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Chapter 24: The Laplace transform

24.1. The Laplace transform of the function f(t) is defined by

L{O} = FGs) = [ T et ().

0

Use (24.2), (24.3) and (24.4).

(a) E{et}:/o etefstdtzsil'
4
_t o
(b) L{4e }_TLS'
(c) L£{3e! — et = £{3e"} — L{e7t} = 3.1 .
s—1 s+1
6 1
d L3> -1} =— — =,
(d) { b= - -
() Ll 22 -3y =3 44 8
3 48
f 21 =+ =,
®) L{3+2t' ==+
() £{3 int — t}—E{S t}—ﬁ{ t}— 3 _ s _ 3—s
g sint — cost} = sin cos 172 132 119
. . 2s 2
(h) L{2(cost —sint)} = L{2cost} — L{2sint} = e T
i L<1 t & "1 _ 2 3 n+1
(i) +ﬂ+a+~-+m =s5+8 45+ 45"

24.2. The scale rule (24.5) states that, if L{f(t)} = F(s) and k > 0, then
1 s
L{fkt)} = 2F (7))

(a) Since L{e!} = 1/(s — 1), then

3t 7]‘ —
B =3 s



v O T ]
(c) L{sinwt} = 52—0:7&

(d) L{coswt} = 32—&—%

(e) L£{3cos2t — 2sin 2t} = 3s 4 3s—-4

A+s2 4452 4452
(f) Use the identity cos® ¢t = 1 (1 + cos2t). Then

2 + s?

L{cos®t} = L{F(1 4 cos2t)} = AT

() Use the identity sin®t = 3(1 — cos2t), so that

o 2
L{sin*t} = ST

24.3. To evaluate these Laplace transforms use the scale, shift and other rules in Section 24.3.
(a) By (24.2), £{t?} = 2!/s®. Then by the shift rule (24.7)

2!
(s =1)%

L{t%e'} =

(b) In a way similar to (a), £{t} = 1/s?, so that, by the shift rule

1
fo—2y -~
L{te™*} e
(c) Using the shift rule again
2!
t2e ) = .
L{t7e™} (s+1)2

(d) Since, by (24.4), L{cost} = s/(s? + 1), the shift rule (24.7) implies

s—2 s—2

E 2t t: = .
sty = o1~ -5 5

(e) Since, by (24.4), L{sint} = 1/(s% + 1)}, the shift rule (24.7) implies

1
(s+1)2+1 s2+25+2

L{e 'sint} =

(f) Using the scale rule (24.6) and the shift rule (24.7)

3

L{etsin3t) = — 2
{efsindt} = 5 10

(g) Using the scale rule (24.6) and the shift rule (24.7)

3

—2t .
T S —
L{e =" sin 3t} 113



(h) Using the scale rule (24.6) and the shift rule (24.7) again

3+ s

L{e P cos2) = ———
{e7 cos2t} 52 4+ 65413

(i) Let F(s) = L{cos3t} = s/(s*> +9). Using the multiplication rule

d s s2-9
L{tcos3t} = P (32 +9> = EFTIER

(j) Let F(s) = L{sin3t} = 3/(s* +9). Now use the multiplication rule (24.8):

) dF(s) d 3 65
tsin3t} = — =—— = .
LAt sindt} ds ds (82+9> (s2 4 9)2
(k) Let F(s) = L{sint} = ﬁ By the multiplication rule (24.8):
d?F(s)  d? 1
2 31 = = —_— _—
LA sint} ds? ds? <s2 + 1)
_ 42
o ds \(s24+1)2
657 —2
(32 + 1)3 :

(1) Let f(t) = tte .
(i) Since £{t*} = 4!/s5, the shift rule (24.7) implies

4! 24

LI = GF = Grap

(ii) Since L{e"t} = 1/(s + 1) = F(s), say, the multiplication rule (24.8) gives

v _ d4F(s) _ d* 1
,C{t4e } = (71)4 dst d54|:(5+1)}

24
(s+1)°

(iii) The direct method requires repeated integration by parts:

L{f®}y = /OO tle~tdt = [—t4et}8°+/000 4t3etdt

0

0+ [—4t3e"]5° + / 12t%e~tdt
0

o0 24
= 12 / e tdt = .
0 (s+1)5

24.4. From the definition (24.1):
/ e 5 cos ktdt =
0

Differentiate both sides of this equation with respect to k. Then

s
s2 4 k2’

2ks

[ee]
—st - .
_/0 te sin ktdt = —m7



so that
2ks

24.5. In these problems we have to find the function f(¢) in the transform

Fs) = / T et far,

when F'(s) is given. We attempt this by using the tables in Section 24.4 and in Appendix F, and
the various rules. Note that all the time functions are defined to be zero for ¢ < 0.
(a) F(s) = 1/s? is the transform of f(t) =t by (24.2). We also write this as

1
— > t (see Section 24.4).

52
1
(b) — < 1 (see 24.2).
s
3 3
(c) 2% 9
3t

(e) Use the shift rule (24.7) L{e*' f(t)} = F(s — k). Since L{1} = 1/s,

1 o3t
5s—3
(f) Using the shift rule again
L ot
s+4 '
3 3 1,
—e2
(8) 25—1 2°
2 2 2
h at,
®) 2-3s  3°
(i) Using partial fractions
1 11,
= — e — 1

s(s—1) s—1 s
(j) Since s + s —1=(s+ 4 — 2/5)(s + 1 + 11/5), the partial fractions expansion is

. | e———
o \/i [67%(17\/5)15 _ ef%(1+\/5t)}
5

(k) Using partial fractions

s L Lty e
= — — .
21 2(s+1) 2s-1) 2 T°




(1) Using partial fractions

25 —1 1 3 1
= + e
s2—1 2(s—1) 2(s+1) 2 2

(m) By (24.4)

< cost.
5241
(n) By (24.6¢),
1 .
m > 5 Sin 2t
(o) By (24.6),
2s —1 2s 1

1.
P11 244 14 <—>2cos2t—§sm2t.
(p) Using partial fractions
25—-1 1 1 .

== 1+e.
s(s—1) s+s—1(_> e

(q) Using partial fractions

s2—1 1, 1 2
s(s—1)(s+2)(s+3)  6s 2(s+2) 3(s+3)
Loor 2 3
— + 2e 3e

(r) Using partial fractions and (24.6)

s 1 s 1
GO0 26-1) 20+ 20+
1, 1 1
— §e_§COSt+§Smt

(s) Since L£{t?} = 2/s3, the shift rule (24.7) applied to this transform implies
1 1

e el
(s—1p3 ~2°

(t) Since s — 25 +2 = (s — 1)? + 1, we can write the transform as

2541  2s—1)+3
$2—-2s+1 (s—1)2+1°

Now use the shift rule (24.7) and (24.6b,c):

2 1 1
% — §et[cost +6S1nt]
8¢ — 4S8

(u) Using partial fractions

S s s 1
B B 5 lcost — cos 2t].
(82 —+ 1)(32 —+ 4) 3(82 4 1) 3(82 T 4) — 3 [COS CcoSs }

24.6. These problems use the results on the transforms of derivatives given in (24.12):

L{a(t)} = sX(s) —2(0),  L{#(t)} = s2X(s) — sz(0) — 2(0).

(a) L{z(t)} = sX(s) — 2(0) = sX(s) — 6.



(b) L{z(t)} = sX(s) — z(0) = sX(s).

(c) L{#(t)} = 82X (s) — s2(0) — £(0) = s X (s) — 35 — 5.
(d) L{i(t)} = s> X (s5) — sx(0) — £(0) = s2X(s).
()

L{2&(t) + 3&(t) — 22(t)} 252X (5) — 252(0) — 2(0) + 35X (s) — 32(0) — 2X(s)
= (252 +35—2)X(s) — (3+ 25)x(0) — 2i(0)

X(
(25% +35 —2)X(s) — 10s — 9

(f) L{33(t) — b (t) + x(t) — 1} = (35> —5s + 1) X (s) — %

24.7. (a) Take the Laplace transform of the differential equation:

L{i+32 422} = s52°X(s)—sz(0) —2(0) + 35X (s) — 32(0) + 2X (s)
= (s +3s5+2)X(s)—1=0.

Therefore
1 1 1

X(s) = (s+1)(s+2) Ts+1 s+2

t 2t

Taking the inverse transform z(t) = e™" — e~

(b) Take the Laplace transform of the equation:

L{i+i—2x} = 5°X(s)—s2(0) — #(0) + sX(s) — (0) — 2X(s)
(s +5—2)X(s) —3(s+1) = 0.

Hence the transform of the solution is

1 2 1
X(s) = i;)(s—f— ) _ 3s _ N .
$24+s—2 (s=1)(s+2) s—1 s+2

Hence the inverse transform is x(t) = 2e! + e 2.

(c) Take the Laplace transform of the equation:
L{i+43} = s°X(s)—szo—yo + 45X (s) — 4z
(s +45)X(s) — (s +4)xg —yo =0
Therefore the transform of the solution is

X(s) = (s+4)zo+yo _4zo+yo o
s(s+4) 4s 4(s+4)

Hence the solution is
4t

x = 3 (4xo + yo) — Fy0e”
(d) Take the Laplace transform of the equation:
L{7 4wz} = 52X (s) — 52(0) — 2(0) + w? X (s) = (s* + W) X (s) — sc = 0.

Therefore the transform of the solution is



giving the solution x = ccos wt.

(e) Taking the Laplace transform of the equation:

L{i+2&+5x} = s°X(s)—35+3+25X(s)—6-+5X(s)
(s +2s+5)X(s) — 35 —3=0.
Therefore
3s+3 3(s+1)

X(s) = = :
() $2+25+5 (s+1)2+4

Using the shift rule
x =3e 'cos2t.

(f) For this fourth-order equation

s'Y (s) — s°y(0) — 5%/ (0) — sy"(0) — y"'(0) = Y(s) = (s" = 1)Y (s) = s> = 0.

Therefore

Y(s) = s 1 N 1 N s
VTAE I T A1) 4+l 22 41)

The solution can now be constructed using (24.6):

Y= %eﬂ” + ie_w + %cosx.

24.8. Take the Laplace transform of the equation in each case.
(a) i =1+t+e, 2(0) =3(0) = 0. Then

1 1+ 1
s—1°

Hence

_873+874+S2(8—1)_873 S s 2 tsor

Hence, using the table of Laplace transforms, the solution is

1 1
x=—1—t+ >+ =83+ €.

2 6
(b) & +x =3, x(0) =0, £(0) = 1. The Laplace transform of this equation is
$2X(s) — 1+ X(s) = 2
Hence 1 3 13 3s
X(s) = s2+1 Jrs(s2+1) Serits T ern

Using (24.6) for the inversion:
r =sint 4+ 3 — 3cost.

(¢) &+ 2&+2x =3, £(0) =1, ©(0) = 0. The Laplace transform of the system is

$2X(5) —s5+25X(s) —2+2X(s) = g

Hence
s+ 2 3
X —
() (s+1)2+1 * sl(s+1)2 +1]
B s+2 3 3(st+2)
o (s+1D)2+1 0 28 2(s+1)241]
s+1 1 3

2[(s+1)2+1] 2[(s+1)2+1] T o



Hence using the inverse table and the shift rule
1 3
x = —§e_t(cost +sint) + 7

(d) & —x = e?, 2(0) = 0, #(0) = 1. The Laplace transform of the system is

1
s—2°

$°X(s)—1—X(s) =

Hence
s—1 1 1 1
X(s) = (s—2)(s2—1) (s—2)(s+1) 3(s—2) 3(s+1)

using partial fractions. By inverting, we have

L e e
zfg( e ' +e).

(e) & —x =te!, z(0) = 1, #(0) = 1. The Laplace transform of the system is

$?X(s)—s—1—X(s) = Go1e

Hence
1 1 9 1 1 1

X = Y oD 86D 8er D AG 1P 21

The solution is
9.t 1=t lgt 142t
T = ge g€ 4te+4te.

(f) & — 4o =1 —e* 2(0) = 1, #(0) = —1. The Laplace transform of the system is

1 1
2X(s) — 1—4X(s) =~ — )
s°X(s) —s+ (s) . T 5.3
Hence 1 . ] 13
X(s) = — -
=G 662 & 66+
Inverting
7 13
= ¢ 2t 2t - -2 =2t
TEC TGS 116

(g) & — 4z =e* + e 2t 2(0) = 0, (0) = 0. The Laplace transform of the system is

1 1

2X(s) —4X(s) = .
5°X(s) (s) s_2+8+2

Hence
1 1 1 1
X(s) = (s2 —4)(s — 2) + (s2 —4)(s +2) - 4(s —2)2 a 4(s+2)%

Using the shift rule
t

x = Z(e% —e %),
(h) & + w2z = C coswt, x(0) = zg, ©(0) = yo. The Laplace transform of the equation is
Cs
2 2
X(s) — w0 — X(s) = >
s (8) ST — Yo + w (8) 52 4+ w2

Hence
oS + Yo Cs

(82 +w2) (82 +w2)2'

X(s) =




Note that
w

say, so that by (24.8)

d)C(LS’) _i{ w ]:( 250 _ C{tsinwt}.

= 2 + W2 2 1 w?)

