Try the solution z = Ae*. Then

2" 4+ 2 — 3 = 44e?" + Ae*' — 3e*' = (54 —3)e?' =0
for all ¢t if A= g Hence a particular solution is z = ge%.
(e) A particular solution of " — o = 2e’ + 3¢ is = Se 4 4e™".
(f) Try the constant solution z = A. Then

2 =2 +2x—-3=4A-3=0

if A = 3. Hence a particular solution is x = 3.
(g) Since the forcing term is 3t? — ¢, try the solution x = At? + Bt + C. It can be shown, as in (a)
to (f), that

o 4o’ —x =3t —t

has the particular solution z = —3t> — 23t — 98.
(h) For the equation

2 —x =2cost
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try x = Acost. Then
2" —x —2cost = —Acost — Acost —2cost = (—2A — 2) cost =0

for all ¢ if A = —1. Hence a particular solution is x = — cost.
(i) For the equation
2z" 4+ 3z = 2sin 3t,

confirm, as in (h), that a particular solution is z = —12—5 sin 3t.

(j) Try a solution which includes both a sine and cosine. Let © = Acost + Bsint. Then
22" + 1’ —sint +cost = —2Acost—2Bsint — Asint+ Bcost —sint + cost
= (-2A+B+1)cost+(—2B—-A—1)sint =0

for all ¢ if
—2A+B+1=0, A+2B+1=0.

Hence A = % and B = —%, and a particular solution is = % cost — %sin t.

5
(k) Try @ = Acos 2t + Bsin 2t. Then

2 + 22 +x — cos2t
= [—4Acos2t — 4Bsin 2t] + 2[—2Asin 2t 4+ 2B cos 2t] + [A cos 2t + B sin 2t
—cos 2t
= [-3A+4B —1]cos2t+ [-4A —3B]sin2t =0

for all ¢, if —3A+4B —1=0 and —4A — 3B = 0. Solving these equations for A and B, it follows
that

— _3 4 o
T =—35 cost + 55 sin t.

(1) Try x = A+ Be?*. Then

d2
d—g —y— 1432 = 4A4e® — A — Be® — 1+ 3¢ = [~A— 1] + [4A — B + 3]e".
x
Therefore A= —1 and B = —1, so £ = —1 — e?* is a particular solution.

(m) Try y = Acos2x + Bsin 2z, equating to zero terms in cos 2z and sin 2z, so confirming that

3

x = F[cos 22 — sin 2x]

is a particular solution.

19.2. (a) Replace the right-hand side by 3e?, of which 3 cos 2t is the real part. Solve the complex
equation X using the trial X = Ae?:

Xl/ - X - 362it — 74146217: o AGQit _ 362it — (75A _ 3)62it =0

for all ¢t if A = —3/5. Therefore a particular solution of this equation is X = —
solution of

3e2it. A particular

2" —x = 3cos2t
is therefore = Re (X) = Re[2e?"] = —2 cos 2t.

(b) Consider the equation .
X"+ X =2e%".

Let X = Ae3*. Then
X// + X _ 2e3it — _9Ae3it + Ae3it _ 2e3it — (_8A _ 2)e3it — O
if A= —i. A particular solution of

2" +x=2sin3t
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is therefore z = Im (X) = Im [ "] = — 1 sin 3t.

(c) Consider the equation .
X" 42X 4+ X = 3e".
Try X = Ae'*. Then
X" 42X+ X — 3¢ = (—A+24i+ A - 3)el = (24i — 3)el’ =0
if A= fi%. Hence a particular of
2 + 22 +x = 3sint
is 2 = Im (X) = Im [—i2e] = —3 cost.
(d) Consider the equation '
X" - X' - X = 3e".
Let X = Ae'’. Then

X" X'~ X -3 = (—A— Al — A—3)el" = (—24 — Ai —3)e"" =0

if A=-3/(2+1) = —% + 2i. Therefore a particular solution of

2" — a2’ —x =3cost

is # =Re(X) =Re[(—2 + 2i)e'] = — S cost — 2 sint.
(e) In this problem we require the real part of the solution of

2X" + X' +2X = 2¢°".
Try X = Ae?? so that
2X" + X' +2X — 2% = (—8A + 214 + 24 — 2)e? = [(—6A4 + 2i)A — 2)e?! =0
forall tif A=1/(—3+1i) = {5 + 15i. Hence a particular solution of
22" + &' + 2z = 2cost

is * = Re (X) = — 3 cos 2t + 15 sin 2t.

(f) A particular solution of .
3X" 42X + X = 221

e Y (22 8 i\ 2it ; Tt
is X = (—135 — 1371)e”". Hence a particular solution of

32" + 22 +x =2sin2t

is 2z =Im (X) = — 3= cos 2t — 2% sin 2t.

(g) Consider the equation
X// —4X = e(—l—‘ri)t.

Try X = Ae(=1)t Then
X" —4X — eI = [(—1 40)%2A4 — 44 — 1)e"1H)E =0
for all ¢ if A = (—2—1)/10. Hence a particular solution of
2" —4x = e "cost

is z = Re(X) =Re[(—1 — t5i)el" 1+t = —Le~tcost — L sint.

(h) Consider the equation
X// —4X = 36(1+2i)t-
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Let X = Ae(1*+2)t Then
X" —4X — 312 = [(1 4 2i)%4 — 44 — 3]e1T2)t = ¢
for all ¢t if A = f% — é—gi. Hence a particular solution of

" — 4x = el sin 2t

is  =1Im (X) =ef[- &2

(i) Consider the equation

cos 2t — 21 sin 2t].

X" + X' +4X = 5o~ 10el(3t49)

Try X = Ael3*+9): then the solution in the required form is the real part of X. Substituting X
into the equation:

X"+ X' +4X —5e79el31H9) = [9A 4 3iA + 44 — e~ 1?]e! 3 H9)
= [(-5+30)A - 5e ]G =

for all ¢, if (=5 + 3i)A = 5e™'¢ or,

1 _—(5+3i)e_i¢__i
—5+3i 34 Y

—;—4{(5(:05(;5 + 3sin¢) +i(3cos¢ — 5sing)}

A = (5+ 3i)(cos ¢ — isin )

-5 cos p{(5 + 3tan¢) +i(3 — Stan¢)}

34
5 9, . ) 34\
= 34cos¢{(5+5)+1(33)} 34cos¢<5) cos ¢
_ _5
V34
Therefore 5
x=Re(X)=——=cos(3t + ¢),

V34
where tan ¢ = %

19.3. (a) The characteristic equation of
2" +x = 3cost

is m? + 1 = 0, with roots m = +i. Hence a particular solution cannot be a multiple of cost. Try,
instead, x = Atsint (see (19.6)): then

2" +x —3cost = 2Acost — Atsint + Atsint — 3cost = (24 — 3)cost =0

for all ¢, if A = % Hence a particular solution is x = %tsint.

(b) Since Asin 2t satisfies the corresponding homogeneous equation, it cannot be also a particular
solution of
x” 4 4x = 3sin 2t.

As in (19.6), try @ = At cos 2t: then

2’ +4x —3sin2t = —4Asin2t — 4At cos 2t + 4At cos 2t — 3sin 2t
(—4A —3)sin2t =0

for all ¢t if A = f%. Hence a particular solution is z = f%t cos 2t.
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(c) A particular solution for the constant 1 is obviously 1. Since A cos 2t satisfies the corresponding
homogeneous equation, we must try x = % + Atsin 2t: therefore

2" +4x —1—3cos2t = 4Acos2t —4Atsin2t + 1+ 4Atsin2t — 1 — 3cos 2t
(44 — 3)sin2t = 0

for all ¢t if A = %. Hence a particular equation is z = i + %t sin 2t.

(d) A particular solution of

d2
dixg 4+ 9y = 2sin 3z
isx= —%x cos 3.
(e) Consider the equation
d? d
chZ — 2£ + 2y = e” cos .

The corresponding homogeneous equation has the characteristic equation
m? —2m + 2 = 0, which has the solutions m; =141, mo=1—1i,

which means that Ae® cosx cannot be a particular solution of the given differential eqaution.
Instead try y = Axe” sinz: then

d? d
Yy _ o,y

3 y£+2y_eﬂﬂcosx:(—1—|—2A)elcosx:0

if A= % Hence a particular solution is y = %a:e” sin .
19.4. (a) Let = = pte'. Then
2" —x —e' = 2pe’ 4 pte! —ptet —e' = (2p —1)e' =0

. Hence the equation has a particular solution z = Ltet.

e 1
ifp=3 2

(b) Let x = pt?e!. Then

a” =22 +x—e = p(2+ 4t +t2)e’ —2(2t + t*)pe’ + ptie’ —ef = (2p — 1)’ =0

ifp= % Therefore a particular solution is x = %tht.
(c) Try @ = pt3. Then

d2—x7t:6pt7t:(6p71)t:0

de?
if p = ¢. Hence a particular solution is z = £¢°.
(d) Try y = px? + qw +r. Then

2
%—l—j—i—x:Qp—i—pr—l—q—x: 2p+¢)+(2p—1)x=0

for all z if 2p 4+ ¢ = 0 and 2p — 1 = 0. Therefore p = % and ¢ = —1. The constant term r can
take any value since it is a solution of the homogeneous equation; let » = 0, say. Then a particular
2

solution is x = %m — .

(e) (See also Problem 19(e)) Let = = ef(pcost + gsint). Then
2" — 22" + 2z — e’ cost = e'[(—1 + 2¢) cost — 2psint] =0

for all ¢ if —1+ 2¢ =0 and p = 0. Therefore ¢ = % and a particular solution is x = %tet sint.
(f) The equation

- :ea:
dx Y
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has the particular solution y = xe®.

19.5. In each case the solution of the differential equation is the sum of its complementary function
(the general solution of the homogeneous equation) and a particular solution.
(a) 2" 4+ 9z = 3e?!. The characteristic equation for z” + 9z = 0 is

m? +9 = 0, which has the solutions m; = 3, my = —3.

The complementary function is therefore z. = Ae3*+Be~3t. For a particular solution try Tp = pe?t.
Then
x, + 9z, — 3e?! = (4p + 9p — 3)e** = (13p — 3)e* =0

for all t if p = 1% Hence the general solution is

3
T=%Tc+Tp = Ae® + Be 3t + Eezt.

(b) 2" — 4x = 2e~*. The characteristic equation for #”/ — 4z = 0 is m?> — 4 = 0. Hence the

complementary function is
.= Ae* + B=e"%,
a particular solution try x, = pe™': then
zy —dxy, — 2 = (=3p—2)e' =0

ifp= —%. The general solution is therefore

2
x = Ae® + Be_2t§e_t.

(¢c) 42" — x =1+ 3cos2t. The complementary function is
Te = Aez! 1 Be 2t
For a particular solution try z, = p + g cos 2t: then

4oy —xp —1—3cos2t = —16gcos2t —p —qcos2t —1 — 3cos2t
= (—p—1)+(-17¢—3)cos2t =0

ifp=—1and q= —1—?’7. The general solution is

z = Ae?! 4 Be 3t ] — % cos 2t.

(d) " + 2y + 2z = 3. The characteristic equation is
m? 4 2m + 2 = 0, which has the complex roots m; = —1 +1i, mg = —1 —1i.
Hence the complementary function can be expressed as
ye = Ae " Fcosx + Be Fsinx.
A particular solution is simply x, = % Therefore the general solution is
x = Ae *cosx + Be Tsinz + %

(e) 2" — 22’ + 2z = 3sin 2t. The characteristic equation is m? — 2m + 2 = 0 which has the complex
roots m; = 1 +1i, mp = 1 —i. Hence the complementary function is z. = Aecost 4+ Be'sint.