Use this result in the inversion the transform above:

Yo . Ct .,
T = xgcoswt + — sinwt + — sin wt.
w 2w

(i) 7 — 2% — i + 22 = e~ 2, 2(0) = #(0) = 0, #(0) = 2. The Laplace transform of the equation is

2X(s) —2—252X(s) — sX(s) +2X(s) = - i 5
(s =252 — s+ 2)X(s) = (s = )(s +1)(s —2) X (s) =2+ siz‘
Hence, applying partial fractions,
X(s) = 2 + :
(s=D(s+1)(s=2) (s=1(s+1)(s—=2)(s+2)
3 7 1 1

A4(s—2) 6(s—1) 2(s+1) 12(s+2)

Inverting 3 . . .
_ 22t _ Lt —t —2t

T 6 2% T12°

24.9. ()t =z —y, y=x+y, x(0) =1, y(0) =0. Let L{z} = X(s) and L{Y'} = Y (s). Taking
Laplace transforms of the differential equations:

sX(s) —x(0) =sX(s) —1=X(s)+Y(s), sY(s)—y(0)=sY(s)=X(s)+Y(s),
which are simultaneous linear equations in X (s) and Y (s), namely
(s—1DX(s)+Y(s)=1, X(s)+(s—1)Y(s)=0.
Solving them . .
e I P
Finally invert the transforms using the shift rule (24.7) applied to (24.4) to give the solutions

X(s) =

x =celcost, y=e'sint.
(b) & = 2z +4y +e*, § = x+2y, 2(0) = 1, y(0) = 0. Taking Laplace transforms of the differential
equations:

sX(s)—1=2X(s)+4Y(s) + sY (s) = X(s) + 2Y (s),

s—4’
or

(5= DX(s) ~ 4V (5) = 14—, X(s) + (s =2V (s) = 0.

The solutions are




Using partial fractions

3 5 1 3 3 1
X(s) = > Y(s) = .
O =St se—n T 165 " 16(s —4) " 4(s—4)?

Finally, using (24.6a) and the rules (24.7) and (24.8):

(¢)t=2—4y, y = x4+ 2y, (0) = 2, y(0) = 1. Taking Laplace transforms of the differential
equations:
sX(s)—2=X(s) —4Y(s), sY(s)—1=X(s)+2Y(s),

or
(s—=1)X(s)+4Y(s) =2, X(s)—(s—2)Y(s)=-1.

Solving for X (s) and

2s—8 25— 38 s+1 _ s+1

= Y = = =.
P oyl e SRS v S A P E

X(s) =

These transforms can be inverted using the shift rule and (24.6b,c):

oo —2o¥ [_30 (m)+f (ftﬂ’
o s (458 ()]

24.10. (a) & +x =€, 2(0) = A, #(0) = B. Take the Laplace transform of the equation:

w

Wl =

y:

1
*X(s)— As— B = :
s°X(s) s o
Hence A1 )
As+ B 1 —5)s+(B -3 1
X(s) = j + 2 :( 2)2 ( ) :
241 (s—1)(s?2+1) 5241 2(s—1)
Inverting using (24.6)
v=(A——%)cost+ (B — 3)sint + 1e'.

(b) & —x =3, x(0) = A, (0) = B. The Laplace transform of the equation is:

SZX(S)—AS—B—X(S)=§.
s

Hence

As+BJr 3 _3+A+B 3 3+A-B

s2—1  s(s2—1)  2(s—1) s 2(s+1)

using partial fractions. Inversion gives the solution

X(s) =

=-3+3(B3+A-B)e '+ i(3+ A+ DB)et

(c) & — 2% +x = e!, 2(0) = A, (0) = B. The Laplace transform of the equation is:
$°X(s) —As — B —25X(s) — A+ X(s) = T

Hence
Ko AstB-24 1 A B-4 1
A PR (5-17 s—-1 (s—1)2

10



Inversion gives the solution
z = Ae' + (B — A)te’ + 1t2%e'.

24.11. d*y/da* —y =e®, y(0) = A, 3/ (0) = B, y"(0) = C, "(0) = D. The Laplace transform of
the equation is (with Ly(z) =Y (s))

1
sV (s) — As® —Bs* —~Cs— D —Y(s) = T
5 —
Therefore, after a lengthy partial fraction expansion,
As3+ Bs24+Cs+ D 1
Y(s) =
(s*—1) (s—1)(s*—1)
B 1 +—3+2A—|—23—|—20+2D+1+2A—23+20—2D
o 4(s—1)2 8(s—1) 8(s+1)
1+2B—-2D+ (1+2A—-2C)s
4(s2+1) '
The inversion gives
1 1 1 _
y = Za:ex+§(2A+2B+20+2D—3)ex+§(1+2A—2B+2C—2D)e r

1 1
+Z(1 +2A4—-2C)cosz + 1(1 +2B —2D)sinx.

24.12. The equation for z((t) has a different form from the subsequent equations; its transform
using xg = 1 is
sXo(s) — 1+ BXo(s) =0,

so that 1
Xo(s) = Pt and zo(t) = e Pt (1)

For all r > 1, the form of the equation is
T, + fay = By,
with z,.(0) = 0. Therefore the transform is
SXo(s) + BX,(5) = BX,1(s),

so that

X, (s) = SfﬂX,._l(s). (ii)
Starting with the case r = 1, and using (i), we obtain the sequence
__ B _ B g B
X1(8)7(8+6)27 X2(S)7S+ﬁ(8+ﬁ)27(8+,@)3,
2 3
Xys) = L L =

SHBGBR (P
and, in general, for r > 1,
5’)”

A T

(i)
From (24.2),

1 1
sTtl - rl

11



From the shift rule (24.7), with k = —/3, we obtain the inverse of (iii),

Tt'f‘
p e_m‘, r>1.
7!

x(t) =

Together with (i), this provides the required solution.
24.13. By the multiplication rule (24.8),

d s s2—1
tcostH(t) < % <s2 n 1) =

By the delay rule (24.15), with ¢ = 2,

(t —2)cos(t —2)H(t —2) < w

By the shift rule (24.7), with k = —1,

—2(s+1) 1 2 _ 1 —2(s+1) 9
e (t —2)cos(t — 2)H(t — 2) « ¢ (s +1) ] _e s(s+2)

[(s+1)2+1] (s24+2s+2)2
24.14. (a) G(s) = e~2/(s + 3). By (24.6a),
1 —3t
s+3 ¢
Then by (24.15)
—2s
s (U
s+3 ¢ ( )

(b) G(s) = (1 —se™%)/(s?> + 1). G(s) is the sum of two transforms. For the first

211 <> sint.
For the second start with s
211 < cost.
Using (24.15),
se—25
2rl cos(t — D)H(t — 1).

Finally, taking the difference

G(s) = (1 —se %) /(s> + 1) « sint — cos(t — D)H(t — 1).

(c) e % /(s —4) «— " 8H(t - 2).

(d) G(s) = se™5/[(s + 1)(s + 2)]. The e~* term indicates that the delay rule will apply. Using

partial fractions
S 1 2

GADG+2) s+l st2 "
The delay rule (24.15) gives the required function:

—e7t 4 2e72,

(—e' ™t +2e2 2 H(t - 1).

—S

(e) (s—1)(s2 — 25 +2)

s e eos(t + 1))

12



24.15. All problems have the same initial conditions z(0) = ©(0) = 0.
(a) & +x = f(t), where
1 for0<t<1,

f(t)H(lt){ 0 fort>1.

Take the Laplace transform of the equation with the initial conditions z(0) = #(0) = 0:

[e%e] 1 1—e=S
s2X(s)+ X(s) = / e S f(t)dt = / e Stdt = °.
0 0 s
Hence ) )
—e? S
X = = ]_ — e S _— .
() s(s?2+1) (1=e™) [3 s2 + 1}

Inverting using the delay rule:
x=1—cost—[1—cos(l—¢t)H(t—1).

(b) & — 4z = f(t), where

1 for0<t<1,
f(t){O for t > 1. = H(1 -¢).

Taking Laplace transforms:
1 _ —S8
$2X(s) —4X(s) = © ,
S

as in (a). Hence, using partial fractions,

1—e* 1 1 1 1 1 1
X(S):s(82—4) - {8(5—2)+8(s+2) 4J - {8(3—2)+8(s+2) T 4s]

Inverting
Lo 1 o 1 Logo 1 a9 1
e R L e - “1HE - 1).
TERUTRS T TITRC TES T e
(¢c) & — 4z = f(t), where
t for0<t <1,
f)=1< 2—t forl<t<2,
0 for ¢t > 2.

In terms of step functions
fy=2—-t)H2—-t) — (2 —2t)H(1 —¢).

Taking Laplace transforms

$2X(s) —4X(s) = L{f(t)} = /02(2 —t)estdt — /01(2 — 2t)e”tdt
_ {eQS 1-— 25} B {2eS 2(1 — s)}

2 2

s 52 s 52
1—2 5 +4e 28

Hence

13



Inverting this transform using the delay rule (24.15),

1 —2t 1 2t t 1 4 2t 1 1 2t—4 t
- = —e2t_ L - ~ Y HE-2
. 6° "¢ 17| T16¢ T2t g HE=2)

+ [;62—215 _ % _ éth—Q + ;:| H(t _ 1)
(d) & + x = f(t), where
ft) =

so that f(t) = cost[H(¢t) — H(t — 7)]. Take the Laplace transform of the equation:

cost for 0 <t <,
0 for t > 7.

(1 +e ™)s
Hence a )
+e ™)s
YO ="yp

The inversion gives the solution

1 1
x = —itsint— §(t —m)H(t — ) sint.

Chapter 25: Laplace and z transforms: applications

25.1. Use the division rule (25.1) which states that, if G(s) < g¢(t), then G(s)/s < fo
Use also Table (24.10) of inverse transforms
(a) Since

——— <> sint,
5241 -

then
1

s(s?+1) -
(b) The division rule is applied to the result from (a) as follows:

¢
/ sinTdr = [~ cos 7]l = 1 — cost.
0

1 t
221 — /0 7(1 —cosT)dr = [T —sin7]} =t — sint.
(c) Apply the division rule again to the result in (b):

1 T ) -
FED H/0 (7 —sinT)d7 = [§7% + cos 7]f = 1> + cost — 1
25.2. The RLC circuit has the equation

L Ri
an +C/

Take the Laplace transform of the equation and use the division rule (25.1):

L[sI(s) — 1(0)] + RI(s) + é[(s) —V(s),

where i(t) < I(s) and v(t) < V(s). Solving for I(s), we obtain

Cs[V (s) + Li(0)]
CLs2+CRs+1’

I(s) =

14



since 1(0) = 0. Given the data L =2, R =3, C' = 3 and v(t) = 3cost <> 3s/(s* + 1):

I(s) = 352 _3(3s—1) 9(2s — 1)
T (s2+1)(2s2+3s+3)  10(s2+1) 10(2s2 + 35+ 3)
3(3s — 1) 9(2s — 1)

10(s2+1)  20[(s+ 3)2 + 2]

Using table (24.10) and the shift rule (24.7), the inverse is

_ 9 3 . 3WV15 s, . (V15 9 s, V15
z(t)—ﬁcost—ﬁblnt—i—Te 1 51n<4t - — cos Tt .

(b) If v(t) = 0 and the capacitor has initial charge qo, the equation for the current is (see Sec-

tion 25.1)
de ¢
L — ) =0.
dt+R +C (/0 z(r)dr—i—qo) 0

Taking the Laplace transform of the equation, noting that i(0) = 0,

LsI(s)+ RI(s) + a1( 5) + gos = 0.

Hence
)= N .
CLs?+CRs+1 252 +3s+3  2[(s+2)2+ 1]

The inverse of this transform is

3 1
i(t) = —2\/§qoe_4t sin (Tt) .

(c) We can represent the applied voltage by v(t) = 300 x 0.016(¢t — tg) = 30(t — to). Hence the
circuit equation for the current is

L t—t
+R +0/ o)

Hence
3se~sto 3se~sto

I(s) = = .
)= 353553 2[(s + 2)2 + 2]
Using the shift rule (24.7) and the delay rule (24.15), the inverse of the Laplace transform I(s) is

i(t) = e 30~ to)[ Zcos(?(t— 0)) —I—£ (m(t—to)>

I H(t — o).

25.3. The equation of motion is
&+ 2ki + Wiz = f(t).

The impulse can be represented by a delta function so that f(t) = I6(¢t — to). Take the Laplace
transform of the equation, noting that z(0) =1 and #(0) = 1,

$2X(s) — s — 1+ 2ksX(s) — 2k +w?X(s) = L{I5(t — to)} = Te~'0%.

Hence " . L .
s+1+2k+ Te s s+ 142k 4 [etos 9 9 9
X(s) = = =k* —w”.
&) = e ks Grie—p@ = 7 “

15



The term containing e~*¢ arising from the impulse will lead to the term with a step function on
inversion (see the delay rule (24.15)). The full solution is

1
o= gglk =1 @ (g 1 e )
_i_%[e—(t—to)(k—ﬂ) — e ) (RHOH(t — ¢).

for t > 0 and ty > 0.
25.4. The displacement u(x) of the plank satisfies

d4
Ko = f(@).

The mountaineer standing at the centre of the plank is treated as a point load which can be
represented by the delta function Mgd(x — %l), so that

d*u 1

K—— = Mgé(x — =1).

dxt 99(x 2 )
Let A = 4/(0) and B = «"’(0) since only u(0) = 0 and «”(0) = 0 are given: the constants A and
B will be found from the conditions at x = [ when we have solved the equation. The Laplace
transform of the equation is

Ks'U(s) — As?> — B = L{Mgé(z — 31)} = Mge™3ls.

Therefore

U(s):%

?+s4+Mg

A E e—éls‘|

Inversion of this transform using table (24.10) and delay rule (24.15) gives

1
u(z) = 2 [Aw + §Ba® + §Mg(x — 31)°H(xz - 31)] .

The conditions at = are u(l) = 0 and «”’(I) = 0. Hence
1 1
u(l) = [Al+ iBI® + 1 Mg(l — 31)°H(31)] = = [Al + :BI® + £ Mgl3] =0,

and
1 a2

1
WD) = oo [Av+ §Be® + gMg(x — 31)°] = 4= [Bl+ 3 Mgl] = 0.

=l

Solving these equations
_ 1 _ 1 2
B=—-35Mg, A= {5Mgl°.

25.5. Use the impedance rules listed in (25.8) and (25.9).
(a) For the resistor r and inductor in parallel the impedance Z; is given by

11,1
Z, R Ls’
Therefore
7. RLs
""" R+1Ls

The impedance Z; is in series with the capacitor C. If Z is the impedance of the whole circuit,

then 1 RL 1
S

Z=Z 4= = L

L s T RAIsL T Os
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Applying the given data

_ Gs n 2
2435 s
(b) These components are all in parallel. Hence the impedance Z is given by
1_ 1.1 1 _ Ls+ R+ CRLs?
Z R Ls 1/(Cs) RLs '
Hence
RLs 2s

Z = =
CRLs?+Ls+ R 6s2+s+1
for the given data.

(c) For the parallel resistor R = 1 and the inductor L = 1 the impedance Z; is given by

1 1
— =1+ - sothat Z; =
Zl S

s
s+1°

The impedance is in series with the resistor R = 2 which has the impedance

s 735+2
s+1 s+1°

Zo=2+271 =2+

Finally Z5 is in parallel with the capacitor C' = 2 giving the impedance
11 1 6s+5s+1

Z 7 205 2B3s+2)
Therefore

_ 3s+2
652455+ 17

25.6. (a) Let I1(s) be the current in the s domain through the capacitor C' = 2, I1(s) be the
current through the resistor R = 3 and the inductor L = 1 and I3(s) through the resistor R =5 .
Then by Kirchhoff’s laws

I(s) = Ii(s) — I2(s) = 0, Ii(s) + Iz(s) — I3(s) = 0,
and
Vi(s) = I2(s)(3 + s) + 513(s),

% —L(s)(s+3) =0, Va(s)= 112(5)_

It follows from the first two equation that I5(s) = I(s) — I;(s) and that (not surprisingly) that
I5(s) = I (s) + I2(s) = I(s). Hence

Vi(s) = (I(s) — I(s))(s + 3) + 51(s),

and
Ii(s)
2s

Eliminate I(s) between these equations so that

— (I(s) — I(s))(s + 3) = 0.

Vi(s) = 21, (s) (25 + 55 — 2)).

Therefore
V2 ( S) 1

Vi(s) 2s(2s2+45s—2)°

and
V2 (8) 1

I(s) 2s(2s2+6s+1)

17



(b) Let I1(s) be the current in the s domain through the inductor L = 2. Apply Kirchhoff’s law
in the s domain to the three subcircuits in Figure 25.22(b). Then

Vi(s) =2(I1(s) + I(s)) + sI(s) = 2I1(s) + 5I(s), (i)
(25 + 213> I(s) — 31(s) = 0, (if)
Va(s) = ), (i)

From (i) I(s) = I1(s)(4s® + 1)/(6s). Using this equation eliminate I(s) in (i) so that

(2052 + 125 + 5)I;(s)
1= -

6s

Finally combining this equation with (iii):

Va(s) 3s
Vi(s) 2082+ 12s+5

and
VQ(S) o Il(s) 6s 3

I(s) 25 L(s)(4s2+1) 48241

25.7. The convolution theorem (25.11) states that if

f@:Agmmwﬂw:Ahmmwﬂw,G@Hmm H(s) < h(t),

then

F(s) = L{f(t)} = G(s)H(s).
The convolution integrals are either integrated directly or by using the convolution theorem.
(a) g(t) = et, h(t) = 1. By direct integration

f@=AﬂﬂW—ﬂM:A€&=b%=&—L

Alternatively, using the convolution theorem and g(t) =e' < 1/(s —1) = G(s), h(t) =1+ 1/s =
H(s), we obtain

(b) g(t) =1, h(t) = 1. By direct integration

t t
#0 = [ gtrnte-rar= [ ar—¢
0 0
(c) g(t) = e, h(t) = e'. By direct integration
t t t
fit)y = / g(T)h(t — 7)dT = / e"e! " Tdr = et/ dr = te'.
0 0 0
(d) g(t) = e, h(t) =t. Since e™* <> 1/(s+ 1) and t < 1/s?, the convolution theorem gives
1 1 1

Nﬁzﬂﬂﬂ@z;GIﬁ:—g+?+;%v+4+pm4:ﬂw
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(e) g(t) = t, h(t) = sint. Using the tables of transforms, ¢ < 1/s? and sint < 1/(s® + 1), the
convolution of g(t) and h(t) has the transform
1 1 1

F(s)=G(s)H(s) = 55—~ =

- s t—sint= f(b).
$2(s241) 2 21 1)

(f) g(t) = cost, h(t) = t. Using tables of transforms, ¢ « 1/s? and cost « s/(s*> + 1), the
convolution of the transform is

Fs) = G(s)H(s) = —— =1 __*

o 1—cost=f(t).
s(s24+1) s 52+1<_) €08 )

(g) g(t) = sin3t, h(t) = e 2!, The transforms of g(t) and h(t) are sin3t < 3/(s®> +9) and
e 2! < 1/(s+2). Hence by the convolution theorem

3
(s+2)(s2+9)
3 " 6 _ 3s
13(s+2)  13(s2+9) 13(s2+09)
3 o

2 . 3
< 130 +1—351n3t—ﬁc053t—f(t)

F(s) = G(s)H(s)=

(h) g(t) = h(t) = sint. Since sint +> 1/(s? + 1), the convolution theorem gives

1 1 s2—1 1
F(s) = GOHE®={myqm =3 [— EES R J

1 1
— —§tcost+ Esint = f(t)

by (24.9).
(i) g(t) = t*, h(t) = sint. Since t* < 24/s° and sint « 1/(s% + 1), the convolution theorem gives
24 1 1 1 s
F(s) = G(s)H(s)= ——— =24 | — — 4= — "
(s) (s)H(s) s2(s2+1) {55 s3 + s s24 J

et 1217 424 — 24 cost = f(t)

() g(t) = ™, h(t) = t™. Since t" < n!/s"*! and t™ < m!/s™+! (assuming that n and m are
positive integers), the convolution theorem gives
n!m)! nlmlgntmtl

Fo) = GO = S = famry /Y

25.8. (a) The Laplace transform of

d?x 2
Q@ Ters f()
is
s2X(s) — sx(0) — 2/(0) + w2 X (s) = F(s),
where X (s) = L{z(t)} and F(s) = L{f(t)}. Choose a particular solution such that x(0) = 0 and
2'(0) = 0. Then

F(s)
X(s) = ——"=.
() = o
From (24.6)
m < sint.
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Hence by the convolution theorem, a particular solution is

- /0 t F()sin(t — 7)dr

(b) The Laplace transform of

is.
s2X(s) — sx(0) — 2/(0) — w2 X (s) = F(s).
Choose a particular solution such that 2(0) = 0 and z’(0) = 0. Then

Fis) 1] 1 1 1w
X(s)= =2 __ = - et — et
(s) $2—w? 2w L—w s—|—w}<_>2w[e ¢

Hence by the convolution theorem, a particular solution is

1 t
= E/o f(T)[e“’(t*T) - ef‘*’(tff)]dr

25.9. (a) ft 2(7)(t — 7)dT = t*. Let X(s) = £{z(t)}. The transform of the equation is

0
y 14
X(s)L{t} = L{t"}, or X(s)s—2 =
Hence 94
X(s) = 5= 122,
Therefore the solution of the integral equation is x(t) = 12t2.
(b) z(t) =1+ fo )(t — 7)dr. Take the Laplace transform of the equation using the convolution
theorem: LX) . ) )
s s
X(s)=- that X(s) = = -
(s) S Tz sotha (s) ] 2{51+5+1}’

using partial fractions. Inversion gives the solution
z(t) = $le”" +e!] = cosht.

(c) z(t) =sint + fo 7) cos(t — 7)d7. The Laplace transform of this integral equation is

1 S
X(8)=—5——+X(s)5——
(5) = g + X)o7
using the convolution theorem. Hence
1 B 1

X = —_— Q .
el e

We can invert this transform using (24.6¢) and the shift rule (24.7) resulting in the solution

x(t) = fez tsin[3/3t].

25.10. The input f(¢t) = H(¢) has the transform F(s) = 1/s. As in Section 25.6, the response
2**(t) has the transform

X (s) = F(s)G(s) = Gs) so that G(s) = sX™*(s),

S
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where G(s) is the transfer function between input and output. The transform of the output z(t) is
X(s) =G(s)F(s) = X™(s)sF(s).
Using the convolution theorem, the output
i d
o) = [[o = | f o)+ 50| ar
0 T

by the derivative rule (24.12). Let

X (8)F(s) o qlt) = /O 2 () f(E — 7).

By the rule on the differentiation of integrals (15.20), the right-hand side can be expressed as

2(t) = % [/Ot () f(t - T)dT] .

In the example

1 1 1

1 —2t
-1)(s+2) 3(-1) 3(+2) 3 )

(el —e

)

and f(t) = H(t) sinwt.

25.11. To model this problem, approximate by assuming that the learning/ forgetting process
takes place continuously through whatever time-range is involved. Note that the learning data
refers to new words (forgotten words are not revised). The words learned at a time ¢ = 7 through
a small period 07 is equal to 50d7. at any later time ¢, the number of newly-learned words that
are remembered is 5057e~0-01(t=7) (that is, the elapsed time « is t — 7 for this event). The total
number of words recalled at time ¢ is the limit of the sum of the contributions between times 0
and ¢:

¢ t
N(t) = Jim 50e 0 0ME=T) 57 — / 50e0-01t=T)qr (i)
T— —o 0
(which is the convolution 50 % e~%-01%). Therefore
0.017 7t —0.01¢
1—e
N(t) =500 0 | S| — 50— "
(t) = 50 0.01 |, 0.01

(After 30 days N (t) becomes 50 x 25.9 in place of 50 x 30 attempted: a loss of 14%.)

(b) If the student aims at learning 50 4+ 0.1¢ words per day (thus increasing the input with time)
we obtain the convolution integral

¢ t
N(t) = / (50 + 0.17)e‘0~01(t—7)d7 _ e—o.ou/ (50 + O_lT)eo.Oth (ii)
0 0
(by 25.11). The integration by parts formula (17.8) with v = 7, dv/d7 = e gives

t 1 1 | 1
AT _ _ AT _ At _ LAt
/0 Te'Tdr = [A (T A) e h 1 [te + —A(l e )] ,

and applying this to (ii) with A = 0.01,

1— eO.Olt 0.1 1— eO.Olt
N(f) = o001t |_ 1001t
() ¢ Vo1 Toor ¢ T oot
_ 0.0t

1
e—0.0lt |:_40

1 t 0.01¢ .
o1 vt
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25.12. The original population py declines as pope 7. In time 67, the number born is bp(7)dT, but
these individuals die out at the rate e #t=7) after the elapsed time ¢ — 7. At time ¢ the balance
between these births and deaths together with the decline of py gives the population p(t) at time
t:

t
p(t) = poe 7" + b/ p(r)e P dr,
0

Taking the Laplace transform of this equation, which includes a convolution on the right-hand
side, we obtain
Do bP(s)

s+vy s+p’

P(s) =
where P(s) = L{p(t)}. Therefore

po(s+h8) M [ b +7—6]
(s+7)(s+B-b) b+y—F|s+B-b s+7v]°

This transform can now be inverted using (24.6a) giving the solution

P(s) =

25.13. The equation of motion is
ma + kxr = Fo[H(t) — H(t — to)],

where the difference of the unit functions on the right ensures that the forcing is zero for ¢ > t,.
The initial conditions are z(0) = 0 and #(0) = 0. The Laplace transform of this equation is

ms2X (s) + kX (s) = Fo [i - etos] .