For a particular solution try x, = pcos2t + gsin2¢. Then p = % and —-3. Therefore

10

3 3
T =T+ T = Aet cost + Belsint + gCOSQt— l—osin2t.
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(f) 42" — 22’ — 22z = 3t%. The characteristic equation is 4m? — 2m — 2 = 0 which has the roots
mp =1, mg = —%. The complementary function is therefore z. = Ae~ 3!+ Bet. For the particular
solution try =, = pt* + qt + r:
4o’ — 22" — 22— 3t2 = 4(2p) — 2(2pt + q) — 2(pt* + qt + 1) — 3t?
= (=2p—3)* 4+ (—4p—2q)t+(8p—2¢—2r)=0
for all t if p = f%, g=—-2p=3andr =4p—q= —9. Hence z, = f%tQ + 3t — 9. The general

solution is
1
T =x.+z,=Ae2' + Bel — 312 + 3t — 9.

(g) 2" +a' =2 — 3e~tcost. The characteristic equation is
m? + m = 0 with solutions m; = 0, mg = —1.

Therefore the complementary function is z, = A + Be~!. The absence of x in the equation means
that the equation is a special case. For the particular solution try x, = pt 4+ ge~*cost + re~'sint:
then

2"+ a2’ —2+3e tcost = (p—2)+ (—qg—r+3)e tcost + (—r+q)e 'sint

foralltifp=2and g=1r = % Hence x, = 2t + %e_t cost + %e_t sint. The general solution is
T=2.+x,=A+Be ' +2t+ 3e tcost + e !sint.
(h) 22" + 2’/ — 2 = 3t + 3e~'. The characteristic equation is

2m? 4+ m — 1 = 0 which has the roots m; = -1, mg = %

Hence z, = Aez' + Be~*. Since the forcing term includes 3e~*, this is a special case. Therefore
try z, = p+ qt + re”*: then
20" +a' —x—$t—3e = (-3r—3)e "+ (qg—p)+(—q—3)t=0

if p=—2, ¢g=—2 and r = —1. The general solution is

z = Ae3t + Be~t — 1t —te "

Oy +y=1+ 2¢3% 4+ 22, The general solution is
y=Acosr+ Bsinz —1+ %e?mc + 72

(G) v" + 2y’ +y = 3cos2x + sin2x. The characteristic equation has the repeated root m = —1.
Therefore the complementary function is y. = Ae™* + Bxe *. For the particular solution try
Yp = pcos 2z + gsin 2z: then

y" +2y +y—3cos2x —sin2x = (—34 +4B — 3)cos2x + (=3B —4A — 1)sin2z = 0

if -3A+44B —3 =0and —3B —4A — 1 = 0. Therefore A = —1% and B = 2 and the general

solution is 13 9
Ae™® 4+ Bre™® — % cos 2z + % sin 2z.
(k) ¥ + 4y’ + by = e sinx. The characteristic equation is
m? +4m + 5 — 0, which has the complex roots m; = —2 +1, mo = —2 — 1.

The complementary function is y. = Ae 2% cosz + Be 2®sinz. For the particular solution try
yp =€ "[pcosz + ¢sinx]: then p = —% and ¢ = % Therefore the general solution is

2 1
y = Ae **cosz + Be **sinx — ge_w cosz + ge_m sin .
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19.6. From (19.15) and (19.16) the integrating factor of the differential equation

dz

&+ 9w = (1

(note that this must be written in the standard form) is I(t) = N (04 and the general solution
of the equation is

a(t) = m/I(t)f@)dw I(Ct)

(a) ' =3z =0. Then I(t) = o 34t — 63t The general solution is x = Ce™! since f(t) = 0.

(b) ' + 2t = 3. In this case g(¢t) = 2 and f(t) = 3. Then I(t) = of 28 — &2 Therefore the general
solution is

r=e2 [/ 3etdt + C} = g + Ce™ 2,
(¢) ' — 2t = t. In this example g(t) = —2¢ and f(¢t) = ¢t. Then
I(t) = of ~Hat _ ot
The general solution is
z=e[[(te™)dt + C] = etz[—%e_t2 +C)=-%+ Ce”.
(d) o' —t7 'z =t +te~t. In this case g(t) = —t~! and f(t) = t + te~t. Hence, the integrating

factor is »
It)y=c % — 1yt

The general solution is
T = t[/ %(t +te h)dt + C) = t[— /(1 +te”H)dt + C] = t? —te™t + Ct.
(e) 2 —t7txr =t —1. Here g(t) = —t~! and f(t) =t —1. Asin (d), I(¢t) = 1/t. Hence
T :t[/t_l(t— 1)dt +C) =t* —tint + Ct.

(f) ta’ — 2z + 3 = 0. After a rearrangement to standard form, ¢g(¢t) = —2/t and f(¢t) = —3/t. The
integrating factor is I(t) = e~ Jerar _ —1/t%. Hence

3 3
72 — = — 2
z=—t { /tgdwc} S+ AL,

(g) v+ (z+ 1)ty =sinz. Then I(z) = e [4/@H0] — ¢ 4 1. Hence

1 1
y = [/(x—l—l)sinxdx—l—C]:m[—(x—l-l)cosx—i—/cosxdx—l—C]

z+1
sina:+ C
r+1 x+1

—cosx +

(h) 3y’ + 7'y = z. In this case g(z) = 1/(3z) and f(x) = z/3. The integrating factor I(z) =
et JeTle _ o1 The general solution is
z3 [;/xgdx—i—C]

{/x;&;xdx—l—C]

1, )
= — A_§
7x—|— x

y =z

wol=
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(i) (x — 1)y’ —y = (z — 1)%. In this case g(x) = —1/(x — 1) and f(x) = (v — 1). For > 1, the
integrating function is
I(z) = oJ197/@=D] — =nG=1) — 1/ — 1),

(we do not need to consider the case x < 1 separately, since one integrating factor will do for all
x). The general solution is

y=@-1)[fdz+Cl=a(x-1)+Clz-1).

(j) ' —t~ 'z = Int. The integrating factor is I(t) = e~ Jera _ 1/t. The general solution is
z = t[Int]? + At.
(k) t’ — x =1+ t. The general solution is
x=—-14+tInt+ At.

(1) The equation
dy x+y

dz~ z+1

can be rearranged into the standard form
y - @+ 1)y =az+1)7"

The integrating factor is I(z) = e~ J@+nTide _ 1/(z +1) for all x # —1. Hence

y = (z+1) U(:rfl)zdwrc}

= wry {/(1;_(1;)2)(1“0}
— 1+ (1+a)n|l+a|+C1+a)

f cos tdt

(m) @' + xcost = cost. The integrating factor is I(t) = e = et Hence, the general

solution is
T = e—sintU‘COStesintdt + C] — e sint[esint + C] =1+ Ce—sint_

(n) The equation
dy 1-y
xr— =
dx 11—z

can be rearranged into ¢’ + [#(1 — x)] 7!y = [#(1 — x)]'. The integrating factor is

o s =eo [+

= exp[lnz —In(1 — z)]

I(x)

1—x

for all  # 0 or 1. The general solution is
11—z 1 1 1-—2z
o= (T ampere] =50 ()
(0) (1 —t?)a’ + tz = t. The integrating factor is

I(t) = exp [/ ltiit ] = exp [—;ln(l—tQ)} =(1—12)"2

t2
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assuming |t| < 1. Therefore the general solution is
= (1-1t)2 [/(1 —)73tdt 4+ C| =1+ C(1 — )3,

19.7. The integrating factor of

is I(x) = exp[[ 2~ 'dz] = z. Hence, by (19.16), the general solution is

i | [ 0@ o] =1 [as@an €.

y =
If f(z) =Inz, then

y = /xlnxdx—i—g
x

8
(S

5

8

1 1 1
= - = /fodx + ¢ (integrating by parts)
2 2 T T

C

Bl 8= 8]

For the condition y(1) =0, C = %. Therefore y = %xlnx — %I + é.
19.8. (a) The integrating factor of

d
£+y=f(w)

is I(x) = of 47 — oo, Hence, by (19.16), the general solution is

y = ﬁ [ / I(2) f(2)de + c} — et / o f(z)dz + Co~®.

(b) Express the indefinite integral in the solution in (a) as a definite integral in the form
x
y= efz/ e f(u)du + Ce™™.
0
The condition y(0) = yo implies C' = yo. Hence required solution is

y= efz/ e f(u)du + yoe™".
0

19.9. The equation for the temperature T in Newton cooling satisfies

dT
— = —k(T —1Tp).
)

The general solution of the equation is
T="Ty+ Ce k.

We are given that Ty = 40 and 7'(0) = 100. Hence 100 = 40 + C, or C = 60. With ¢ measured in
minutes, we also know that 7'(3) = 85. Hence 85 = 40 — 60e ¥ so that

k= —% In[(85 — 40)/60] = —% In[9,/12] = 0.0959.
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Let t1 be the time when the temperature reaches 60° Then

60 = 40 4 60e~*"*, from which, t; = —k~'In(3) = 11.5 minutes,
approximately.
Chapter 20: Harmonic functions and the harmonic oscillator

20.1. A harmonic function is said to be in standard amplitude-phase form, if it is written as
C cos(wt + ¢) where C' > 0 and —7 < ¢ < 7.

(a) 3cos(3t + 2x). In this problem C = 3 > 0 but the phase 37 has to be adjusted. We can add
or subtract any multiple of 27 without affecting the value of the harmonic function. Here we must
subtract 27 from the phase to give the standard form 3 cos(3t — %’ﬂ')

(b) 3cos(wt — 3m). Add 47 to the phase: standard form is 3 cos(wt + 7).

(c) 2sin3t. Use the identity sin A = cos(A — 3m): standard form is 2 cos(3t — 7).

(d) 3sin(2t + 7). Standard form is 3 cos 2t.

(e) —3cos(2t — 3m) = 3cos(2t — 37 + ) = 3cos(2t + 27) which is the standard form.

(f) —4cos(2t + 1) = 4cos(2t + 27 — ) = 4 cos(2t — ) which is the standard form.

(g) —sint =sin(t 4+ m) = cos(t + m — 3pi) = cos(t + 37).

(h) 3cos2t + 4sin 2t = \/[3? + 4] cos(2t + ¢) = 5cos(2t + ¢), where ¢ is defined by

cos ¢ = %, sing = —%.

For a standard form we choose ¢ = —0.927. .. in radians.
(i) cos 2t cos(2t — ) = cos 2t + cos 2t cos w+sin 2t sin m = cos 2t — cos 2t = 0, which is the standard
form.
(j) cos(2t — 3m) — cos(2t + 37) = —2sin(34¢)sin(—37) = —2sin(2¢) using the product formula,
Appendix B. Then
—2sin(2t) = 2sin(2t + ) = 2cos(2t + 7 — 17) = 2cos(2t + ),

which is the standard form.
20.2. If 2(t) = Cy cos(wt+ 1), y(t) = Co cos(wt+ ¢2), and @1 > ¢Pa, x is said to lead y by ¢1 — ¢o;
if ¢1 < ¢o then x lags y.
(a) @ = 4cos3t, y = 3cos(3t — 7). Here ¢ = 0 and ¢ = —i7: hence ¢ > ¢3 so that x leads y
by i7.

2
(b) z = 2cos(2t + +7), y = 3cos(2t + 7). y is not in standard form: replace it by the standard
form y = 3cos(2t + 17m). Then ¢y = }7 and ¢ = £7: hence ¢1 < ¢, so that z lags y.
(¢) 2 = —3cos2t = 3cos(2t + 7), y = 4cos2t. Here ¢; = 7 and ¢ = 0: hence ¢; > ¢ which
means that x leads y.
(d) x = cos3t, y = sin 3t = cos(3t — %77) Here ¢1 = 0 and ¢ = —%7‘(: hence ¢1 > ¢o which means
that x leads y.
(e) z = 2cos3t, cos(3t — §m) = cos(3t — ). In this case ¢ = 0 and ¢ = — 17 so that ¢1 > ¢»
which means that x leads y.