S

Therefore

X(s) Fy(1 — e tos) Fy [1—e7ts  5(1—e7t09)
s) = = -
ms(s? +w?) mw? s s2 4+ w?

where w? = k/m. Inversion gives

F
a(t) = ?"[(1 —coswt) — (1 — cosw(t — to))H(t — to)].
Hence for ¢t < tg, the solution is
x(t) = ?0(1 — coswt),
whilst for ¢ > ty the solution is
F
x(t) = ?O[cosw(t —tp) — coswt].
25.14. The differential equation is
dz(t)
=x(t—-1 t
a -t

and z(t) = 0 for ¢t < 0. Take the Laplace transform of the equation:
1 oo
sX(s) —x(0) = = +/ z(t — 1)e *'dt,
0
where X (s) = L{z(t)}. Since x(t) = 0 for ¢ <0, and by using the second shift rule (24.15),

1 o 1 o 1
sX(s) = = +/1 z(t— e *'dt = 2 +/0 z(r)e s dy = 2 +e7° X (s).
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Hence

Using the binomial expansion

-1
1 e s 1 e e%
X(s)=— (1 -4+
() 33( s ) s3+ st * 8P +

The general term in this series is e7"*/s" 3. The function of which this the Laplace transform is

(t—n)nt2 f t=-n)"T2/(n+2)! n<t
(n+2)! H(t_n)_{() n>0

We sum the series as far as n where |t — 1| < n < |¢] and [¢] is the largest integer less than or
equal to t. Therefore
[t] 2
(t—n)"*
t) = —_—
z(t) Z (n+2)!

n=0

25.15. The Laplace transform of the integral equation

2/0 cos(t — w)z(u)du = x(t) — ¢

is

S 1
Hence )
+1 2 2 1 2
X(s) = 5 = 4+ -4z

$2(s—1)2 (s—1)2 s—1 s s

using partial fractions. Finally, inverting this transform, the required solution is

z(t) =2(t — 1)e’ +t+2.

25.16. The differential equation is
de? dt
where 2(0) = 0 and 2/(0) = 1. The derivative dz/dt has a variable coefficient ¢. From (24.8)
dX(s)
ds

L{tij} = f% [sX(s) —z(0)] = X(s)+s

Hence the Laplace transform of the full equation is

$2X(s) — 1 — X(s) — sdﬁgs) — X(s) =0.

Therefore X (s) satisfies
dX(s)

ot (s> —2)X(s) = 1.

Let X (s) = 1/s2. Then

dX(s)
ds

+ (82— 2)X(s) = 832 + (s _z)si2 —1

Hence X (s) = 1/s? satisfies the equation. The corresponding time-solution is x(t) = ¢ which we
can confirm satisfies the initial conditions.
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25.17. These equations have some coefficients which are not constant, and their transforms are
obtained by using the multiplication rule (24.8).

(a) ta”(t) + (1 — t)2’(¢t) — 2(¢t) = 0, (0) = 2’(0) = 1. Take the Laplace transform of the equation:

—%[52X<S> —sz(0) — 2'(0)] + sX (s) — z(0) + %[SX(S) —z(0)] — X(s) =0,
> —25X(s) — 82 X'(s) + 1+ 5X(s) — 1+ X(s) +sX'(s) — X(s) = 0.
Hence

(s —1)X'(s)+ X(s) = 0.

This a first-order separable equation with general solution X (s) = C/(s—1), where C is a constant.

By the Table of Laplace transforms (Appendix F), inversion gives z(t) = Ce’. The initial condition

z(0) = 1 means that C' = 1. Hence the required solution is z(t) = e'.

(b) 2" (t) + ta'(t) — 22(t) = 2, £(0) = 2/(0) = 0. Take the Laplace transform of the equation:
9 , d 2
s°X(s) — sz(0) — 2'(0) — g[sX(s) —z(0)] —2X(s) = >

or

$2X(s) — X(s) — sX'(s) — 2X(s) = g

X - (s 3) x) =5

s 52

Hence

This is a first-order differential equation of integrating-factor type (see Section 19.5). The inte-
grating factor is

ef(—5+3/5)d5 —e —1s°+3Ins) _ 836—%82.
The equation can be expressed in the form
d
d—( (s)ssefés )= —2se” 2%
s

Integrating
X(s)sge*%52 = */2867%52&9 +C =22 ¢ C,

where C' is a constant. Hence the transform of the solution is

1
2 ez’
Do not attempt to invert the second term on the right. The inverse of the first term is t2. This
term alone satisfies the initial conditions 2(0) = 2’(0) = 0. We conclude that C' = 0 which means
that the required solution is z(t) = ¢2.

(c) ta”(t) — 2’ (t) + tx(t) = sint, (0) = 1, 2/(0) = 0. The Laplace transform of the equation is

d 9 , dX(S) o 1
—a[s X(s) — sz(0) — 2'(0)] — sX(s) + z(0) — ds 2+ 1
or . 3s 2 1
X+ e =g~ @ e

This is an equation of integrating-factor type as in (b). The integrating factor is

of 3/ (P = (2 4 13,
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so that

LX) + 1 = 25" + D)~ (4 1) 2,
Integrating:
X (s)(s* + 1)% = 2/(52 + 1)%ds - /(32 +1)"2ds+ C
= /i[s(s2+1)%1ds+c
N ds
= s(s®+ 1)% +C
Hence

s . c
241 (s241)2

X(s) =

The inverse of the first term is cost which alone satisfies the initial conditions. Therefore C' = 0
and the required solution is x(t) = cost.

25.18. (a) {1,2,1,0,0,0,...}, 1+%+%, and the Laplace transfrom 1+2e~7* +e~27% are equivalent.
They represent the sum of the impulses: §(¢) +26(t — T) + 6(t — 27).

(b) The sequence {0,1,2,3,...}; the z transform
and the Laplace transform

e—Ts =+ 26—2T5 + 36_3TS 4o

are equivalent, representing the time function
0t —T)+26(t—2T)+36(t—3T)+---.

Note also that
1 2 3 z

Rt It T e
for large z (compare Example 25.18), which is the z transform in finite terms.

(¢) The notation {3} means here the sequence {3,0,0,0,...}, standing for the z transform equal
to 3/2° = 3. The Laplace transform therefore equals 3, corresponding to the time function 35(¢).

(@) {(-2)"}, {1,-2,22,-2%, ..}, 1 -2+ 2, — 2.4 ... and

22 23

1—2e~7% +22¢72Ts _... are all equivalent, and correspond to the time function &(t) —25(t — T') +
225(t — 2T) — - - -. In finite terms: the (geometric) series for the z transform has the sum
1 z

1+2/z z+2

for large z.

(e) {0,0,3}, or 3/22, is the z transform, 3e~27¢ the Laplace transform and 35(t — 2T) the time
function.

25.19. Note. The periods are denoted by T. Inputs and outputs are related through their z
transforms by V(z) = G(2)X (z) (see (25.26)).

1 1 2 1

=(1+4 - 1+-)=14+-+—.

(2) V) ( +z>( +z) +z+z2
The inverse is

y(t) = 8(t) + 20(t — T) + 8(t — 2T).
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(b) G(z) =1+ -+

Therefore

1 1 2 2 2 1 1 1
V) = (“ﬁzz‘“') <z+z2):z<1+z) (“ﬁz?‘“')
2
: |

Therefore y(t) = 26(t — T).

25.20. G(s) = 1/(1 — $e77%), X(s) = e 7% + 27275, Put e’ = z (see (25.22)); then the
corresponding z transforms are given by

11 11
g(z):1+§*+372z2+
Since Y(z) = G(2)X(2z) (see (25.26)), we have
11 11 1 2
= (1+=24+ -~ 4+...)=(1+2
V() <+3z+3222+ )z( +z>
1 1 1 1/1 1 1 /1 1
= (1 (za2) e (cr2) (2]t
z(Jr<3+>z+3<3+>,>:2+32<3+)z3+ >
RO T
oz 3\ 22 323 324

The output y(t) is therefore given by
y(t) =6(t —T) + Z[5(t — 2T) + 26(t — 3T) + =6(t —4T) + - ].

25.21. (a)
1 2 1
O
(2) z 22 2
(b) 1 1 1 1
z
X :1_7 _ .. = — = f .4 .
(2) z+22 z3+ 151z = 1(1forn(5 a))
(c)
1 1 1 1
X() = (L= = =14 — et
(2) L b=ty st
1 2z




from (5.4a).
(d) Put z = e as in (25.22):
1 1 z

Y =T T o

25.22. (a) By sampling at times t = nT, n =0,1,2,..., we obtain x(t) = {nT}. Then

T 2T 3T
Xt)==+ "5+ +

z 22 23

This series can be summed by using the process in Example 25.18 to give

Tz
X = .
(2) EENE
(b) As in (a) we obtain
e~ T 2T e~ T 1
X = — e — —
(2) z + 22 * z 1—(e7T/z)

by summing the geometric series.
[Note: (c) and (d) have been deleted from the 2003 reprint.)

25.23. (a) Y = GX in general, so

which gives G(z) in the closed form

o0 (1-1) /()

To obtain ¢(t), first expand G(z) in powers of 1/z for large z. We have (using (5.4a) for geometric
series)
1 1 1 2 2 2
— (12} (14— )=1 242 2 4.,
6(z) ( z) < PR ) PR

(1) = 8(6) ~20(¢ —T) + 26 ~2T) -~
o) (2
-2/ (02)

(© (1+1) = (1-1)ee

Therefore

(b) As in (a)

SO

so that
0o+
(@ YE) = 1=+ 5= T



1 1

Since G(z) = Y(2)/X(2),
1= (1/2)  z2(z-1)

1+ (1/22 0 2241

g(2)

(e) As in (d), we find

1 1
YOS Ty T ey
so that 2,
G(z) = 22 i— 1

25.24. The transform of y(t), defined by the discrete values
{.CE(), l’leicT, $2672CT7 .. }

is Y (z) given by

-cT —20T
Y(2) = wo+ e + 20 5 +
z z
—CT o—CT\ 2
- en (<) ()’
z z
= X(e9/2),
where X (z) = {zo, 21, 22,...}.
25.25.
X1 X9
X(2) = b2,
(a) (z) =20+ —+ 3+

is the transform of z(t). The transform of (0, zg, z1,...) is
Ty T
04 % e,
z oz

and this is equal to 1X(z).
(b) The rule (a) applies to 2X(2) as it did to X(2): the introduction of a further zero to move

the row along causes the transform to be multiplied by a further factor %, giving Z%X (z). Perform
this procedure N times to introduce N zeros; the transform becomes ZLNX (2).

25.26. From the definition

X X9
, Xy ) = —+ =+ =X(2).
{0, 21,22, } =20+ — + 5 + (2)
Put .
{xN, TN 1, -} = 2N + Z+1 N :X(N)(z) (say).
Obviously
NX() =N+ 2N e+ oy + XP(2).
Therefore

XM (2)=2Nx(2) — 2Nwg — 2N ey — - — 2Ny
25.27. Stability: the system is stable only if the poles of G(z) all have modulus less than 1.

(a) G(2) = (2+1)/(2% —4). In the argand diagram the poles are at z = £2 = ¢, c. Since |c;] (or
|ca]) > 1, the system is unstable.
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(b) G(z) = (2% — 2)/(42® — 1). There are poles at z = ¢; = % and z = ¢ = —%. Their moduli are
both < 1, so the system is stable.

(c) G(z) =1/(42% 4+ 1). The poles are at ¢; = i and ¢; = —1i. |c1| and |cz| are both < 1, so the
system is stable.

(d) G(2) = (22 +1)/(22* + 522 + 2). The poles occur where 22% + 522 + 2 = 0. Solving this as a
quadratic equation for z2, we obtain 2% = —% and —2, so the poles are at z = i%i and +£v/2i.

The poles at 4++/2i have | + \/§1| = /2 > 1, so the system is unstable.

Growth rate of transients. From the results leading up to eqn (25.40) the overall growth (or decay)
of responses of the system is determined by the behaviour of a factor ||V, where ¢ is the pole
associated with a particular mode or transient, and N = t/T, where ¢ is time and T the period.
For the given functions G(z), we have :

(a) The factor is 2V for both poles.

(b) The factor is ()" for both poles.

(c) The factor is (;)N for both poles.

(d) The factors are (v2)N = 22N for two poles, and 272 for the other two.

25.28. Notes. For the solution method see Example 25.23, or use the general result from Prob-
lem 25.26. The notation ‘—’ stands for the words “has the z transform equal to”. The counter n
runs through n =0,1,2,....

() Ynt2 —Yn = Tni Yo =1, y1 = 2. (i)
Put {z,} = {x0,21,...} = X(2), and {y.} = {yo-y1,...} — VY(2). Then
{Ynt2} — 22V = 2%y — 2y = 22V — (2° + 22)
(by Problem 25.26). The transform of (i) is therefore given by
422V — (22 +22)] -V =X,

so that
4(2% +22) + X(2) - 14+ 8z+4 X(2)

ii).
422 —1 422 —1 (i)
The poles occur at z = +3, for which |z| < 1. Inspection of (ii) shows that there are no growth or
non-diminishing terms arising from an impulsive input, so the system is stable.

() Ynt2 = 3Yns1 +2yn = 22m5 99 = 0, y1 = 1. (i)
Proceding as in (a), (ii) becomes

Y(z) =

(22Y — 2) + 32V 4+ 2 = 24,

so that
2X(z) + =z
(z+1)(z+2)

Since one of the poles has a modulus > 1, the system is unstable.

Y(z) =

(€) 2Yns2 + Unt1 + Yn = Tny1 — Tn; Yo = 0, y1 = 1. (iii)
Proceeding as in (a), (iii) becomes

2(22y—z)+zy+y:zX—zxo—X,
so that
(z — 1D)X(2) — 2z + 22
2224+ 241 ’

The poles are at z = (-1 £ iV/7), whose moduli are equal to 1/v/2 < 1. The argument in
Section 25.10 leads us to expect stability; that is, no terms arising from an impulsive input whose
effect does not decrease to zero.

Y(z) =
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(d) 2ynt2 +3Ynt1 — Yn = Tn; Yo =1, y1 = L. (iv Proceeding as in (a), (iv) becomes
(222432 —1)Y — (22% + 22+ 32) = X,

or
X(2) +222+ 5z
2224321

There are poles at i[—S + v/17] with modulus > 1, so the system is unstable.

Y(z) =

Chapter 26: Fourier series

26.1. These functions are all odd 2m-periodic, which means that ag = a; = as = ... = 0, whilst

2 s
by, = 7/ f(t) sin ntdt.
T Jo
The figures show the graph of the function over the interval —m <t < 7.

(a)
-1 (—7<t<0

H

Figure 1: Problem 26.1a
Therefore
0 n even

2 s
by, = */ sin ntdt = { 4/(nm) n odd
0

The Fourier series for f(t) is
4 4 4 .
—sint + —sin3t + —sindt + - - -.
™ 3T o

(b) f(t) = . Then
2(—1)"

n

2 ™
b, = 7/ tsinntdt = —
0

Figure 2: Problem 26.1b
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Figure 3: Problem 26.1c

(c) ) :
—t —T<t<O0
Therefore o o7 )
by = 7/ 2 sinntdt = —— {2+ (~1)"[n2x* — 2]},
™ Jo nem
(d) ) ( |
e " —1 —T<t<0
f(t){ Cet—1) (0<t<m)
X
20
10
t
-10
-20
Figure 4: Problem 26.1d
Therefore
2 (7 2[-1+ (=1)" 4+ (=1)"(1 — e™)n?
bnz—f/(et—l)sinntdtz— [+ (=)" + 2)( e)n}'
T Jo n(l 4+ n?)w
(e)
1 (-r<t<—3m)
) -1 (=im<t<o0
=94 (0<t<3m)
-1 (dr<t<m)
Therefore
2 %7‘{' ™
b, = -— / sin ntdt — — / sin ntdt
™ Jo 1.
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N

\( N|>‘
[
! r X

Figure 5: Problem 26.1e

The sequence of coefficients is

4 4 4
b1 =0,b0 = —,b3 =by =b5 =0,bg = ——, by =bg =bg =0,b1p= —,....
T 3 %

26.2. For even functions the coefficients b,, are all zero, whilst for 27-periodic functions

2 s
ap, = f/ f(t)cosntdt, (n=0,1,2,...).
T Jo

The diagrams show the functions over one period —7 < t < 7.
(a)
-1 (-m<t<im)
fB)y=4 1 (-gm<t<g3m)
-1 (Ar<t<a)

H

- I z b
2 2
-1
Figure 6: Problem 26.2a
Then o 4 .
ap = — / f(t) cosntdt = — sin —n.
T Jo nmw 2
The even coefficients ag, as, aq, ... are zero, whilst
4 4 4
CL1—7T, az = 37T7 a5—57r,....

(b) f(t) =12, (—r <t <m)..
In this case

™ 4(—1)"
an:f/ t? cosntdt = (=1) ,(n>1)
™ Jo n
integrating by parts. For n = 0, ag = 272/3.
(c) f(t) =cos3t, (—m <t <m).
Then
4 cosnm 4(—1)™

s 1
n = — 7t ﬁdﬁ - — _— b) - 07 17 27' c )
a /0 COS 5 cosn (4 ) 1) (4 2 1) (n )
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Figure 7: Problem 26.2b

X

Figure 8: Problem 26.2c
26.3. The Fourier coefficients for a 2m-periodic function f(t) are
2 ™
ap = — / f(t)cosntdt, (n=0,1,2,...).

T Jo

2 [T .
by, = f/ f@)sinntdt. (n=1,2,...).

T Jo

0 (—m<t<0)
t (0<t<m)

)=

Figure 9: Problem 26.3a

The Fourier coefficients are

1 [T 1 [7 —-1)" -1
ao:f/ tdt = — an:—/ tcosntdt:%, (n:172a-~-
0 0

3

T , T

1 (7 —-1)"
b, = / tsinntdt:—( ) , (n=1,2,...).
0

™ n

_Jt+m (—m<t<0)
f(t)_{t 0<t<m
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Figure 10: Problem 26.3b

The Fourier coefficients are

1" I
ag = — fHdt ==, a,=— f(t)cosntdt =0, (n=1,2,...),
™) _x L
1 (" 14+ (=1)"
b, = — f(t)sinntdtz—u-
Tr —T

26.4. The half-rectified sine wave is generated by the 27-periodic function

f(t):{o (- <t<0)

sint (0<t<m)

The Fourier coefficients are

2 14 (1)

== =0 h=———2 =2,3,4,...),

o= @ o (n?2—-1)m (n )
1
b1:§, a, =0, (n=23,4,...).
The Fourier series is

1 1 2 2
t)=—+ =sint — ————co82t — —=————cosdt — - - .
f(t) —+gsin (22_1)7T005 (42_1)7Tcos

26.5. The Fourier coefficients of the 27-periodic function

0 (—m<t<0)
f(t):{ 1 (0<t<n)

are

1 s
ag =1, an:f/ cosntdt =0 (n=1,2,3,...),
0

™

1 (" 1—(=1)"
bn:f/ sinntdt:# (n=1,2,3,...).
0 n

™

Hence by =2/, by =0, by = 2/(37), by =0, b5 = 2/(57), and so on, which generates the Fourier
series

1,2 ( i t+1sin3t+1sin5t+~~)

5 + - sin 3 5 .
At t = 0, the Fourier series takes the value 1, in agreement with the definition f(0) = 0. There
is a discontinuity in f(¢) at ¢ = 0. By (26.12), the Fourier series takes the average value of the left

and right hand values of the function at the discontinuity.
Put t = 7. Then sinir =1, sin3f = —1, sin 2 = 1 and so on. Since the Fourier series

equals the function on continuous parts of the curve,



Therefore
RSO B S
3 5 7

il

1

26.6. The fully rectified sine wave of period 27 is f(t) = F|sint|. This is an even function so that
b, = 0. The other Fourier coefficients are

1 ™
an = f/ | sint| cos ntdt
™ —T
2 (7 214 (—1)"
= f/ sintcosntdt:—(;_#, (n=0,1,2,...).
T Jo (n?2—-1)m

Hence

2 4 4
|sint| = = — — cos2t — —— cosdt — - -.
™ 3w 157

The amplitude of the first non-zero harmonic (period =) is 4/(3).

26.7. The Fourier series is
oo

n+a .
Z ——— sinnt.
n3 4+ an+ 3
n=1
The first two harmonics have amplitudes (a + 1)/(a + 3) and (a + 2)/(2a 4+ 11). These are in the

ratio 2 : 1 if
a+12a+11 _ 9

a+3 a+2

Therefore
(a4 1)(2a+11) = 2(a + 3)(a + 2), or 2a* + 13a + 11 = 2(a® + 5a + 6).

Hence a = %
The next harmonic (n = 3) has amplitude

3+a B 3—|—% _E
27+3a+3 27+1+3 93

26.8. (See Section 26.9) Note that both functions are odd with period 27. From Figure 26.18(a)
the straight line is given by @ = F't/n. Its Fourier series is given essentially by Problem 26.1(b),
with coeflicients (suitably scaled)
2F(—-1)"
an=0, (n=0,1,2,...), by= 7#’ (n=12,...).
nm

The second step function can be obtained from Problem 26.1(a) by inserting a minus sign. Its
Fourier coeflicients are

=0, (n=0,1,2,...), dnz{_4/(””) nodd

0 n even
The Fourier series is therefore
= . 2F —4 F . 2F —4 F .
Z(bn+dn)51nnt= sint — —sin 2t 4+ sin3t — —sindt 4 ---.
ot T T 2T

The leading harmonic has zero amplitude if F' = 2.

26.9. The T-periodic function is Q(t) = 172 — ¢ for —4T <t < 1T, and it is even. Hence all

b, = 0. The other Fourier coefficients are
2 (2T T2
= — 72 _2)dt = =—.

“w=7 /_ e ) 6

N

1
2
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_1)nT2
n2m?2

f/i 172 —+2) cos(2mnt/T)dt —( , (n=1,2,3,...).

The approximation given by the first four terms of the Fourier series is

1
Qi(t) = = 540 + aj cos(2nt/T) + as cos(4nt/T) + az cos(6mt/T)

1 1 1
T2 {6 + —5 cos(2mt/T) — ype) cos(4mt/T) + 0.2 cos(67t/T)

(a) At t =0, Q(0) = $T% = 0.25T% and Q4(0) = (§ + z022)T? = 0.2539... T2
(b) At t = 1T, Q(3T) = 272 = 0.1875T2 and Q4(5T) = (¢ + ==)T% = 0.1919... T2
26.10. The 27-periodic function

Bt(m—t) (0<t<m)
f(t):{ Bt(r+1t) (—m <t <0)

is odd, so that all Fourier coefficients a,, are zero. The other coefficients are

A1 - (=1)")p

n3m

2 ™
=— / Bt(m — t) sinntdt =
T Jo

using integration by parts. The Fourier series is

f)y = Z _ n)ﬁsmnt
g

= 50 inzt g 2D

in 5t .-
ST 1257 Dot +

The ratio of the first and third harmonics is

b1 86 27T
— =" —91
b3 s Sﬁ

Let

88 . 88
fa(t) = - sint + 7 sin 3t.

Then comparison of f(t) and f3(t) at t = i gives
Fm) =8 —2467...8, fiuim)=% 38 —2452.. ..

26.11. The function f(t) = ¢(7? —t?) is an odd function which means that all coefficients a,, = 0.
The sine coefficients are given by

17 12(-1)"
by, = 7/ t(n? — t?) sinntdt = _Lh” - iy
™ n

—T

The Fourier series of f(t) is

o0 o0
12(—-1)"
= Ytnsinnt = =3 BED Gt ()

n=0

The derivative of f(t) is f/(t) = n% — 3t%. As expected f'(t) is an even function so that the
coefficients b,, = 0. The cosine coefficients are

12(—1)"

1 ™
ap=0, a,= 7/ (7% — 3t%) cosntdt = — 3

—T
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The Fourier series of f/(t) is
= 12(-1)"
- E ——5——cosnt.
n
n=1

It can be seen that this Fourier series is the derivative of the Fourier series in (i), which confirms
that, in this case, the derivative of the Fourier series of f(¢) is the Fourier series of the derivative
of £(t).

The function g(t) = 3 is odd so that all the Fourier coefficients a,, are zero. The sine coefficients
are given by

bnzf 2276 :12...
= 6), (n=1,2,...)

Hence

i )" 6 — 2) sin nt.

The derivative ¢/(t) = 3t? which is an even function. Hence all b,, = 0, and

12(-1)"
ag = 272, an:%, (n=1,2,...)
Therefore
g(t)=3t>=2r 2+Z cosnt.

Clearly the derivative of the Fourier series of g(t) obtained by term-by-term differentiation, namely,
272)

= 2(=1)"(6 — n?w
2; ( )22

is not the Fourier series of ¢/(f). A problem arises because the series Y.~ | cosnt which occurs
among the terms in this expression does not converge. This series does not have a sum.

cosnt

26.12. A 27-periodic rectified sine wave is defined by

0 (-7 <t <0)
,QC:P(t):{ [sin2t] (0<t<m)

(see Fig. 11).

Figure 11: Problem 26.12

The Fourier coefficients are given by

4 T 4
@ =—, an :/0 | sin 2¢| cos ntdt = —m[—(n‘f‘ 1) — 4 cos gnl,
o] 8 1
b, = /0 | sin 2| sin ntdt = —msm 5.
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26.13. One particular representation of the function f(¢t) = ¢t on —7 < t < 7 is obtained by
considering its periodic extension (see Section 26.7). The Fourier coefficients are a,, = 0,(n =

0,1,2,...), and
1 [7 2(—1)"
bn:f/ tsinntdt = — (=1) .
T n

—T

Hence o
=2y ~——— ¢
2 " simnt,

on —7 < t < 7, as required.
Integrate this series term-by-term from ¢ =0 to ¢ = a:

T
/tdt = 7m2—/ QZ smntdt
0

n=1

nl

= -2 Z [cos nt]i_,
= =2 Z cosnx + 2 Z

Therefore, for —m < x < 7,

2 oay DT
n=1

1 0 (71)7171
—4ZTCOSTL[L’. (l)
n=1

Equation (26.10) states that the average value of the function is equal to %ao. The average

value of 22 over a period is
1 " 1
— 2?dz = ~72.
27

Therefore the constant term in (i) is given by

— (—1)"! 1,
D
This inverse method determines the sum of the series on the left.