20.3. If the equation is expressed in the form

d%z dx
IREART +wiz =0,

then (a) natural frequency is wp/(27);

(b) the ‘“frequency’ of the damped oscillation is (w2 — k2)z /(2n); (c) the ‘amplitude’ of the
damped oscillation is Ae~*'; this drops by a tenth in time T’ where e *7 = L. Hence T = (In10) /,
and the number of cycles is approximately Twq/(27).
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a) (i) wo/(2m) = V2.5 x 105/(27) = 79.58 cycles/s;
ii) damped frequency= v/2.5 x 10> — 102 /(27) = 79.56 cycles/s;
iii) number of cycles =wy(In 10)/(207) = 18.32 cycles: 19 cycles needed.

b) (i) wo/(27) = V4/(27) = 0.318 cycles/s;
ii) damped frequency=+v/4 — 0.252/(27) = 0.316 cycles/s;
iii) No. of cycles=wy(In10)/(27k) = (21n10) /(27 x 0.25) = 2.931 cycles: 3 cycles needed

c) (i) wo/(2m) = V/3/(27) = 0.276 cycles/s;

ii) damped frequency=v'3 — 0.0752/(27) = 0.275 cycles/s;

iii) No. of cycles=w(In10)/(27k) = 8.463 cycles: 9 cycles needed
d) (i) wo/(27) = 0.711 cycles/s;

ii) damped frequency=0.707 cycles/s;

iii) number of cycles = 4, approximately.

(
(
(
(
(
(
(
(
(
(
(
(iif)

20.4. (a) Let o = 32 coswt + sin(wt + +7). Then

1
z = 37%coswt+ cos(wt — Zw) = (3% + 2*%) coswt + 272 sinwt

V(V6 + 4) coswt + 277 sinwt
= (V6+1)272 cos(wt + ¢)

where cos ¢ = (v/6 +1)/(/(8 +2v6)), sin = —1/(1/(8 + 2v/6). Hence, ¢ = —0.282 radians.
(b) Let 2 = 372 coswt — sin(wt + 7). Then, as in (a),

1 1 1 1 1
r = 32 coswt—cos(wt—iﬂ):(?)?—Q 2)coswt — 272 sinwt

(V6 — 1)277 coswt — 277 sinwt
= /(4 —V6)cos(wt + )

where cos ¢ = (v/6 — 1)/(/(8 — 2v/6)), sin¢ = 1/(1/(8 — 2v/6)). Hence, ¢ = 0.604 radians.
(¢) Let 2 = —32 coswt + sin(wt + 7). Then

x = —3%coswt+2 7 sinwt+ 272 coswt = — (V6 — 1)2*% coswt + 272 sinwt

= (4~ V6)cos(wt +9),

where cos ¢ = —(v/6 —1)/1/(8 — 2V/6), sinp = —1/./(8 — 21/6). Hence, ¢ = —2.538 radians.
(d) Let 2 = —32 coswt — sin(wt + 7). Then, as in (a)

— (V6 + 1)2_% coswt — 272 sinwt = V(4 + V6) cos(wt + ¢)

where cos ¢ = —(v/6 + 1)/(/(8 +2v/6)), sin¢ = 1/1/(8 + 2¢/6). Hence, ¢ = 2.860 radians.
20.5. (a) For z(t) = Ce k! cos(wt + ¢), the first derivative is

% = —Ce M[kcos(wt + ¢) +wsin(wt + ¢)].

The maxima and minima occur where dz/dt = 0, that is, where ¢ satisfies
tan(wt + ¢) = ——

Denoting these times by T, they are given by

k
wTN—f—(b——arctan[ } + N,
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where N is any integer.

(b) If
k
tan(wt + ¢) = 0
then k
w .
cos(wTy + ¢) = TE R sin(wly + ¢) = @ k2
if NV is even, and
w . k
COS(WTN =+ ¢) = —m, Sln(wTN + ¢) = ma

if N is odd. Hnece

(—1)NwCe*Tn

x(Ty) = Ce ¥V cos(wTy + ¢) = T
(Tn) (WTn +¢) ERDE

20.6. From Example 20.4, Q. = Be % cos(wt + ¢), where B = 0.9851, w = 99.92 and ¢ = 2.777.

The time constant of Q. is %.

(b) With g(x) containing non-exponential terms only, the decay of z, which tends to zero with ¢,
is controlled by h(t) = e~*/T. Let t = 7 + TIn2. Then

R+ TIn2) =exp[—(7+ Tn2)/T] = exp[-7 —In2] = %h(r).
Hence the exponential factor halves in every interval of duration 7 In 2.

20.7. Heavy damping: 2" + 2ka’ + w?z = 0. The characteristic equation is
m? + 2km + w?z = 0,
which has the roots
my = —k+/(k* —w?), me=—k—(k*—uw?).

For an overdamped oscillation (heavy damping), the friction term is large and satisfies the inequal-
ity k2 > w?, in which case both roots are real and negative. The general solution is

Aexp[{—k + /(k* —w?)}t] + Bexp[{—k — V/(k* — w?)}t].

The solution contains no oscillatory terms, and is the sum of two exponentially decaying terms.

20.8. 7" + 10z’ + 242 = 0. The characteristic equation is
m? 4 10m + 24 = 0, which has the solutions m; = —6, my = —4.
This is an overdamped case (Problem 20.7) with general solution
r = Ae % 4 Be™,
The initial conditions are z(0) = —3, 2’(0) = 20 lead to the equations
A+B=-3, —6A-4B =20,
which have the solution A = —4, B = 1. Hence the required solution is
= —4e 6 f 74,
The solution crosses the t axis where

—4e 6 e =0, ore”? =

=
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By taking the logarithm of this equation we obtain the uinque solution ¢t = In 2.

20.9. Critical damping: 2 + 2kz’ + w?r = 0 (k? = w?). The characteristic equation is
2 2,
m~ 4+ 2km + k“x =0,
which has the repeated root m = —k. In this special case the general solution is

x = (A+ Bt)e ™.

20.10. 2" + 2k’ + wir = K coswt, k = 0.5, wg = 6, K = 10.
(a) The period of the free oscillation is

2m 2m
= = 1.051.
Viwd — k2] /[36 —0.25]
(b) From (20.14), the amplitude of the forced oscillation is
K 10

A = =
V@2 — 0?2 + 4k20?] 1296 — 7102 + wA]’

and the phase ® is the polar angle of the point
(Wi — w?, —2kw) = (36 — w?, —w).
We can write
w
® = —arctan | — | .
{36 - wz}
(c) From (20.16) the resonant frequency is
w = /[wi — 2k% = \/[36 — 0.5] = 5.958.

(d) The curves of amplitude and phase against w in the range 4 < w < 8 are shown in Figure 14.
The peak in the first curve occurs at the resonant frequency.

A anpl i tude ® phase
1.6
1.4 5 6
1.2 -0.5

1 -1
0.8
0.6 -1.5
0.4 -2

-2.5
w
5 6 7 8

Figure 14: Problem 20.10

20.11. The equation of motion is

. 2ax(g+ 2ax'?)

=0.
1+ 4a222

The particle is in equilibrium at = 0. For small z, 2> and 22 can be ignored in the equation to
leave the linearized equation
" + 2agx = 0.

The period of this simple harmonic motion is 27/+/[2ag].
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20.12. The equation of motion is

, . 2ax(2az — g)

=0.
1+ 4a222

The particle is in equilibrium at = 0. For small z, ' and 22 can be neglected in the equation
to leave the linearized equation
x" — 2agr = 0.

The general solution is
r = Ae” V29t 4 Bev2agt,

Unless B = 0 (which implies a severe restriction on the initial conditions) the particle will move
away from its initial position.

20.13. Displacement x(t) satisfies

2
"+4 |z — =0.
T+ {x 3—x}
(a) The system is in equilibrium is 2" = 0 which occurs where
x(3—xz)—2=0o0r (x—2)(z—1)=0.

There are two positions of equilibrium: z = 1 and = 2.

(b) Let £ =1 4 w. Then the differential equation in terms of u becomes

2 u—1
" +40(1 — =u" —4 =0.
u’ + {( +u) Q—U] u U{Q—u} 0
Let x = 2 4+ v. Then the equation becomes

2 1
v + [(24—1})—”] =" —4v E’Jrv] =0

(¢) For small |u|, u satisfies the linearized equation u” + 2u = 0, and for small |v|, v satisfies
v —4v =0.

(d) Near x = 1, u satisfies v” + 2u = 0, which has the general oscillatory solution
u = Acos+/2t + Bsin+/2t.
Near x = 2, v satisfies v” — 4v = 0 which has the exponential unstable solution

v = Ae*" + Be 2.

20.14. The particle has the equation of motion

d2u Y a—2
ae T =0
where u = r~ 1. Let u = ug, where ug is a constant. Then
0+up— —5ug > =0
Hence, provided « # 3,
N\ 1/(B-a) )
w=(g) %

which generates a circular orbit of radius rg = 1/uo.
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Let u = ug + x. Then x satisfies

" +ug+x— %(uo + )% =0.
Using the binomial expansion given:
Y a—
" +ug+x — 26 N+ (a—2)]=0.

Hence using (i) above to eliminate ug, the linearized equation for x is
7"+ (3—a)r =0.

The solutions are oscillatory (and therefore bounded) if o < 3, which means that a disturbed orbit
remains close to the circle. If o > 3 then the disturbed orbit will diverge from the circle. In the
gravitational case, o = 2, the inverse square law.

20.15. The forced amplitude for the forced linear oscillator

42 d
YA

Tl & +wiz = K cos wt.

is (see (20.16))
K

-
(F — w22 + k2]

Assuming that k and wp are given, resonance will occur when A as a function of w takes its

maximum value, or where

g(w) = (wh — )2 + 4k
is a minimum. Thus
= —dw(ws — w?) +8k*w =10

dw

where w? = wZ — 2k?, which gives the resonant frequency. Substitute this frequency back into A
to give the resonant amplitude

2

K K

[k + AR2 (w2 — 2k2)]3  2k(w2 — k2)%

20.16. (a) Given the wavelength A = 1.2m and the period T'= 1/250 s, the speed of sound is
A ~1
v:)\f:le.2><250=30ms .

(b) Given the tuning frequency f = 100MHz = 100 x 10°Hz = 108s~! and electromagnetic wave
speed v = 3 x 108571, Hence the wavelength

B*3X108*3m
£ T

) = oo (2) 4] o [ (222) ]

use the identity cos A cos B = § cos(A — B) + 3 cos(A + B) so that

)\ =

20.17. Given

z

ult, ) = %Acos [27r (; - /\> + (¢ — a)} + %Acos [27r (; + i) +(o+ a)} .
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The terms
t z
4z
(T A)
indicate waves travelling in opposite directions.

20.18. u = Acos(wt — kz + ¢).

(i) By (20.25a), u = cos [27 (% — %) + ¢].

(i) By (20.28), u = cos [w (t — ) + ¢].

20.19. u = cos(wt — kz + ¢). Apply the identity

cos(A — B) = cos Acos B + sin Asin B

with, for example, A = wt, B = kz — ¢. Then

u = coswtcos(kz — @)+ sinwtsin(kz — ¢)
1
= coswtcos(kz — @) + sinwt cos(kz — ¢ — §7T)’
which matches the form of (20.24), since w = 27/T and k = 27/ .
20.20. Given u(t,z) = Acos(4500t — 3z), (w4500, k = 3),
phase velocity, v = w/k = 1500 from (20.28);
frequency, f = w/(27) = 4500/(27) = 716.2 from (20.25b);
wavelength, A = 27 /k = 27/3 =~ 2.09.
20.21. From (20.31a), the plane wave in direction § is
u(t,r) = Acos(wt — kS -r + ¢).
§ is a unit vector in the direction of s = (1,1,1), that is, § = (%, 5, =) Hence

§-r= (ﬁ,ﬁ,ﬁ) (z,y,2) = ﬁ(m—l—y—i—z),
where (z,y, z) are the original coordinates. Therefore

u(t,r) = Acoswt — %(m—i—y—i—z) + 9.