26.14. The Fourier series for t? can be obtained by referring back to Problem 26.13. Quoting the
result

1 = N
5 g cosnt.
Integrate both sides of this equation:
- 1 1 e = (=" [
/ t2dt = —a® = 77r2/ dt+4 ( 2) / cos ntdt
0 3 3 0 o 0
1 — (=1)"
= §7r230 + 4; ( 3 [sin nt]
1 — (=1)"
= §7T2 —&-4; ( 3) sinnz

Finally




26.15. The T-period function

-2t (—-iT<t<0)
P(t):{ o (0<t<1T)

is even, so that the Fourier coefficients b,, are all zero. The cosine coefficients are given by

1
4 27 2((-1)* = 1)T
ap =T, ap,= f/o 2t cos(2mnt/T)dt = % (n=1,2,...).
Hence
1 2T = (—1)" —1
P(t) = §T+ ﬁginz cos(2mnt/T)
1 AT & 1
= -1T—-— —_ 2m(2 Ht/T).
2 7T27;<2m+1)2608[ﬂ(m+ )/ ]
The spectral components are |%ao|, la1],asl, las| .. ., that is

T AT AT AT
2771'2797'('272571'27””

at n=0,1,3,5,.... The spectrum is shown in Fig. 12.

anpl i tude/T

Figure 12: Problem 26.15

26.16. Use formula (26.15) with f(t) =1 and ¢y = 1.

(a) For the half-range sine series, the coeflicients are

1
by =2 / sin(nrt)dt = ==~
0

Therefore

1= Z:l 21 7n(7;1)n} sin(nt) = iz_; sin(2r — 1)7rt'

for 0 < t < 1. Note that this series represents an odd function which takes the value —1 for
—1 <t <0, and (by (26.12)) zero at t = 0. It is shown in Fig. 13.
(b) For the half-range cosine series, the coefficients are

1
2
ag =2, a,= 2/ cos(nmt)dt = —[sin(nnt)]§ = 0.
0 nm

This represents an even function which is 1 for all ¢. In other words the function is its own
half-range cosine series

26.17. Use formula (26.15) with f(t) =t and tg =1
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H

Figure 13: Problem 26.16a

X

1
T

-2 -1 1 2

Figure 14: Problem 26.16b

(a) For the half-range cosine series, the coefficients are

2(=)" —-1)

1 1
ag = 2/0 tdt=1, a,= 2/0 t cos(nmt)dt = 23

Hence
ii (2r — 1)mt]
2 o 27“—1 '

[\D\»—A
l\D\’—‘

2 e}
—2 Z cos(mrt

(b) For the half-range sine series, the coefficients are

2(—1)"+!

1
by, = 2/ tsin(nwt)dt =
0 nm

Therefore the half-range sine series is

n+1

2 oo
— t ,
- Z:: sin(nnt)

for 0 <t < 1. For —1 <t < 0 the sum of the series is —t.
26.18. Use formula (26.15) with f(¢) = sinwt and tg = 7/w. The coefficients for the half-range

cosine series are

4
ap = —, ayp = O?
T
2 7/ w 2 T/w
a, = i f(t) cos(nwt)dt = i sin(wt) cos(nwt)dt
m 0 ™ 0
214 (—=1)»
_ 24D —92.3.4,...
’/T(TL2 — 1) 5 (n s 9y Ty )
Hence
) 2 2 (14 (=17 cos( 2rwt
Smwt:;—;;ﬁms(nwt 77*2 12
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ey
SE

Figure 15: Problem 26.18

for 0 < ¢ < m/w. The series represents an even function with sum |sinwt|, which is shown in Fig.
15.

26.19. Use formula (26.15) with f(¢) = coswt and t9 = m/w. The coeflicients for the half-range
sine series are

2w [T 2n(1 + (~1
by =0, b,= = cos(wt) sin(nwt)dt = M
T Jo m(n?—1)
Hence
2 ¢~ n(l+(=1") -
coswt = p Z —ao1 sin(nwt) Z sm (2rwt),

n=2 r=1

for 0 < t < m/w. The sum of the series is odd, so that for —7/w < ¢t < 0 the sum is — cos wt except
at t = nm/w, where its sum is zero.

\\R\
NN\ N\

Figure 16: Problem 26.19

26.20. Use formula (26.15) with f(¢) = cost and t, = 27. The coefficients for the half-range sine
series are
(-1 - 1)

1 2m
= — S 51 2
bn 7T/O costsin(nt/2)dt 1)

provided n # 2. For n = 2, by = 0. Hence

4 sin[3(2r — 1)¢]
oont = 5 el

for 0 <t < 2m.
26.21. Use formula (26.15) with f(t) = cost and tg = 27.The coefficients for the half-range cosine

series are given by
1 27 1 2 9
ag = — costdt =0, ag=— cos“tdt =1,
T Jo T Jo

1 2m
an = —/ costcos(nt/2)dt =0, (n=1,3,4,...).
T Jo

The function f(¢) = cost is its own half-range cosine series.
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26.22. The function f(t) is given by

ro={ 4 |

In (26.15), to = 7. (a) For the half-range sine series the coefficients are

i~ O

<t<
<t

)
7)

|Am~

t
<

b, = / f(t) sinntdt
1.

t\J

™ nm

2
= 7/ sinntdt = —[1 — cos(3nm)].
0
Hence the half-range sine series is
1

ft) = % i [1 = cos yn] C(: 2" sinnt.

The terms for which n =4,8,12,... are all zero.

(b) For the half-range cosine series the coefficients are ag = 1 and

a, = / f(t) cosntdt
1
27 2 .1
= — cos ntdt = — sin —n.

T Jo nmw 2

Hence - . -
1 2 sin 1 n7r 2 r+l
f(t):i-l-;nzz:l 72L cosnt = ;z:: )_ cos(2r — 1)t.

26.23. (See Section 26.9) The 2w-periodic function specified by

—t -1 <t<0
P<t):{ t Eog?g?))

has the Fourier series

1 4 (cost cos3t cosbt
PO=5m—2\o 5 % )

(a) Rescale t by putting ¢t = 77/2 so that when ¢ = w, 7 = 2. Hence

1 4 <COS(7TT/2) n cos(377/2) N cos(bm7/2)

P(rr/2)=5m— 12 32 52

Finally, rescaling P,

=31 (—2<71<0
P(”m{ 37 Eogtgm )

24 (cos(m-/2) n cos(377/2) N cos(5m7/2)

Q(7)

I
w
|
|

12 32 52

The symbol 7 can be replaced by ¢ in the answer.

(b) First rescale ¢t by putting ¢t = 77, so that when ¢t = 7, 7 = 1. Therefore

= —7 —

2 T

Plar) = 1 4 (COS’IT’T cos37r7+cos57r7'+n_>.

12 + 32 52
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Then

1 1 4 [(coswr cosd3nwT  cosbmT
R(T)=1—7TP(7TT)=2+< 2 + 32 + =2 +>

3

As before T can be replaced by t.
(c) P(t) has the spectral components

7/2,4/m,4/(97),4/(257),... at n=0,1,3,5,...

The functions Q(¢) and R(t) have spectral components at the same values of n but scaled in
magnitude.

26.24. (See Section 26.9) The period-2 function

-1 (-1<t<0
P(t){ 1 E0§t<1))

has the Fourier series

P(t) =

3w

1 1
(sinﬂ't + 3 sin 37t + 5 sin 57t + - - ) .
Let t = 27/T so that when t = 1, 7 = 1T. Hence
2 (. 1 . 1 .
P2r/T) =— (SIH(Q’/TT/T) + 3 sin(677/T) + £ sin(10mw7/T) + - - ) .
™

Multiply both sides by a and change the sign. Then

1 1
—aP(27/T) = { lia ESZ%; <3T)

%a <sin(27rT/T) + %Sin(GWT/T) + %sin(lOWT/T) +-- )

Q(7)

This function is periodic with period 2a, which means that Q(7) = a for %T <t<T.

26.25. The 27-periodic function f(t) = ¢, (—7 <t < m) is odd so that the coefficients a,, are all
zero. The sine coefficients are given by

1 [7 2(—1)"
bn:f/ tsinntdt = — (=D , (n=1,2,3,...).
T n

—Tr

Hence
(_ 1 n+1

oo )
t = 2 -~ 2 & t
nil n simmn

To determine a particular solution of

d2
d—tf + Q%2 = K sinwt,
try a solution x = A coswt. Then
d*z 2 . 2 2
Tl 4+ Q°c — Ksinwt = —Aw”coswt+ Q°Acoswt — K coswt

= [A(Q? —w?) — K]coswt =0
for all t, if A = K/(2? — w?). The forced solution is therefore

K coswt
e
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Consider the general term in the Fourier series for f(¢), namely

71 n+1
QL sin nt.
n

Comparison with the particular solution just found thus generates
2(=1)"+ /n, w =),
2(—1)"*1 cos nt
02 — n2 ’

provided Q2 # n%. We now sum these terms over n to give the forced

L

The system will resonate if €2 is close to any positive integer n.

n+1
cos nt.

26.26. Multiply both sides of

1
—agp +

o0
5 Z(an cos wt + by, sinwt)

n=1

ft)

by f(t) and integrate term-by-term over the interval (f%T, %T):

ir
f(¢)*at

—%T

ip ir

1 2 3T

= 2(10/_; dt—i—Z(an i f( )coswtdt—i—b/
1

= 5a3+2(ai+bi),

n=1

using (26.9) for the Fourier coefficients.
(a) With T'= 7 and the odd function

-1 (=37 <t<0)
the Fourier coefficients a,, = 0 and
1
4 [27 2(1 — (=)™
b, = f/ sin 2ntdt ( (=1 )
™) in nmw
Hence 4 4 4
by =—,b2=0,b3=—,b,=0, by = —,
1 7T7 2 3 3 4 5 5
Hence, using Parseval’s identity,
Ly =, 5 .o 16 1
hl b -
340 2T = 5 ) Gy
1
2 [27 9 2
= = t)2dt = =
:/ UL
= 2
Therefore
(2m+1)2 8

a forcing term (with K =

solution

1
5T

T

f(t)sin wtdt)



(b) The Fourier coefficients of f(t) =¢t, (—7 <t < ) are
2(_1)11—!—1
n

(see Problem 26.1b). Using Parseval’s identity

. T 1 27
bv2) =4 == [ Pdt=_—[t"]",="-.
nz:la+ ZnQ W/,ﬂ 377[ IZa 3
Hence
Y LT
— nz 6
26.27. As far as the Laplace transform is concerned, the transform is that of the function f(¢)H(¢),
which is zero for ¢ < 0. The Laplace transforms of cosnwt and sin nwt are

S nw

,C{COS nwt} = m, ,C{Sin nwt} = m

Hence

= n bn
Pl = U0} = 50+ 3 S

The Fourier coefficients of the function

2 (—m<t<0
ro={ & Ll

are 5
— — ni,2, 2
an =0, by = n37r{2+(_1) [n°m® — 2]}.

Hence the Fourier transform of the function f(¢)H(t) is

oo o nn27r27
F(S)i22+(n222[+n2) 2]'

n=1
26.28. A radio wave is defined by
x(t) = acoswt cos wyt,
where wy is very much greater than w. Using the product formula in Appendix B(d),
z(t) = $afcos(wo — w)t + cos(wp + w)t].
The figure shows the wave x(t) = cost cos(10t) for —20 < ¢t < 20.

X

illlulh ) lL Ll
'H"’l"’”""" ‘U"W *l“'”"”’"W"‘H"W '

Figure 17: Problem 26.28

30
1
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(a) With w = 500 and wg = 100001, the sums and differences are
wp + w = 100501, wo —w = 99501.

The greatest common divisor of these numbers is 1: hence the period of z(t) is 2.
(b) If w = p/q and wy = /s, then

x(t) = acos(pt/q) cos(rt/s).

Then z(t) is periodic with period T if T' is the smallest values for which (¢ + T') = z(t) for all ¢.

For the given function
t+7T t+T
z(t+T) = acos (p(;—)) Ccos (r(:—)) .

This equals x(t) if pT'/q and rT/s are integer multiples of 27. Since ¢ and s have only the common
divisor 1 the smallest value of T is 2mgs, which is the period of x(t).
As the sum of two waves

t t
z(t) = acos <p) cos (Tx> S {cos (T — p> t + cos <T + p) t] .
q § 2 s q s q

This is the Fourier cosine series of x(t) over the period 27sq.
(c) Given z;(t) = cost cosv/2t, then

z(t 4+ T) = cos(t + T) cos(V2t + V/2T).

In this case we require 7 and /2T to be integer multiples of 27 which is impossible since by
definition v/2 can never be equal to the ratio of two integers.