20.22. (a) coswt + coswst is periodic if, and only if, there exists a number T (the period) such
that for all values of ¢

coswit + coswat = coswy(t +T) + coswa(t +T),

which is equivalent to the requirement that wiT and w1 are multiples of 27. In that case w1 T =
p2m and woT = ¢27 for some integer values of p and ¢, or

wi _p

)
w2 q

where p and ¢ are integers. When wy /ws is rational, the smallest period T = 27p/wy or 2mq/ws is
got by reducing p/q to its lowest terms.
(b) Let

U = Uy + us = cos 10t + cos 13.1¢.

Here, w1 = 10 and wy = 13.1;
w1 10
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where p = 100 and ¢ = 131. The exact period T of u is given by

27p 100 2mq 131
T=""L _on=" —9n~628( or ~L =27 ).
w10 ( R 7T13.1)

The periods of u; and ug are 27/10 &~ 0.62 and 27/13.1 = 0.48 respectively. The period of the
beats is obtained from (20.36): it is

12 2 2
Tp=rx o =—1 =T x202
2 EAW W2 — W1 3.1

So w1 + us has a period of about 31 beats long.
20.23. (a) By expanding the cosines by Appendix B(b), and collecting the coefficients of cos wt

and sin wt we obtain
u = Aj cos(wt + ¢1) + Az cos(wt + ¢2) = @y coswt — g sin wt, (i)
where
ap = Ajcosgy + Az cos o, g = Ajsin ¢y + Agsin ¢s.
Following a similar procedure to that giving (1.18), put R = \/(a? + a2), and choose a constant ¢

such that
«o

- ing— 22
cosp = IR sin ¢ R
Then (i) becomes u = R cos(wt + ¢), where the constants R and ¢ are determined as above.
(b) By the same procedure, with wt — kz in place of wt, we obtain

u = Rcos(wt — kz + ¢).

20.24. (Reflection, phase and amplitude unchanged) Put

u = Acos(wt —kz+ ¢)+ Acos(wt + kz + ¢)
= 2Acos(wt+ ¢) coskz, (by using Appendix B(d)).

(This represents a stationary wave.)

(b) Phase change only:
u = Acos(wt —kz+ ¢1)+ Acos(wt + kz + ¢2)

= 2Acos(wt + %{qﬁ + ¢2}) cos(—kz + %{Qﬁ — ¢2})

(This represents a standing wave.)
Amplitude change only:
u = Ajfcos(wt + ¢)coskz + sin(wt + @) sin kz]
+As[cos(wt + @) cos kz — sin(wt + ¢) sin kz]
= [(A1 4+ Ag)coskz + (A — Ag) sin kz] cos(wt + ¢)
(This is a standing wave: the coefficient of cos(wt + ¢) takes the form Acos(kz + a) where A and
a are constants by the result eqn (1.18).)

20.25. Let

u = Acos(wit — k12) + Acos(wat — ko2)

24 cos%(wg —wy)t — %(kg —k1)z] cos[%(wg +wi)t — %(/ﬂg +k)z] (D)
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(compare eqn (20.42). Here, the phase velocity v is a function of A. Also w = kv (eqn (20.28)) and

k =2m/X (eqn (20.25a)). The beat profile is

+2Acos[tAwt — LAk 2],

where Aw = ws — w1 and Ak = ko — k1. The group velocity vg is defined as the limit of the beat

velocity as the parameters Aw, Ak, etc approach zero.
The beat velocity is
Aw  wy—w;

Ak ko — k'

(eqn (20.48)).

In terms of A\ and v we have

v = i Aw d(kv) d(v/A)

akmo Ak dk d(1/A

o (Lo 4y /(1)

dv
= -2
VA

20.26. Put f in place of f1, Af in place of (fz — f1), and similarly with the other variables. Since

fird1 = v1 and fodo = vy, we have

(f+AHAN+AN) =v+ Av.

Divide the left-hand side by fA and the right side by v = fA. This gives the first identity

A A Av
<1+f) <1+)\>1+U.

2m 21 Aw

From the identity

we obtain the second identity.

20.27. Taking the sound speed in air as approximately 300 ms™
u = 10°/3600 = 2.777ms ™. The frequency heard on the approach is

350

—— = 352.2H
(1 —-2.777/300)
and the frequency on recession is

350

S 346.8M.
(1 + 2.777/300)

The frequency drop is 5.4H.

1

, we have v = 300ms™

Chapter 21: Steady forced oscillations: phasors, impedance, transfer functions

21.1. (a) X = 2e2™ or 2i.
(b) X = 2e~ 2™ in polar form, or X = —2i.

(¢) © = 3sinwt = 3cos(wt — ). Therefore X = 3e~ 2™ or —3i.

(d) z =4cos(3t — 1r + im) = dcos(3t + im). Therefore X = 4e7™ or 2v/2(1 +1).

21.2. (a) X=1—-1i= \/26_%7Ti_ Therefore’ Tr = \/2 Cos(wt — iﬂ-)
(b) X = 2e2™, - = 2 cos(wt + ).
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(¢) X =3e 2™z = 3cos(wt — 37).

(d) X =2~ 4™ 2 = 2cos(wt — 37)

(€) X =4e~ 8™, 2 = 4 cos(wt — 5.

(f) X =2e 3™ 2 = 2 cos(wt — 27).

(g) X = (/belarctan2 5 — | /5 cos(wt + arctan 2).

(h) X = /pel(arctan2+5m) 0 — /5 cos(wt + arctan 2 + im).

(i) [X| =1, arg X = arg(2 + 3i) — arg(2 — 3i) = 2arg(2 + 3i) = 2arctan 2 (= 1.97).
() X=—-3i+2i=32i= %e%”i, z = cos(wt + 7).

21.3. Use the addition principle (21.3).

(a) = —cos2t + cos(2t — +7). Then

X:1+e_%”i:1+cosi7r—isiniw:1—1—%—1%.

Hence |X| = /(2 4+ 1/2), arg X = arctan (ﬁ)
(b) & = cos 3t — sin 3t = cos 3t — cos(3t — £7). Therefore

X=1-e2"=1+i [X|=42 agX= 7.
(c) = sin3t + 2cos 3t = cos(3t — 27) + 2 cos 3t. Therefore
X=e 2M42=2—j

and
IX| =+/5, argX = arctan(—3) = arctan .

21.4. Use the addition principle (21.3).
(a) x = —cos 2t + cos(2t + ) + cos(2t — 17). Therefore

X=—l+eimtes™ =14+ 4ids+i=(d5—1)+(J+Di
(b) z = cos 1760t — 3cos(1760t — $m) + cos(1760t + ). Therefore

X =1-—3e 2™ ped™ — 1 44

21.5. Let X be represented by the vector OP; the coordinates of P are
ccos(wt + @), esin(wt + ¢).

P therefore lies on a circle, centre O and radius c. If 6 is the angular coordinate then 6 = wt+ ¢, so
that the angular velocity df/dt = w. The projection of OP on the x axis is simply the x coordinate
of P.

21.6. (a) Z = R+ 1/(iwC) (from (21.7)).

(b) Z=R+iwL.

(c) Z =iwL +1/(iwC) = i(w?L — 1)/(wC).

(d) 1/Z =(1/R) + [1/(1/iwC)], from (21.7). Therefore, Z = R/(1 + iwRC).

(

e) From (21.7),
1 1 1

Z R VtwL

Therefore, Z = iwLR/(R + iwL).
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1 1 1
w 7~ L T 1/Ge0)

Therefore, Z = iwL/(1 — w?LC).

(2) o
& Z R+iwl  1/iwC’
Therefore

7 R+ iwL

(1 —-w?LC) +iwRC’

1 1 1
h el R
(b) Z R—Fl/(iwC)JriwL
Therefore

_ wL(1+iwRC)
 WRC +i(w2LC — 1)

(i) Z = R + (impedance of L and C in parallel). From (f) we obtain
iwL
Z = —_—.
R+ 1-w?LC
)
11
Z R+iwl R
Therefore
R(R +iwL)

Z = .
2R +iwL

(k) Z is given by

11,1 1

Z wL 1/(iwC) R
(1) (NB: the problem has been simplified in the 2003 reprint by deleting Zs.) The circuit is
equivalent to two parallel circuits connected in series. The impedance Z;, of the left-hand circuit

is given by

1 n 1

Zr,  Z1 Z3’
and the impedance Zg of the right-hand circuit is given by

1 n 1

Zrn  Zy  Zs

The impedance of the whole circuit is given by

7,75 727,
Zi+ 7y Zo+Zs

=7+ Zr=

21.7. The solutions for (21.6a,b,c,d) are given. The voltage v(t) has phasor V. = 2. The corre-
sponding current phasors I are given by I = V/Z, where Z is the complex impedance obtained in
(21.6a,b,c,d).

2 _ 2wC(WOR 1)

T R-i/(wC) w2C?2R2+1 °

(a) I
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Therefore [I| = 2wC/(w2C2R? +1)2, and the phase of I is arctan[1/(wRC)].

2 2(R —iwl)

I= = .
(b) R+iwl R?2+4+w2L2

Therefore |T| = 2/(R% 4+ w?L?)z, and phase is arctan(wL/R).

© [— 2 _ 2iwC
¢ T WL +1/(wC)  w2LC -1

Therefore, |I| = 2wC/(w*C2L? + 1)2; phase is i

2 2 .
(d) I= R0+ wR0) = E(l + iwRC).

Therefore [I| = 2(1 + w2R2C®)2 /R; phase of I is arctan(wRC).
21.8. (a) The complex impedance Z = 3 + 3i —1i = 3 + 2i, and the current phasor is therefore

\Y%
= Yo_ Y

Z  3+2

(The transfer impedance is V/I; = Z in this case.) The voltage phasor

Vbi

V, =3I, =3
L R T

so the voltage gain

Vi 3i 1 .

L= = —(2+ 3i).

Vo 333 1302t
(b) Let I represent the current input at the terminals. The impedance Zg of the right-hand,
parallel, circuit is given by

1 1 1 1-3i

7 sy (@)

and the impedance Z of the whole circuit is given by

—2-2 1451 2 . )
=1+ =75 =132 (ii)

The current Iy delivered by V( to the whole circuit is

Z %151

% 1 3i
Ih= 2=V !

The voltage drop over the unit resistance in series is therefore equal to

1-3i
I = — _—
0 1+ 50
and the voltage over the right-hand circuit is
3i 2+2i

1_
Vi=Vy+V - .
! ot Vo1 5 o1 45

Therefore the voltage gain
Vi 242 2
— = = —(3—2i).
Vo im0
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The transfer impedance Vg /I; is given by

Vo_VoVi_l+si,
I, VI, 2+2i

(since 1/1; is the impedance 1 —1i of the I;, V3 branch). Therefore

Vo 1. .

(c) Problem (c) has been deleted from the 2003 reprint.

21.9. The components of the phasors are given to one decimal place.

(a) cos 10t + 2 cos(10t + 0..3). The phasors are (1,0) and (2 cos0.3,2sin0.3) = (1.9,0.6). Resultant
phasor has components (2.9, 0.6).

(b) cos 10t+2sin(10¢+10.2) = cos 10t—2 cos(10¢t+10.2—17). The phasors are (1,0) and (1.4, —1.4),
and the resultant has components (3.9, —0.6)

(¢c) cos 10t + 3 cos(10t — 0.2). the phasors are (1,0) and (3 cos(—0.2),3sin(—0.2)). The resultant
has components (3.9, —0.6).

(d) sin20t — 3cos(20t + 0.75) = —cos(20t — $7) — 3cos(20t + 0.75). The phasors are (0,1) and
(—3¢c0s0.75, —3sin 0.75) = (—2.2, —2.0). The resultant is (—2.2, —1.0).

(e) 2cos(50t 4 0.4) + sin(50¢ + 0.3) — 3 cos(50t — 0.5). The phasors are (1.8,0.8), (—0.3,1.0) and
(—2.6,1.4). The resultant is (—1.1,3.2).

21.10. (a) Without loss of generality take ¢ = 0 and the amplitude A = 1. Then
u(z,y, 2, t) = coslwt — 37 7 k(z +y + 2)].
In the z,y plane the field is
u(z,y,z,t) = cosjwt — 3_%]6(.%‘ + )]
(b) The combined wave takes the form
u(z,y, z,t) = cos[wt — 3_%]6(1‘ +y+ 2)] + cos(wt — kz). (7)

Onz=0 )
u = coslwt — 37 2k(z + y)] + coswt.

In terms of the corresponding phasors this becomes
U = e #*@+0)/V3 L1 = (1 + cosl[k(x + y)/v/3]) + isin[k(z +y)/v/3].
The intensity of the wave on z = 0 is proportional to |U|?, where
U2 =2 + 2cos[k(z + y/+/3].

The maxima of |U|? (the fringes) occur where k(z + 3)/y/3 = nm and n is any integer; that is,
along the 45° straight lines x + y = /3nm/k. They are spaced at equal distances /(3/2)7/k.

Chapter 22: Graphical, numerical, and other aspects of first-order equations

22.1. The lineal-element diagrams were obtained using Mathematica: the x and y ranges chosen
are indicated by the graphs.

(a)y = -y
b))y =x—y
() y =z/y.
(d) ¥ = zy.
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Figure 15: Problem 22.1(a)
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Figure 16: Problem 22.1(b)

(€)y =-y/z

)y =y/x.

()1//4@//71

(&) y' =(z—1)y

)y =1/(@* +9?)

() o =1/ + 9 - 1),

() y' =(1—y?)>

(k) y' = (y/x)2.

22.2. (a) ¥ = —1y, y[0] =1, 0 < z < 2. Euler’s method for initial-value problems is given in

(22.2). A Mathematica program for Euler’s method is given below for this equation: the step-length
is h = 0.2, and the number of steps n = 10.

Euler program

Clearlf, x, y, h]

f[ *7Y] :'Y/Z;

h=0.2

y[0]== ;

x[n] = n*h;

vl = ﬂ] yn - 1] 4+ h*f[x[n - 1], y[n - 1]];

euler = Table[x[i], y[i], {i, 0, 10}]

y
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Figure 17: Problem 22.1(c)
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Figure 18: Problem 22.1(d)
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Figure 19: Problem 22.1(e)

To three decimal places the numerical solution gives

n 0 1 2 3 4 5 6 7 8 9 10
z(n) |0 02 04 0.6 0.8 01.0 1.2 1.4 1.6 1.8 2.0
y(n) |1 09 081 0.729 0.656 0.590 0.531 0.478 0.430 0.387 0.349

The exact solution is y = e~ 2% which gives y = 0.367 ... at x = 2. Smaller values for h improve the
accuracy. The figure shows the exact solution (the continuous curve) and the euler approximation

(the dots).
(b) v =—a/y, y(—1) = =1, =1 < & < 1. The Euler program is:

Clear[f, x, y, h]
fix., v = x/y;
h =0.1;

Y[_l] = _17
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Figure 20: Problem 22.1(f)
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Figure 22: Problem 22.1(h)

euler = Table[x[i], y[-1 + i], i, 0, 20]

The figure shows the numerical approximation with the step-length A = 0.1 and the number of
steps n = 20 compared with the exact solution y = —(2 — z2)=.

There is considerable divergence between the approximation and the exact solution. We need
step-lengths of the order of h = 0.01 to achieve a close approximation. The Euler method can be
applied to —2 < z < —1 by choosing negative values of h.

)y =0—y»)2,y0)=0,0<z < 3. The program in (a) can be adapted to this equation.
A comparison between the exact solution y = sinz and the Euler approximation is shown for a
step-length h = 7/20.

22.3. A Mathematica program for Euler’s method is given in Problem 22.2. Some typical solutions
are shoen in each of thes cases.

(a) v = y(x+1)/[x(y+1)] for =1 < z < 1. The general solution is ye¥ = Aze” (see Example 22.6).
The solutions shown are for A = -2, —1,—-0.5,0,0.5,1, 2.

(b) o/ = 2y? (see Example 22.7). Figure 30 shows a solution computed using Euler’s method with
initial condition y(1) = 1, h = —0.01: the computed solution ends near to (0,0). Other initial
conditions are translated copies of this solution as shown in Figure 22.10(b).
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Figure 23: Problem 22.1(i): 3/ = 1/(2? + y* — 1).
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Figure 24: Problem 22.1(j)
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Figure 25: Problem 22.1(k)

(¢) 3’ = (y/x)z. A lineal-element diagram in z,y > 0 is shown in the figure for Problem 22.2(c).
Two solution curves computed using Euler’s method are shown in Figure 31 for initial values
y(0.1) = 0.2 and y(0.2) = 0.1.

22.4. Separation of variables: these are equations of the form dy/dz = g(z)h(y). The general

solution is given by
dy /
—— = [ g(x)d+ C.
)~ )

Remember that there often several ways of representing the solutions.
(a) y' = x/y. In this case g(x) = x and h(y) = 1/y. Hence the solution is given by

1 1
/ydy:/mdx+C’, or §y2:§x2+Cory2—x2:A,

a family of hyperbolas.
(b) ¢ = 2z/y. The solution is given by

1
/ydyz/Zmdx—i—C’, or §y2:x2+C.

o000 o
» OO N ® O

Figure 26: Problem 22.2(a)
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Figure 27: Problem 22.2(b)

X
0.250.50.75 1 1.251.5

Figure 28: Problem 22.2(c)

(¢) ¥ = z/(y + 2). The solution is given by
(y+2)2=2*+C.
(d) ¥ = (x+3)/(y +2). The solution is
(y+2)%=(z+3)>*+C.
(There are alternative answers such as %y2 +2y = %xQ +3z+C.)

(e) y' = x?/y?. The solution is given by

1 1
/dey = /x2d$ +C, or gys = gac?’ +C.

(f) ' = —x?/y?. the general solution is

Figure 29: Problem 22.3(a)
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Figure 30: Problem 22.3(b)
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Figure 31: Problem 22.3(c)

(g) v' = y?/22. The general solution is given by

1 1
/d—gz/d—f—FCor -——=—+4C.
Y €z Y €z

This can be also expressed in the form

x
y = :
1+ Cx
(h) y' = —y2/2%. The general solution is
o
Y=o -1

(i) 22y’ = y*. Then
d d -2
2/—3: & or — =lInlz|+C.
Y )

T )
This can also be expressed in the form

B -2
YT+ m ||

(j) vy’ + = 1. Then the general solution is given by
P =2r— 2% +C.
(k) dz/dt = 3t%2®. The general solution is given by
9 1

T34 C
(1) (sinx)(da/dt) = t. Then separating the variables and integrating

/sinxdxz/tdt—i—C
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so that —cosz = %tz +C.
(m) e**t¥(dy/dz) = 1. The general solution is

ey = —e"+C.
(n) (1 + 2?)(dy/dz) + (1 + y*) = 0, y(0) = —1. This is an initial-value problem. Separating the
variables
/ dy dz
1+y2 1422
so that
arctany = —arctanz + C.
Using the initial condition, (—arctan1) = C, or C = —1x. Hence
1 1
y= tan(—iw —arctanz) = xt?

(see Appendix B(b)).
22.5. dy/dx = —z/y. Consider

x y
/ udu = f/ vdv.
2 1

Differentiate this equation with respect to z:

dy
T =—y—
Y dz’
by (15.20), which is the same as the differential equation. Also the integrals are both zero when
y =1 and z == 2, which agrees with the given condition.
The solution of

Y g@hly). y() =

/aw g(u)du = /by h(v)dv.

22.6. The following comments and figures provide some help in plotting solutions, with warnings
about spurious solutions.

1 . . . .
(a) z(dy/dx) = 2y=. Note that y must be positive. Separation of variables gives

is

y = (In|z| + C)2.

The figure shows three curves in > 0 for the stated values of C: note the special solution y = 0.
1

Since yz > 0, then dy/dxz > 0 for x > 0, and dy/dx < 0 for < 0 on solutions. Only portions of

the curves will be solutions.

Figure 32: Problem 22.6(a)

(b) dy/dx = :Ey%. Note that y must be positive. By separation of variables the general solution is

Yy = %(1‘2 + 0)27
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X
-2 -1 1 2

Figure 33: Problem 22.6(b)

and these are plotted for three values of C. However, for true solution curves, dy/da > 0 for > 0,
and dy/dx < 0 for < 0, so certain parts of the illustrated curves are spurious. Note also that
that y = 0 is a special solution.

(¢) dy/dz = (1 — y?)2. Real solutions will be restricted to —1 < y < 1. Separating the variables

d
/(11/2)1:/dx+0, or arcsiny =z + C, or y =sin(z + C).
—y2)3

The figure shows 3 curves for C = 0 and C = +£2: the set of valid solutions is limited to the
segments on which dy/dz > 0.

Figure 34: Problem 22.6(c)

(d) z(dy/dz) = (1 —y?)2, —1 < y < 1. The general solution is
y = sin(C + In |z|).

The figure shows three of these curves in « > 0, for C = 0 and C = £1. Since z > 0 and
1 . . oy .

(1 —y?)2 > 0, only those parts of the solutions which have positive slope are solution curves: the

other sections of curves are spurious. Similar remarks apply for = < 0.

-0.5
-1

Figure 35: Problem 22.6(d)

22.7. Differential forms are given in Section 22.4.
(a) dy/dz = (2z — y)/(z + 2y). In differential form this can be written as

0= (22 —y)dz — (z + 2y)dy = d(2°) — d(zy) — d(y*) = d(z® — zy — ¢°).
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Therefore the general solution is given by

22—y —yt=C.

Check for solutions y = ma in the differential equation: we obtain

2—m
m =
1+42m’

01er—|—m—1:07

which has roots m = %( —14./5). There are two straight-line solutions. They can also be obtained
by putting C' = 0 above.
(b) dy/dx = y/(y? — x). In differential form the equation becomes

0 =ydz — (y? — 2)dy = d(zy) — d(3y°) = d(zy — 1y°).

Therefore the general solution is given by zy — %y3 =C.
(c) dy/dx = (22 — y)/(z + y). In differential form this becomes

0= (z° - y)dz — (z + y)dy = d(32°) — d(zy) — d(3¥*) = d(32° — 2y — 39°).

Therefore the general solution is given by %x‘s —ay — %y2 =C.

(d) dy/dx = (22 — y)/(x — 2y). The general solution is given by
2 —azy+y? =C.
(e) dydz = (x — 2zy)/(2? — y). In differential form the equation becomes
0= (z — 2zy)dz — (2% — y)dy = d(32? — 2%y + 1¢°).
Therefore the general solution is given by
22— 22%y + 9% = C.
(f) dy/dx = 322/(3y? + 1). In differential form
0 = 3z%dz — (3y® + 1)dy = d(z® — ¢* — y).

Therefore the general solution is given by 2% — 3% —y = C. (Note that the equation is also
separable.)

(g) dy/d + [2zy/(2? — 1)] = 0. In differential form
0 = 2zydx + (2 — 1)dy = d(2%y — v).

Hence the general solution is y(z% — 1) = C.
(h) (1 —siny)(dy/dz) + cosx = 0. In differential form x and y satisfy

0 =cosadzr + (1 —siny)dy = d(sinx + y + cos y).

Therefore the general solution is sinx + y + cosz = C. (This is another separable equation.)
(i) (1 + 3e3¥)(dy/dx) = 2e?* — 1. In differential form

0= (2* —1)dz — (14 3¢¥)dy = d(e** —z —y — e%).

Hence the general solution is
e —g—y—e¥=C.