26.29. (a) If m = n then

If m #n and fo = 1/T, then

T T

ei2mnfot —i2mmfot 34 _ / dt="1T.
r -1

Nl
[N

1
2

Nl

T . . T .
/ el27rnf0t67127rmfotdt _ / el27r(nfm)f0tdt _ |:
_1i7 —-iT

2

T'sin27(n — m)
= _ L = O
m(n—m)

Nl
[N

Te27rit(n7m)/T :|

1 27i(n —m) _ir

(b) From (26.18a),
xp(t) = Z X, ei2mnfot,

n=—oo

Multiply both sides by e27Nfot and integrate over one period, from t = —%T to %T:

T oo
/ z:p(t)ei2”Nt/Tdt _ Z XneiZﬂ'nt/TefiQﬂ'Nt/Tdt = XNT = Xn/fo.
,%T

n—=—oo

Nl=

Result (26.18) follows.
26.30. For xp(t) = t/T, the coefficients of the two-sided Fourier series are, from (26.18), given by

fo/T 1
Xog == tdt = =T
0 T 0 2 )
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fO r i2 t i
X, = —/ tem 2ol = —
T Jo 2nm

Hence
t 1

i 1
- 2 i2mnt/T
T 2 27 ne '
n=—o0o

Chapter 26: Fourier transforms

27.1 The real and imaginary parts of the integral
oo
2/ e te?mftqt
0

give the Fourier cosine and sine transforms X.(f) and X(f) respectively of e *:

: * t(—1+27i 2 t(—14+27if)j00
X, +iX, = 2/0 1+ f)dt:m[e( +2mif)e
B 2 2(1 + 2mif) _2(1 + 27if)
1—2mif  (1—2mif)(1+27if) 1+ (27f)2
2+ Anif
14 4n2f2

Therefore
2 Amf

Xo=—ro o, Xg=——.
1+ 4n2f2 1+ 472 f2
The inverse is

I(t) =2 /0 %sin(%ft)df.

I(t) is zero at t = 0. This is connected with (27.9). I(t) is an odd function on —oco < ¢t < o0;
I(t) =etfort>0and I(t) = —e~* for t < 0, so it jumps in value at to = 0, the mean of the
values at either side of ¢ = 0 being zero.

27.2. The cosine transform of

1—¢, 0<t<1
z(t) = { 0 t>1
is .
X(f) = 2/ x(t) cos(2m ft)dt = 2/ (1 —t¢)cos(2m ft)dt.
0 0
By integrating by parts we obtain

2 4sin®(wf)  sin®(nf)

Xe= Grpplt — el = T = —ap

The inverse of X.(f) is

= sinc 2.

T2 f2
This is an even function of ¢; it delivers (1 —t) for ¢ > 0, and (1 + ¢) for ¢ < 0, and is continuous
at t = 0, taking the value 1. Therefore put ¢ = 0 into the inverse integral; we obtain

> sin®(rf) |,

2/000 M cos(2m ft)df.
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Now put 7f = u; then the equality becomes

< gin? u du < gin?u 1
2 s—— =1, or s—du = .
0 u i 0 u 2

27.3. Here, z(t) = e~*", and we require the cosine transform Xc(f), where

(oo}
X.(f) = 2/ et cos(2m ft)dt
0
By differentiating with respect to f under the integral sign

dd);c = —4rw /Ooo(te_tz) sin(27 ft)dt. (1)
1,—t%.

Integrate by parts, putting into eqn (17.8) u = sin(2x ft), and dv/dt = te=t" so that v = —3e

. _47T{[sm<zwft>( e )] = [ delans costem
= —47r2f/ ~ cos(2m ft)dt = —2x% f X,
The differential equation X
i - -2’ fX, (ii)

is separable:

/d;,( _—27r2/fdf,

Xo(f) = Ke ™"

where K is an arbitrary constant. The inverse integral is therefore

leading to the general solution

=2K / 71 cos(2m ft)df (iii)

for some value of K. ,
To find K, put ¢t = 0 into (iii). We have z(t) =e~"", so

o0 2K [ 2K
2(0) =1= 2K/ e ™ df = —/ oy = VT _
0 ™ 0 ™ 2

from the standard integral given. Therefore K = /7, and

e
VT

2

_ _ 22
et o Jre ™ !

27.4. (a) x(t) is an even function, that is x(t) = z(—t). The Fourier transform is given by

o 0o 0
f[(E(t)] :/ x(t)e—%riftdt :/ x(t)e_27riftdt+/ l’(t)e_%riftdt.
0 —00

— 00

/

Change the variable in the second integral by putting ¢t = —t', and put x(—t') = z(t) (evenness

property):

Flz(t)] = /0 x(t)e_z’riftdt-i-/ S(#)e2 I q

0

o8] 2mwift —27ift
2 / Y P
0 2

2/0 x(t) cos(2m ft).dt (i)
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The right-hand side of (i) is the Fourier cosine transform X.(f).
(b) The function e~ is even, so eqn (i) applies. We then have

Fle™] = Xo(f) = Ve ™ 1",
By the time-scaling rule (27.18b),

Flemet] = Fle i = x, (f) B
o2

a2

_n2f2q

213

e

(Notice that if & = 7, the result becomes symmetrical: e el
27.5. With z(¢) an odd, real function
9] . o) . 0 .
X(f) = Flo(t)] = / w(t)e2mFtdt = / #(t)e2mtdL + / (t)e=2m1d,
—0o0 0 —00

Change the variable in the second integral to t' = —t, and use the oddness property, z(—t') =
—x(t'):

X(f)

[e'e) . () .y
/ J)(t)e_ZTHftdt _ / l‘(t/)e2mft dt/
0 0

[ st ey

0

_ o / 2(t) sin(2m ft)dt = —1X,(f)
0

where X,(f) is the sine transform of z(¢).
27.6. See the answer to Problem (27.4b), in the special case of a = .

27.7. To derive a form of Fourier transform pair that is an alternative to that in eqns (27.8).
Change the frequency variable f in eqns (27.8) to a new variable w through the relation f =
w/(27) (w then takes the meaning of circular, or angular frequency ). Then (27.8a) becomes

x(t) = /_DO X (%) ei“’t;i—c;, (i)

(o}

X (%) - / T a(t)e“tat. (ii)

—0o0

and (27.8b) becomes

Now put
1 w

N (%) = X1 (w).

Then (i) and (ii) become
1

() = 5 [ X,

X1 (w) = \/(1%) /_ Zx(t)e_i“’tdt,

and

as required

27.8. (This is an alternative approach from that in Problem 27.4.) In (27.8b), change the variable
from ¢ to (—t) and use the evenness property of x(t). We then have two alternative forms of the
equation:

X(f)= /jo z(t)e 24t and X (f) = /OO (t)e?m i dt,

— 00
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Add the two versions and divide by 2:

X(f) = %/w z(t)(e2™t 4 e~ 2 )4t = /:)o z(t) cos(2m ft)dt
= 2/0OO x(t) cos(2m ft)dt, (i)

since the integrand is even in ¢. Also X(f) is even (in f), so to obtain the inverse, start with
(27.8a), and carry out a similar process of changing the variable from f to (—f), obtaining

z(t) = 2/000 X(f)cos(2mft)df. (i)

Equations (i) and (ii) take a real form (though z(t) may be complex), recognizable as a Fourier
cosine transform and its inverse.

27.9. The function z(t) is odd (that is, 2(—t) = —z(t)). In (27.8b) change the variable from ¢ to
(—t) and use the oddness property. We now have two alternative forms for X (f):

oo

X(H= [ aeatad X(5) = - [ s ar
Add the two versions and divide by 2; we obtain

X(f) = 1/00 x(t)(e” 2t — 24t = —i/oo x(t) sin(27 ft)dt

2 —00 —00

= —2i /00 x(t) sin(27 ft)dt, (i)

0

since the integrand is an even function of ¢.

Notice that X (f) is an odd function of f (that is, X(—f) = —X(f)), and consider the in-
verse integral (27.8a), changing the variable (as before) from f to (—f) so as to obtain a second
representation of x(t):

x(t) = / X(f)e2”i'ftdf and x(t) — _/ X(f)e—%riftdﬁ
Add the two versions and divide by 2:

z(t) = %[ X(f)(eQ’“ftfe’szt)dt:i[ X (f)sin(2r ft)df

2i / X (f)sin(27 ft)dt (ii)
0
Now define a function X;(f) by writing iX(f) = X1(f). Then (i) and (ii) become the pair

X1(f) = 2/000 x(t) sin(27 ft)dt,

and -
() =2 / X1 (f) sin(2m f)d .
0
This is the sine transform pair (eqn (27.5)), and is a real form (though x and X may be complex).

27.10. Time-scaling rule (27.18b). Let x(t) < X(f), and consider the transform of x(At):

Flx(At)] = /OO z(At)e il qt,

— 00
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Change the variable of integration by putting At =t'. If A > 0, we obtain

l > n,—2mift' /A /_l i
A/_Ooa:(t)e dt —AX 1)

If A < 0, we obtain (note the inversion of the limits in the integral):

jl/.o_oo x(t’)e_%ift//Adt’ = —%X (ﬁ) .
Both results can be combined into one by writing
f@pﬁﬂ:irx(i).
Time-delay rule (27.18¢).
Flz(t — B)] = /Oo z(t — B)e™2™i/tqt,
Put t — B = t'. The integral becomes

/OC :L_(t/)e—Qﬂ-if(t’—&-B)dt/ _ e—27rifBX(f).

— 00

27.11. (a) By the time-delay rule (27.18c), with B = 1,

FO(t — 3)] = e 2"(/D gine f = e~ sinc f.

b) To confirm this directly: II(t — 1) is zero when t — 1 < —t andt— 1 > 1 so
( y 2 2 2 72

2

mf

1
. 1 .
1 o —2mift _ —2mift]l
A= 3] = [ e = ey
_ _e—27'rif —1 _ (eﬂ'if _ e—T{'if)e—Trif _ e—Tfif Sinﬂ'f
27if 2mif
= e "Ysinc f.

(¢) The graph of x(t) is shown in the figure. It is obtained by moving a centrally-placed rectangle
of width ¢ given by II(t/c) a distance b > ic to the left, and changing its sign to produce A, and

a distance b to the right to produce B.

b-< b b+%

Figure 18: Problem 27.11

mﬂz—n<ff>+n<ff).

o1

Therefore



By the time-delay rule (28.18¢), with B = +b,

Fla@t)] = (—e*™ 4 e72mibh)F [H (tﬂ
c
(—eQ’”bf + e*2“ibf)[c sinc (cf)]
(by the time-scaling rule (28.18b) with B =1/c)

—2icsin(27h f)sinc (cf).

27.12. (a) Given that A(t) <> sinc?f, we obtain from the time-scaling rule (27.18b) with A = 2:

A(2t) < Lsinc?(3f).

(b) In general, suppose that z(t) <> X (f). To obtain F[x(2¢t — 3)] we can use the time-scaling rule
(27.18b), then the time-delay rule (27.18c), as follows:

x(2t) < $X(3f) (time-scaling).

and
w(2t —3) = x(2[t — 3]) < e OIIX (1)} = 5P X(31).

For the particular case of x(t) = A(t), X(f) = sinc?f, so that we have

A2t = 3) < e sinc?(3 f).

27.13. (a) Frequency shift rule (27.18¢). From the definition of F

Flz(t)e? P = /°° 2 (t)e?miDte=2mift gy
_ /oo x(t)efgqri(ffD)tdt — X(f _ D)
where X (f) = Flz(t)].
(b) Fle(®)e "] = X(f F fo), (from (a)
(c) From (b)
Flz(t) cos(2mfot)] = %]—‘[a;(t){e%ifot + e 2mifoty]
= LIX( o)+ X+ )
Flo(t)sin@nfot)] = o Fla(t) {2t —e27ihot]

= X~ o) = X (T + o)
(d) F[II(t)] = sinc f. By the time-scaling rule (27.18b) with A = 1,
F[II(3t)] = 2sinc 2.
Apply the results in (c); then
FII(Lt) cos(2m fot)] = sinc2(f — fo) + sinc2(f + fo),

and
FII(5t)sin 27 fot)] = —ifsinc 2(f — fo) — sinc2(f + fo)}.
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27.14. (a) To obtain F[sinc?t], given that F[A(t)] = sinc?f. In the duality rule (27.18b) put
X(t) = sinc?t and x(—f) = A(—f) = A(f) since A is an even function. We obtain F[sinc?t] =
ACP).

This result may alternatively be obtained without using (27.18b). From the basic transform
pair, starting with the inverse relation (27.8a), we know that

/ il tsinc 2 fdf = A(t).

—00

This equation is an identity, so if we interchange the letters f and ¢ in it, the result remains true:

/ ety = A(f)

for all values of the parameter f. Therefore

/ 2= Ptgine 2tdt = A(—f),
or -
/ e 2™ tsine 2dt = A(—f) = A(f)
since A is even. Therefore F[sinc%t] = A(f).

(b) Given that F[sinc?t] = A(f), the time-scaling rule (27.18b) with A = a gives

Flsine(at)] = A (f) .

a

Now write sinc 2(at + b) = sinc ?[a(t + (b/a))], and use the time-delay rule (27.18¢) with B = —b/a:

Flsinc?(at + b)] = éezﬂibf/aA (f) :

a

27.15. (a) To prove the differentiation rule (27.18h). From (27.8a),

z(t) = /oo ™LX (f)df.

— 0o

By differentiating with respect to ¢ under the integral sign:

da(t) _ / T Mo fX ()}

dt oo
that is d(t)
T .
20 o mif)X(f)
As each subsequent differentiation introduces another factor 2zif, we have
d™z(t .
) (i X (6)

(This process can only be carried out so long as the functions on the right continue to have valid
Fourier integrals.)