(G) (et +1)(dy/dx) + (¥ — 1) = 0. In differential form

0= ("t — 1)dz + (e*TY + 1)dy = d(e* 1Y —x + 7).
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Therefore the general solution is given by
Y x4 y=_C.
(k) dy/dx = (1 4+ cosxsiny)/(1 — sinz cosy). In differential form
0= (14coszsiny)dx — (1 —sinz cosy)dy = d(x + sinzsiny — y).
Hence the general solution is given by

T +sinzsiny —y = C.

22.8. (a) dy/dz = [y(y — 2z)/z(x — 2y)]. In differential form the equation can be written as
0 = (y* — 2zy)dx — (2% — 22y)dy = d(y*z — 2%).
Therefore the general solution is given by
yie — 2y = C.
(b) dy/dx = [y(1 — 2%)]/[z(1 + 2?)]. In differential form
0= (y—yz*)dz — (z + 2°)dy.

This is not a perfect differential, so an integrating factor is needed; say 1/x%. Multiply through by

1/
0= (%—y)dx— (i—i—x) dyz—d(%) —d(zy).

Therefore the general solution is given by

g—&—:r:yzC’.
x

(c) dy/dx = y?/(y* — 1). In differential form
O=dz—(1-y )dy=dlz-—y—y ).

Therefore the general solution is given by

1
x—y—ng.

(d) dy/dx = [y(y — 1)]/[y?® — z]. In differential form

0=y(y —)de - (y* - 2)dy.

An integrating factor is required. Multiply through by 1/y2:

(oo (- )wa(e3)

(e) dy/dx = [y(2® + y?® — y)]/[x(z? + %?)]. In differential form
0=y(2® +y* — y)de — a(a” +y*)dy,

which requires an integrating factor. Multiply through by 1/(x%y?):

1 1 1 1
0:(+y2—2>dx—<xz+)dy:d(x—y+).
y 2 T y T T
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Therefore the general solution is given by

T

Y
(f) dy/dz = [y(z? — y)]/[z(2® + y)]. In differential form

SHES

1
+-=cC
x

o
I

1
y(x® — y)de — z(z® + y)dy = 23> (ydx - 3jidy) — y(ydx + zdy)
x
z3y%d (y) — yd(zy).

We now perform a change of variable: © = zy and v = z/y, so that the differential form becomes

1
vdv = —du,
u

which has the general solution

22.9. The logistic equation is

This is a separable equation: therefore

dP 1 1 b

InP —In|a—bP| = at+aC.

Hence

Solve this equation for P. If a — bP > 0, then, taking exponentials of both sides of the equation:

P Bet Ba

— P=—m7m—.
a—bP O Bb + et

If P(0) = Py, then the solution can be written as

CLPO

P = .
bPy + ((1 — bPo)efat

It can be checked that the same solution also holds for a — bP < 0. Note also that the equation
has special solutions P = a/b and P = 0.
To reduce the number of parameters, write the equation in the form

K]PO
P = ,
Py+ (k—Py)e ™

where kK = a/b and 7 = at. In Figure 36 k = 1 and Py = 0.5, 1, 2: the solutions P =0 and P =1
are also shown.

22.10. For small P, dP/dt = aP. With P(0) = 10, it follows that

P'(0) 150

= =1
P(0) 100 )

a =~

Ultimately for large t, P — 25000. Hence

b = a/25000 = 1.5/25000 = 0.00006.
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2
11
X
1 2 3 4
Figure 36: Problem 22.9
With ¢ measured in days,
a}%
P(t) =
( ) b}% +»(a —»bfb)e*at
15 15

0.0006 + (1.5 — 0.0006)e~ -5t  0.0006 + 1.5e— 15"

If we conjecture the law

2 _ pe bP?,
dt

then b = 1.5/(25000)* = 9.6 x 1074, A comparison of the two solutions computed numerically is
shown in the figure both using the initial value P(0) = 10.

P
25000

20000
15000
10000

5000

2 4 6 8 10

Figure 37: Problem 22.10

22.11. (a) The equation of motion of the falling body is

d?z K (da)"®
a9 m\a)

When the body reaches its limiting speed it will be moving with constant speed, which means that
its acceleration d?z/dt? is zero. Therefore from the equation of motion its limiting speed vy is

given by
mg\1/e
w=(%)
(b) Let v = da/dt. Then
d’z  dv  dzdv dv  1d(v?)
a2 T dt  dtdr  dz 2 dz
Therefore the equation of motion can be expressed as

d(v?) K, ,
—2(g—=
iz 9= ()
(¢) The given data are K = 4, m = 80, « = 1.2, ¢ = 10. A numerical solution for v against ¢
is shown. The graph shows that the speed reaches its limiting value of approximately 83ms~! at
around 30m.

Nl
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Figure 38: Problem 22.11

22.12. If y = zw, then
d—y = i(xw) —w+xd—w
de dzx N da’

Most solutions are expressed in implicit form.

(a) dy/dz = (z? — 2y + y?)/(xy). Substitute y = xw: then the equation in the variables z and w
becomes

dw 2 — —z2w + z2w? 1—w+ w?
w4+ r——= = .
dz 2w w
Therefore
dw 1—-w
dz = wz
Separating the variables
d d 1
ek i, Or/ -1+ ——|dw=1Inlz|+C.
1—w T 1—w

Integrating
w—In|l-—w|=mh|z|+C, ory+zln|z—y|+Czx=0

in terms of y and z.
(b) dy/dz + (2% + y?)/(xy) = 0. Let y = zw: then

dw 22 + 22w? 1+ w?
w+r—=— = - .
dz 2w w
Therefore
dw 1+ 2uw?
de wr
Hence q d
wdw T
—=— | —+C.
/ 1+ 2w? x +
Integrating

1
1 In(1+2w?) = —In|z| + C, or 2*(z* + 2y°) = B.

(¢) dy/dx + (x —y)/(3z +y) = 0. Let y = zw: then

dw 1—w
wHr— = ——-—.

Therefore

Separating and integrating

/ (3 +w)dw

dz 2
=— | — that — —— +1n |1 =—1 C.
A5 w)? /x’SO a 1_’_w—i—n| + w| n x| +
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Hence the implicit solution is
2x

T+y
(d) dy/dz = 2zy/(32% — 4y?). Let y = zw: then

+Injz+y|=C.

2w

W T 3 g

Therefore
dw  w(4w? —1)

dr 3 —4w?

Using partial fractions

3 — 4w? 3 2 2w dx
7(1 = _— d - i :1 .
/w(4w2—1) v /[ w+2w—1+2w—|—1} v /x+c nlzl+C

Integrating

—3In|w| + In |[4w? — 1| = In|z| + C.
Substitute w = y/z and simplifying:
4y? — 2% = By,
(The moduli can be accommodated by the sign of the constant B.)
(e) dy/dz + 2(222 + y?)/(zy) = 0. Let y = zw: then

dw 4 + 2w?
w+r—=— .
dx w

Separating the variables and integrating

wdw 1 dx
— = -—In(4+3uw?)=—+C=-1 +C.
/3w2 1 6 n( 3w?) . C nlz|+C

Hence y satisfies
(422 + 3y*)z* = B.

22.13. If w = y'~" (n # 1), then w’ = (1 — n)y~"y’. Eliminate y from the Bernoulli equation

Y+ g(x)y = h(z)y",

to give
w + (1 —n)g(x)w = (1 —n)h(z).

This is now a linear equation in w, to which the integrating-factor method (Section 19.5) can be
applied.

(a) ¥ +y = y*. In this example of the Bernoulli equation g(z) = h(x) = 1 and n = —3. Hence
w = y~3 which satisfies
w' — 3w = —3.

Using the integrating-factor method the general solution of this equation is
w =1+ Ce*", so that y = (1 + Ce?’w)_%.
(b) y' +y =y~ 3. In this example g(z) = f(z) =1 and n = —3. Hence w = y2 which satisfies

/ 3,,_ 3
w —|—§w—2.
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Using the integrating-factor method the general solution is

w=1+Ce 3" sothat y=w3 = (1 —|—Ce_%”’)§.

22.14. (a) The equation
d?y b\ dy c
(2 E+ (S y=o0.
da? + (x) dz * (xz) Y

is equidimensional.

(a) Let y = 2M. Then

d%y b\ dy c
dxﬁ(x)(u*(xz)y

M(M —1)2M=2 4 bM M2 4 M2

M2+ (b—1)M + |z 2
=0
for all = if M satisfies M2 + (b — 1)M + ¢ = 0. If the roots are M; and My, then the general

solution is
= AzM 4 BaM2 (M # M)

If the roots are equal, My = My = M, say, then it can be verified that the general solution is
z=AzM + B2 Inz.
(b) Let = e'. Then, applying the change of variable,

Yyl oy () (),

dr _ dtdr C dt’ dz?  dzdi \dt a2 dr

Hence the differential equation becomes

d?y dy
—J L (p—1)2 =
dt2 +( )dt +Cy O)

which is a constant-coefficient second order differential equation (see Chapter 18).
(c) (i) d%y/dz? — (2/z)dy/dz + (2/2%)y = 0. Use method (a) by putting y = . Then M satisfies

M? —3M +2=0, or(M—1)(M—2)=0.
Hence the roots are M; = 1 and My = 2. The general solution is therefore
y = Az + Bx®.

(ii) d?y/dz? — (1/x)dy/dz + 1/2? = 0. Note that this is a forced equation. In this case use
method (b) by making the change of variable z = e’. Then in terms of the differential equation is
transformed into
d?y 2dy B
ez “dt
The characteristic equation is m? — 2m = 0, which has roots m; = 0 and my = 2. It is easy to
confirm that y = %t is a particular solution. Hence the general solution is

—1.

z=A+Be* +1t=A+ Bz’ + llnz.
(iii) d?y/dz? + (3/x)dy/dz + (2/2%)y = 0. Using method (a), let y = x™: the characteristic

equation is

M? + 2M + 2 = 0, which has the roots M = —1 +1i.
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The general solution is therefore
y= A$(_1+i)t+Be(_l_i)t,

which can be expressed in real form as indicated in (a).

22.15. In the location shown in the figure the velocity component of the boat in the z direction
is the component of V', and in the y direction the velocity component is v — V sin . Therefore

dz dy .
&—Vcosé, E—U—VSIHG
Also from the figure
cosf = H-z sinf = Y
VIH —2) +y?) VIH =) +y?]

Finally the differential equation for the path is

dy _ dy/dt _ vy[(H — )P+ 7]~ Vy
dez  dz/dt V(H —x)

Let z = H — x. Then in terms of z the equation can be expressed as

dy _ wWlE+yl-y v
dz z ’ I8

This equation can be solved numerically but an analytic sokution is possible. Use the method of
Section 22.5: let y = zw so that

dw 9 dw 9
w—i—z@— vVl + w?] + w, or z - = Y[+ w].

This is a separable equation with solution given by

[t =] 5

Hence
y
2.5
2
1.5
1
0.5
' X
5 10 15 20 25 30
Figure 39: Problem 22.15
simh'w=—Inz+C,
or

y = (H — z)sinh[C — vIn(H — z)],

in terms of the original variables. The constant C' is given by the condition that y = 0 when x = 0.
Hence C' = v1n H. Finally the solution is given by

y=(H —)sinh [; = (Hlixﬂ '
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The graph of the path is shown for the given data.

22.16. From the previous problem we can quote the differential equation for the path with v
replaced by v(z), so that

dy _v@VIH-2)’ +¢*] -Vy _az(H —a2)J[(H-2)*+¢°] - Vy

dr V(H —x) V(H —x)

It is unlikely that there is a simple solution of this differential equation. Before fixing any values,
it is convenient to nondimensionalize the equation with respect to the length H and boat speed
V.Let X =2/H and Y = y/H. Then

Yy  BX(1-X)/[(1-X)?+VY?-Y
dx 1-X ’

where 3 = aH?/V: there is just one parameter 3. The maximum river speed v,, = aH? occurs
mid-stream. Hence = 4v,,/V. We need only specify this parameter in the numerical solution.
The figure is computed with g = 2, that is, V = 2uv,,.

Y

0.15

0.125

0.1

0. 075

0.05

0. 025
X

0.2 0.4 0.6 0.8 1
Figure 40: Problem 22.16

22.17. Impose a speed v in the direction HO on both the mouse and the cat so that effectively
the mouse is stationary. The radial and transverse components of the velocity of the cat are (see
p.193)

dr de

— =—-V +wcosf, r— =—vsinb

dt dt
relative to the stationary mouse.

The equation of the pursuit path of the cat relative to the mouse is

dr dr/dt  r(vcosf —V)

de ~ do/dt vsinf

This is a separable equation with solution:

d 0 —
I my = —/Mw
T sin 6
V. [1—cosf
= —lnsinfd+ —In|—
nembt o n_l—f—cos@ +GC
(see Appendix E). This can be rewritten as
1—cos]*
r = Bcosec S o8 ,
1+ cos? |

where B is a constant. To find the constant B, put OB = a, say, when 0 = %71’, so that B = a.
Therefore the path of the cat is

1 —cos@]’x"

r = acosecl | ——
1+ cost
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22.18. The equation of motion of the satellite is

d?r yMm
m—s = — .
de? r2
Let
dr that d?r dv
v=— so that —5 =v—.
dt’ de? dr
Hence the equation above becomes the separable equation
dv M
V— = ———.
dr r2

Separating the variables and integrating:
d 1 1
/vdv:—*yM/—T, or —v?=~yM=+C.
r2 2 r
The constant C' is given by the condition that v = V when r = a. Therefore the required solution
the velocity is given by
1 1 1
L ove) =, ( p> |

2 r a

The minimum value of V' in order that the satellite should escape the satellite’s gravitation
is given byh the condition that V' = V, in the limit r — oo. Hence, the escape velocity is

Ve = V(2vM/a).
Chapter 23: Nonlinear differential equations and the phase plane

23.1. These are all linear systems (see Sections 23.2 and 23.3).
(a) £ =y, y = —4x. The phase paths are given by
dy —dz

)

dz g

which generates the phase paths 422 + y? = C. This is a centre (see Figure 41).

<

=/

Figure 41: Problem 23.1(a)

(b)i=y, 7y

(c) & y = —2x — 3y. This phase diagram is that of a stable node (see Figure 43).
(d) £ =y, y = —3xz —y. This is a stable spiral (see Figure 44).

(e) # =y, y = —2x +y. This is an unstable spiral (see Figure 45).
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Figure 43: Problem 23.1(c)

(f) The phase diagram Figure 46) from (a) shows time-steps of interval 0.3 for paths starting on
the positive z axis.

(g) Time-steps of interval 0.3 are shown on a separatrix and a phase path see Figure 47).

(h) £ = y, y = —2y. Elimination of y leads to the second-order equation & + 24 + 0. The phase
paths (Figure 48) are given by y = —2x + C. which is a family of parallel straight lines. Note that
all points on the x axis are equilibrium points.

23.2. These are all linear systems.

(a) # =y, ¥ = x. The general solution for the phase paths is 22 — 2 + C. The phase diagram is
given in Problem 23.1(b).

(b) & = z, y = y. The equation of the phase paths is given by dy/dx = y/z, which has the general
solution y = Cz. The system has an unstable equilibrium point at the origin with radial phase
paths.

(¢) & = —y, § = x. The system has a centre at the origin. The phase diagram ia a family of
concentric circles with the sense of the phase paths being described in the counter-clockwise sense.

Figure 44: Problem 23.1(d)
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Figure 46: Problem 23.1(f)

(d) @ = —z, y = y. The system has an equilibrium point at the origin. The phase paths are given
by zy = C. The phase diagram is that of a saddle: it can be obtained from Fig. 23.4 by rotating
the figure through 45° counter-clockwise.

(e) @ = 2y, y = x. The system is a saddle point with phase paths y? — %x2 =C.

(f) & = —2y, ¥ = . The phase diagram is a centre with phase paths 22 + 2y + C, but with the
phase paths described in a counter-clockwise sense. This can be seen since & < 0, § > 0 in the first
quadrant: by continuity the sense of the paths can be deduced.

23.3. In all cases put y = & for the phase plane.
(a) & = e”. Use the energy transformation:

1di?  1dy? N
—_ = —-—— =¢
2dzx 2dz ’
which can be integrated to give the phase paths %yz = e 4+ C. The phase diagram has no

equilibrium points.
(b) & + 4% + = = 0. The equation can be expressed as

d
@(Zﬁ) +2y° = —2uz,

which is of first-order integrating-factor type. Its general solution is

1 1
y2 = _Z + 5.13 + 067295.

The equation has one equilibrium point at the origin which is a centre.
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Figure 47: Problem 23.1(g)

y

HEL
IR

Figure 48: Problem 23.1(h)

a1

(c) & = 8zi. The phase paths are given by y = 422 + C, which is a family of parabolas. All points
on the y axis are equilibrium points.

(d) & = e®*—e~*. The phase paths are given by %yQ = e*+e *+(C. The system has one equilibrium
point at the origin. Near the origin

T=e"—e "x~1l+z—1+4+z=2x,

for small |z|. This indicates a saddle point. Qualitatively the phase diagram will be similar to
Fig. 23.4.
23.4. The only equilibrium point is at the origin in each case. The classification of linear systems
is given by (23.22) for the linear equations
T=ax+by, y=cx+dy.
(a) £ =2 — by, y = x — y. The coefficients are a =1, b= -5, c =1, d = —1, so that
p=a+d=0, g=ad—bc=4, A=p?—4q=—16.

Since p = 0 and ¢ > 0, the origin is a centre. See Fig. 23.2.
(b) £ =x +vy, y =x — 2y. The coefficients are a =1, b=1, ¢ = 1, d = —2, so that

p=-1, ¢g=-3, A=13.

Since g < 0, the equilibrium point is a saddle and therefore unstable. The separatrices are given
by y = mx where
1-2
m:J, so that m? +3m —1 = 0.
1+m

Hence m = £[—3 + /13]. Qualitatively the phase diagram will be similar to Fig. 23.4.
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Figure 49: Problem 23.2(b)
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Figure 50: Problem 23.3(a)

(¢) & = —4x + 2y, y = 3z — 2y. The coefficients are a = —4, b =2, ¢ =3, d = —2, so that
p=-6, ¢g=2, A=28.

Since ¢ > 0, A > 0 and p < 0, the equilibrium point is a stable node. There are straight line
solutions y = ma with m = 1[1 4 /7). A typical stable node is shown in Fig. 23.6.

(d) & =z + 2y, y = 2z + 2y. The coefficients are a = 1, b =2, ¢ = 2, d = 2, so that
p=3, q=-2, A=1

Since ¢ < 0, the phase diagram is a saddle. The separatrices are given by y = 2z and y = —x. A
typical saddle point is shown in Fig. 23.4.

(e) © =4z — 2y, y = 3z —y. The coeflicients are a = 4, b = —2, ¢ =3, d = —1, so that
p=3, g=2, A=1.

Since ¢ > 0, A > 0 and p > 0, the origin is an unstable node. The node has the straight line
3

solutions y = x and y = 5z.
(f) © = 22 4 3y, y = —3x — 3y. The coefficients are a = 2, b =3, ¢ = =3, d = —3, so that
p=-1, ¢=3, A=-11.

The phase diagram is a stable spiral, which is qualitatively similar to Fig. 23.5.
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Figure 51: Problem 23.3(b)
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Figure 52: Problem 23.3(c)

23.5. & 23.6. For the general system @ = P(z,y), ¥ = Q(z,y), equilibrium points are given by
any simultaneous solutions of P(z,y) = 0, Q(z,y) = 0. Phase paths have zero slope where they
cross the curve Q(x,y) = 0, and infinite slope (that is, parallel to the y axis) where they cross the
T axis.

(a) & =2z —y, y =2+ y — 2zy. Equilibrium points are given by
r—y=0, z+4+y—2zy=0.

Elimination of y leads to (1 —x) = 0: hence equilibrium points occur at (0,0) and (1, 1). Linearize
the equations near the equilibrium points.

Near (0,0). © =x—y, y~x+y. Since p=2, ¢ =2 and A = —4, the origin is locally an unstable
spiral according to (23.22).

Near (1,1). Let x =1+ X, y =1+ Y. Then the linear approximation is given by

X=X-Y, Y=24X+4Y-201+X)1+Y)~-X Y.

Hence the coefficients are a =1, b =1, ¢ = —1, d = —1, so that ¢ = —2 < 0, which, according to
(23.22), means that (1,1) is locally a saddle. A computed phase diagram is shown in Figure 54.

Figure 53: Problem 23.4(e)
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Figure 54: Problem 23.5(a)

byt =1—2ay, y = (z—1)(y + 1). Equilibrium points are given by solutions of
l—ay=0, (z—-1)(y+1)=0,

and occur at (1,1), (—=1,-1).
Near (1,1). Let a =1+ X, y=1+Y. Then
X~-X-Y, Y=X.
Hence the coefficients are a = —1, b = —1, ¢ =1, d = 0. Therefore p = -1, ¢ =1, A = —-3. By
(23.22), (1,1) is a stable spiral.
Near (=1,-1). Let = -1+ X,y =—-1+Y. Then

X~X+Y, Y=~-2Y
Herea =1,b=1,¢=0,d = —2. Since ¢ = =2 < 0, (—1,—1) is a saddle. A computed phase

diagram is shown in Figure 55.

<

N

Figure 55: Problem 23.5(b)

(c) @ =x —vy, y = 22 — 1. Equilibrium points are given by the solutions of
r—y=0, z2-1=0.

Hence (1,1) and (-1, —1) are equilibrium points.
Near (1,1). Let =1+ X,y =1+Y. Then

X=X-Y, Y=~2X.
The coefficients of this linear approximation are a = 1, b = —1, ¢ = 2, d = 0. Therefore p = 1,

g =2, A =-7. According to (23.22), (1,1) is an unstable spiral.
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Near (—1,—1). Let 2 = —1+ X,y = —1+ Y. Then
X=X-Y, Yn~-2X.

The coefficients are a = 1, b= —1, ¢ = —2, d = 0. Therefore p =1 and ¢ = —2. Hence (—1,-1) is
a saddle. A computed phase diagram is shown in Figure 56

Figure 56: Problem 23.5(c)

(d) & 4+ 2 — 23, & = y. The corresponding first-order system is # = y, § = —x + 2°. There are
equilibrium points at (0,0), (1,0) and (—1,0).
Near (0,0). The linear approximation is & = y, § = —z, which is locally a centre.

Near (1,0) and (—1,0). These equilibrium points are saddles. A computed phase diagram is shown
in Figure 57

0.5

>

Figure 57: Problem 23.5(d)

(e) & = 4z — 2xy, y = —2y + xy. The equilibrium points are the simultaneous solutions of
1.(2_3/):07 y(—2+1’):0,

which are (0,0) and (2, 2).

Near (0,0). The linearized equations are & = 4x, §y = —2y, for whicha=4,b=0,¢c=0,d = —-2.
Hence ¢ = —8 < 0, which means that the origin is a saddle. Note also that x = 0 and y = 0
are phase paths. The isoclines of zero slope are the lines y = 0 and z = 2, passing through the
equilibrium point at (2,2).

Near (2,2). Let =2+ X and y =2+ Y. Then

X =424+ X)-22+X)2+Y)~ —-4Y, Y =-22+Y)+(2+X)(2+Y)~2X.

Hence (2,2) is locally a centre.
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The phase diagram is essentially similar to that given in Fig. 23.10.

23.7. The direction of the paths can be either way as long as there is continuity of direction
between adjacent paths. Below are some possible phase diagrams.

(a) The phase diagram shown as a centre at (0,0) and a saddle at (1,1). It has been computed
from the system & = vy, ¢ = 22 — 2.

Figure 58: Problem 23.7(a)

(b) A possible phase diagram is given by the phase diagram of Problem 23.5(d).

(c) Need to draw an unstable node near the origin as in the figure for Problem 23.4(e) and a stable
node near z = 1 as in Fig. 23.6, and then join up the paths without further equiliubrium points.
(d) Let & = zy, y = 1 — 2. This example has just two equilibrium points at (4-1,0) which are
both centres. Note that x = 0 is a phase path.

Figure 59: Problem 23.7(d)

23.8. In all problems except (d) and (e) let y = &.

(a) &+ |&| 4+ = 0. Then §y = —|y|y — z. The system has just one equilibrium point at the origin.
The linear approximation near the origin is # = y, ¥y = —x, which predicts a centre. However,
the computed phase diagram clearly shows that the origin is a stable spiral. Note that the linear
approximation can fail if the linear approximation turns out to be a centre.

(b) &+|&|@+23 = 0. The system has one equilibrium point at the origin, but a linear approximation
near the origin is not helpful; the origin is a ‘higher order’ equilibrium point. The phase diagram
shows that the equilibrium is a stable spiral.

(c) & = x* — 2. There are equilibrium points at (0,0) and (41,0), but the linear approximation
is identically zero, so is of no help at the origin. The phase diagram is shown in the figure. Near
the origin, if we neglect the term x*, then # = y and ¢ ~ —x2. Hence

dy x>

de gy’
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Figure 60: Problem 23.8(a)

y
2[@&1 1/5 2

Figure 61: Problem 23.8(b)

)

which can be integrated to give the phase paths
3y? = —22° + C.

The paths which meet at the origin are given by 3y? = —2z3, which can only be defined for x < 0.
The linear approximations close to x = —1 indicates a centre (which is the case for this problem),
and close to x = 1 indicates a saddle.

<
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Figure 62: Problem 23.8(c)

(d) © = 22y, y = y* — 2. The system has one equilibrium point at the origin. Note that z = 0 is
an equilibrium path since the first equation is satified identically.
(e) @ = 2zy, ¥ = 2% — y?. The system has one equilibrium point at the origin.

Let y = mz. Then
dy 22— 1—m?
—= = becomes m =

dz 2zy 2m

1

o

1



Figure 63: Problem 23.8(d)
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Figure 64: Problem 23.8(e)

Hence 3m?2 =1, so that m = :i:l/\/§. Hence y = :l::v/\/§ are separatrices. Further x = 0 is also a
solution which is a third separatrix as shown in the figure. The origin is an example of a higher
order saddle point.A computed phase diagram is shown in Figure 64.

(f) @ + #(2? + @®) + © = 0. The equation has one equilibrium point at the origin. Note that the
origin is clearly a stable spiral although the linear approximation is a centre. A computed phase
diagram is shown in Figure 65.

Figure 65: Problem 23.8(f)

23.9. The pendulum equation (Section 23.4) is & + w?sinz = 0, which, for small z, can be
approximated by i + w?(z — %x3) = 0 as stated. With & = y, the approximation has equilibrium
points at (0,0) and at (++/6,0). The exact equation has an infinite number of equilibrium points
where sinx = 0, the two closest to the origin being x = 4 which differ significantly from x = +/6.
Near the origin & + w?(x — %) = 0 has a centre whilst near z = +./6, the equation has saddle
points. The phase diagram of Figure 66 has been computed for the equation & +x — %m3 = 0, since
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the time ¢ can always be rescaled by putting 7 = wt.

Figure 66: Problem 23.9

23.10. & = 4x — 22y — 2%, y = —2y + 2y — 2y%. Equilibrium points occur where
(4 -2y—2)=0, y((-2+2-2y) =0,

but remember that since this is a population problem, we require z,y > 0. There are three
equilibrium points at (0,0), (4,0) and (3, %) The linear approximations near these points are as
follows.

Near (0,0). & =~ 4z and y ~ —2y. This is a saddle point with separatrices x = 0 and y = 0: note
that these are also solutions of the full equations.

Near (4,0). Let x =4+ X, y =Y. Then the linear approximations are
X~ —4X —8Y, Y ~2V.

In the usual notation, a = —4, b = =8, ¢ =0, d = 2. Hence ¢ = —8, which means that (4,0) is a
saddle.

Near (3,3). Let 2 =3+ X and y = 3 + Y. Then
. . 1
X~ -3X -6V, Y~ XV

Then a = —3, b= —6, c = 3, d = —1, so that p = —4, ¢ = 6 and A = —8. Hence (3, 3) is a stable
spiral.

Figure 67: Problem 23.10

23.11. The equations can be expressed as H = (a — bP)H, HP = (cH — dP)P. The equations
are satisfied if H =0 and P =0, and if P = a/b and H = ad/(bc). Hence (0,0) and (a/b, ad/(bc))
are equilibrium points. The origin is a saddle, and the full equations have solutions H = 0 and
P = 0. The linear approximations near the other equilibrium point are, if P = (a/b) + p and
H = ad/(bc) + h,



Hence P 5 P2 .
p:—u<07 q:a,c>07 A:u
cd cd

which, by (23.22), means that the equilibrium point is a stable node.

> 0,

23.12. The equation of motion is

l
9'&—1—8(1—1)3::0.
m (h? + 22)2
Equilibrium points occur where )
z[(h? +2%)2 — 1] = 0.

I < h. There is only one equilibrium point, at x = 0, which has the linear approximation
. . S (4 l
=1, ~ —— — — | X.
Y Y m h

Il = h. There is still just one equilibrium point, at x = 0, but the linear approximation will not
decide the type of equilibrium point.
I > h. This system has three equilibrium points at 2 = 0 and 2 = +(I2 — h2)z. The point (0,0) is
a saddle. )

For the other equilibrium points, let # = +(12 — h2)2 + X, y =Y. Then X =Y and

This predicts a centre.

. B 7£ - l o %
v =X

Both equilibrium points are centres.

23.13. The equation of motion with friction included is

s l
i+ki+—(1——|2z=0.
m( <h2+x2>z>

The equilibrium points are still at = 0 if [ < h and at z = 0 and 2 = £(I2 — h?)2 if [ > h. The
approximation near the origin is

. . s l

This equilibrium point is a stable spiral if [ < h and a saddle if [ > h.
If I > h and k is small, then the other equilibrium points are both stable spirals.

23.14. i + ki — 2 + 2% = 0. With & = y, the equation has equilibrium points at (0,0) and (1,0).
Near the origin
T = Y, y T — kya

for which ¢ = —1. Hence, for all k, the origin is a saddle with separatrices in the directions with
slopes
m=—k+/(k*+4).

Near (1,0), let x =1+ X and y =Y. Then the linear approximation is given by
X=Y, Y~-X-kY.
The parameters are p = —k, ¢ = 1, Ak? — 4. If k? < 4, then (1,0) is a spiral (stable if k > 0;
unstable if k < 0). If k2 > 4, then (1,0) is a node (stable if & > 0; unstable if k < 0).
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Figure 68: Problem 23.14

The figure shows the phase diagram for k£ = 1, which gives a stable spiral at x = 1. For k£ > 2,
the spiral at & = 1 is replaced by a stable node (not shown).

23.15. Let & = y in each case. The first-order system & = y, y = f(x,y) has been solved
numerically.

(a) i+ 3(2? + 42 — 1)@+ 2 = 0. The system has one equilibrium point, which is an unstable spiral,
at the origin. Check that @ = cos(t + «) is a solution for all a, so that 2% + y? = 1 is a limit cycle
. A computed phase diagram showing the stable limit cycle is displayed in Figure 69.

N <

1.5

Figure 69: Problem 23.15(a)

(b) & + £(2® — 1)@ + & = 0. The system has a stable limit cycle. A computed phase diagram is
shown in Figure 70

Figure 70: Problem 23.15(b)
(c) &+ $(3&% — 1)& + = = 0. This equation has a stable limit cycle, and its phase diagram is very
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similar to that of the previous problem.

(d) &+ 5(2% — 1)@ + 2 = 0. The equation has a stable limit cycle, shown in Figure 71, which is
distorted compared with that of Problem 23.15(c). This is caused by the large parameter associated
with the middle term. The equation represents the van der Pol oscillator.

y
8

Figure 71: Problem 23.15(d)

23.16. (a) The phase diagram of Problem 23.15(a) is an example of this.
(b) The system
i—(1—a2?—i*)4—2>—iH)+2=0
has the exact solutions z = cost and « = 2cost which generate the limit cycles 22 + y? = 1 and
22 4+ y? = 4. The inner on is stable and the outer one is unstable.

(¢) The phase diagram (Figure 72) shows a possible configuration of the equilibrium points, the
limit cycle and the separatrices through the saddle points. The paths can be taken in either sense
so long as they are consistent between adjacent paths.

y

Figure 72: Problem 23.16(c)

(d) The phase diagram (Figure 73) shows a saddle at the origin with separatrices surrounding
centres at x = +1. The larger circle is a phase path which is a stable limit cycle if paths inside
and outside it approach it as ¢t — oco. The direction of the limit cycle can be in either direction.

(e) The phase diagram shows a centre at the origin, a circular limit cycle with radius 2 and two
paths spiralling into the limit cycle from the inside and the outside to indicate its stability.

23.17. i = —y+2(1 — 22 —y?), § = . + y(1 — 2% — 3?). Differentiate 72> = 22 + y? with respect
to t:

2r = 224 + 2yy = 2{x[-y + (1 — 2* — y*)] + ylzr + y(1 — 2% — y?)]} = 2r3(1 — r?)

Hence 7 = r(1 — r?). Differentiate tan = y/z with respect to t:

. - . 2 2
sec? 06 = w—aw_2 ty

5 5 = sec 0.
T T
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Figure 73: Problem 23.16(e)

Hence 6 = 1.

Any periodic solutions are given by 7 = 0 which means that there is one non-zero solution r = 1
(r is greater than 0). It is stable since 7 < 0 for r > 1, that is r is decreasing with ¢, and 7 > 0 for
r <1

23.18. @ = (22 + y> — 1)y, ¥ = —(2® + y? — 1)2. Equilibrium points are given by
(2 +9y?> =1y =0, (2>+y*—1)z=0.

The solutions are = 0, y = 0 and 22 4+ y? = 1. Hence the equilibrium points are the origin and
all points on the circle 22 + 3% = 1.
23.19. Let = cosw(t — tg). Then

.2

z 4+ (1—x2—x2>fv+w2x:
w
—w? cosw(t —ty) — (1 — cos® w(t — tg) — sin® w(t — to))wsinw(t — to)
+w?cosw(t —tg) =0

The limit cycle is given by = cosw(t — t), & = y = wsinw(t — tp). Elimination of ¢ gives

v
w2

x2+

)

which is an ellipse.

-2

Figure 74: Problem 23.20: remaining phase path directions can be inserted by maintaining conti-
nuity of directions

Near the origin the linear approximation is

4 i+wiez=0,
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which indicates a stable equilibrium point, a node if 0 < w < 2, or a spiral if 2 < w. The indicates
that the limit cycle is unstable with phase paths spiralling away from it.
23.20. @ = (22 — 1)y, ¥ = (y? — 1)z. Equilibrium points are given by all simultaneous solutions of

(x> = 1y=0, (Hy*—1Dz=0.

Check that they are the points (0,0), (1,1), (1,-1), (—1,1), (=1, —1). Note that the lines x = %1
and y = +1 are phase paths which each pass through two equilibrium points.

Near the origin & = —y, y = —z, which indicates a saddle. This information together with
further linear approximations indicate that all the other equilibrium points are nodes with A =0
in which the paths are locally radial. The lines y = +x are also phase paths: these are the
separatrices of the saddle at the origin

The equations of the phase paths can be found since

dy 9 (-1

der & (22 -1)y’
This first-order equation is of separable type with general solution
(2 = 1) 1) = C.

The phase diagram is shown in Figure 74.
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