(b) Given e "l < 2/(1 + 472 £2), to find the inverse of if /(1 4 472 f?). The differentiation rule in
(a), with z(t) = e~ !l gives
d
dt

it 4rif .
(e ! ‘):H m (i)
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Also
d

&(e_‘tl) =

et fort <0
—et fort>0 "’

that is,
d

a(eflt‘) = —e Itlsgn (1),

where sgn (t) stands for the sign of ¢ (see Section 1.4). At ¢t = 0 the derivative does not exist.

Therefore, from (i), the inverse of if /(1 + 472 f?) is

1
—Eeflt‘sgn (t).

27.16. Given (eqn (27.17)) that 1/(« + 27if) is the transform of the function h(t) defined by

0, t<0
h(t) = { e—at t>0

to obtain Fle~*]. Tt is easy to show that
e = h(t) + h(—t),
by sketching diagrams of f(¢) and f(—t). From the time-reversal rule (27.18b),

Fle=] = Flt)] + Flh(-t)]
1 2

o+ 2rf * a+2m(—f) a2 +4r2f2’

27.17. (a) H(¢) is the Heaviside unit function, eqn (1.13).

1
Fle™H(t)] = X(f) = ot 2nif’
from eqn (27.17). From the modulation rules (27.18f), with K = 3/(2w),
Fle * cos(Bt)H(t)] = % {X (f - 2671-) +X (f + fﬂ)}
— } 1 + 1 (l)
2 a+2ni(f- L) at2ni(f+ D)
and
1 1 1
Fle s H(t)] == —
[e Sln(ﬂt) (t)] 21{@+27Ti(f£r) a+27ri(f+2€r)}

(b) In the case of Fle™ cos(2n fot + ¢)H(t)], expand the cosine term, obtaining

Fle™* cos(2n fot + ¢)H(t)] =
cos pF[e” " cos (2 fot \H(t)] — sin pF[e™*" sin(2r fot ) H(t)].

The results (i) and (ii) above, with 8 = 27 fy, apply to the two terms, giving
1
2

¢{ 1 N 1 }_
P\ atemi(f— fo) T a+em(f+ fo)

Lne { 1 _ L }
2 MO\ at2mi(f — fo)  a+2mi(f + fo)

1 el? e”i®
- e )
(acos ¢ — 2w fo sin ¢) + 2wif cos @
a? —An2(f2 — f2) + dmiaf
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27.18. By (27.27), the notation z1(t) * x2(t) means

/ 1 (7T)xa(t — 7)du.
Put 3 = H(t) and 1 (¢) = x(¢t)H(¢). Then z2(7) is zero for 7 < 0 and (¢t — 7) is zero for t —7 < 0,
or 7 > t. Therefore

x1(t) * x2(t) = /0 x(7)dr.

27.19. (a)

e 'H(t) x e "H(t) = / et~ TWH(u)du = I(t), say.

oo

If t > 0, H(u)H(t — u) is zero for u < 0 and w > ¢. If t < 0, then H(u)H(t — u) is zero for all u.
Therefore ; .
I(t) = Joete " Wdu=e"t [[du=te™t fort>0
zero for t < 0.

(b) From (27.17), Fle7'H(t)] = 1/(1 + 2xif). From (a)
Flte "H(t)] = Fle 'H(t) * e "H(t)].
Therefore, by the convolution theorem (27.28),

Flte " H(t)] = Flo~H(t)| FletH(t)] = ﬁ Q)

(c¢) H(at) = H(t) for o > 0, so the time-scaling rule (27.18b) applied to (i) gives

— _1 1 = c
Flate™ W] = G omif/a) ~ @+ 2mf)?

Therefore, dividing through by «,

1
(o +2mif)2

(d) From (27.17), Fle=*'H(t)] = 1/(a + 27if) for a > 0

)

. d

/ eQTrlft f = e_atH(t).
oo o+ 2mif

Flte *H(t)] =

Differentiate both sides with respect to a; we obtain

> i df —at
—[me2 fm = —te H(t)

Therefore )

e 1) < e

as already found in (ii)
27.20. By (27.15), F[II(t)] = sinc f. From the time-delay rule (27.18c):
Flt + 3] = e*™/sinc f.
Therefore by the convolution theorem
FIO(E—3) T+ 1)) = FI(E - HIFL(E+ 1))

(e""™Fsincy) (e sincy) = sinc?f

55



(b) By proceeding as in (a), we obtain

FI(t —a)] « Ot —b)] = (e 2™ ginc f)(e” >/ sinc f)
6727ri(a+b)fsinc 2f
(c) In the definition (27.27a) put @1 (t) = II(t), z2(t) = II(t), and use the second form in (27.27a)

for simplicity. Then put

oo

I(t) « I(3t) = / I(t — w)I(3u)du = (t). (i)
II(t — u) is zero for t —u < —% and for t —u > 1, and II(u) is zerofor u < —1 and for u > 1. By
sketching a diagram as in Example 27.10 we can establish the effective limits of the integral in (i)
in terms of ¢.

N|Wp=ececenaaad

Figure 19: Problem 27.20

Also F(t) is an even function, so we only have to calculate for ¢ > 0 and the values for t < 0
will echo those values. The diagram has boundaries u = £1 and u =t + % The values of F(t) are
given in the following table.

Range of t F(t)
t<f% Zero
3 1 tty g 3
3 St<—3 f—ljdu_t+§
1 1 t+3
Lop<s [Lidu=1—(t—1)=—t+2
2 >3 t—1 2 2
t>% Zero

27.21. By Section 27.9, the energy FE is given by

E

/jo {e™™H(t)}*dt = /OO e 2'H(t)dt, (since [H(t)]? = H(t))

° 1
= / e 2t = —.
0 200

The transform (frequency distribution) of e=** is 1/(a + 27 f) = X(f), say, by (27.17). The
energy associated with the frequency range —fo < f < fo in the expression (27.33) is

fo fo df fo df
2 _ —

a 1 [2rhle gy
= —__ —— (after puttin = ou/(27
gl N (after putting f /(2m))

1 onfo/a 1 27 fo
= %[arctan uL%fO/a = arctan o )
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27.22. The problem asks you to show that if z(t) is zero for t < —3T and t > T, then 7 (t)*x(t)
is periodic with period T. By the convolution theorem

FlMyp (t) * x(t)] = Fly (8)]Flx(t)]. (i)

Here

and from (27.32), since fo =1/T,

FIlly (6] = £ Wy (1) = 2 > 6(f — (n/T).

Therefore (i) becomes
= 1 %T —2mift
A @)= 3 (5 [ e ata) o - (/7))

1
5T

n=—oo

which, by (27.21), is the Fourier transform of the T-periodic extension of z(t) to all values of ¢
(remember that 1/T = fy in (27.21)).

27.23. Take the Fourier transform of the differential equation

d?z 1
- =
di? 1+ ¢2

using the differentiation rule (27.18h) to convert the derivative:

P o] = emipx () - x() = 7| 11
az | = AN = XD =F |-
Therefore ) ) . .
- — _Fle
X = 1+47r2f2]:[1+t2] =57l lt]f[lth?}

(by Example 27.3). This is the product of two transforms, so by the convolution theorem the
inverse x(t) of X(f) can be written as the convolution integral

0o —|t—u|
z(t) = —1/ ¢ du.

2 ) o 14+u?

(There are, of course, two linearly independent solutions but only one has a Fourier transform.)

27.24. II(t) is continuous at ¢t = 0 taking the value 1. Therefore we may put ¢ = 0 into the defining
Fourier integral

/ e 2™ tsinc tdt = A(t).

o0 (o]
/ sinctdt =1 = 2/ sinc t dt,
—00 0

. . . o .
since sinct is even. Therefore fo sinctdt = %

‘We obtain

(b) / e 2mifte=" 4t — ¢=™/”  (see Problem 27.6)

— 00
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Differentiate both sides of the equation with respect to f:

o0
—27Ti/ e~ 2miftye—mt? qp — —27Tfe_7rf27
— 00

so Flte™™] = —ife "/’
27.25. By the convolution theorem and the result F[sinc¢] = II(f),

Flsinct * sinct] = Fsinc t] Flsinc t] = I(f) = II(f).
Similarly, and using the time-delay rule (27.18¢c),

Flsine (¢ — a) # sine (t + a)] = (2" TI(f)) ™/ TI(f)) = T2(f) = TI(f).

27.26. (a) Moving average of g(t). To show that

t+ir
o) =1 [ sl

T —1
5T

can be written as

The convolution is defined by (27.27):

(2= [ n(5)

II[(t —w)/7] is zero when [(t —u) /7] < —3 or [(t—u)/7] > %; that is, when u > t+ 47 or u < t— 7.
Therefore the integral is zero for these ranges, and equals g(u) elsewhere, and (i) becomes

t+37
ll glu)du = g, (1)

T _1
5T

(b) The moving average of II(t) over intervals of length 7 is given by F.(t), where

1 [ U .
Fr(t) = — Lm TI(t — u)TI (T>du, (i)
(using (a) with the convolution form (27.26b), with II(¢) for 1 (t) and z2(t) = II(t/7), the averaging
function). Although this looks more complicated than the direct definition of g.(t), it permits
evaluation on the lines of Example 27.10 and Fig. 27.14, which allows extensions to other functions
also.

The boundary of the region where the integrand is nonzero (it takes the value 1) is shown by
the parallelogram in the figure. The formulae giving the effective limits of integration in (i) change
as t passes over the points A’, B, B, A. The figure shows a case where 7 > 1, together with
the values of ¢ at these critical points. When 7 < 1 the construction is the same and the formula
is the same, but B will be on the negative side of the u axis and B’ on the positive side. Both
possibilities are covered by expressing the results in the following way:

—Srn<t<—dr—1 F=1"Cdu=2{t+1) - (-3} =L¢+ir+ D)
—glr=1<t<glr—1  F@t)=1%[ du=1;
17

(note that, predictably, this is an even function of ¢t.) F,(t) = 0 elsewhere.
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N -

A
_ % (t+1)
Figure 20: Problem 27.26
27.27. The definition of the convolution is
e b
F(t) = / g(w + b)IT <w+> My (t —w—a)dw
oo T
with 7 <T. Put w —a = u:
o )
Ft) = / g(u+a—b)I (“”) MLy (t — u)du
oo T
o0
e —b
= ¥ / {g(u—I—a AV (“*“) } 5t —u—nT)du (i)
— o/ T

This resembles the form in Example 27.11, with the function z(t) displaced along the w axis by a
distance a — b to the left, as in the figure.

- T -

-

A B

—a+b+iT -a+b —a+b—lT
2 T 2
- T

Figure 21: Problem 27.27
The condition 7 < T ensures that the nonzero segment of the function does not extend beyond
the range AB: —a+b— 3T <u < —a+b+ 3T. The argument in Example 27.11 can be adapted

to fit this case. For a given ¢, there is always exactly one value of n, say N, such that a single
impulse in (i) lies in the interval AB of length T'. But if n is any integer

(t—nT)+(N+n)T=t— NT,
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so (from the sifting property) the value picked out is reproduced at t — nT, for all n. Therefore
the convolution represents the periodic extension, period T, of g(u + a — b) as depicted.

27.28. The function o

h(t) =TI(¢) « A(t) = / TI(u)A(t — u)du
from (27.27). TI(u) is zero for u < § and u > 3, and A(t —u) is zero for t —u < —1l and t —u > 1.
To obtain the effective limits of integration, follow the procedure leading to Fig. 27.14 in the book.
The boundaries of the region of the (¢, u) plane on which the integrand is nonzero are u = :l:% and
t —u = =£1, shown in Fig. 22. (The definition of A(u) is given in Example 27.10.) We have, for

' '
] 0.4 ]
\x\/ ' '
S [} 0.2 '
' '
T 1 T 1
-5 -1 -0.5 045 1 1.5
' -0.2 1
' ' >
' _0.4 [
' '

I

t< 3 h(t) = 0;
—S<t< -1 h(t):jjlgl(uu)du: 142 4 op 4 13,
-1 <t<0 h(t):ff%(l—ku)du:l,
0<t<] h(t):f_%%(l—u)duzl;
l<t<?d h(t):fél(lfu)du:%t2+2t+1§5;
t>3 h(t) = 0.

By the convolution Theorem (27.28),
F[h(t)] = FII()]F[A(t)] = sinc f sinc > f = sinc® f

(by Example 27.10). Therefore, since h(t) is continuous (no jumps) the inverse of F[h(t)] for all ¢
is given by

/ ™ tsine3 fdf = h(t).
Put t =0: ~
/ sinc® fdf = h(0) =

— 00

27.29. (a)

x(t) * {Ay(t) + Bz(t)} /oo z(u){Ay(t — u) + Bz(t — u)}du

= A/ y(t — u)du + B/ z(uw)z(t —u)du
= Ax(t)*y(t) + Bx(t) * 2(t).
(b) Quoted in (27.26) in the text: here we check it directly:

x(t) xy(t) = /00 z(w)y(t — u)du.

— 00
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Change the variable to v =t — u:

x(t)xy(t) = — /—00 x(t —v)y(v)dv

oo

_ /oo y(v)3(t — v)dv = y(t) * (t)

—00

(c) We shall consider the Fourier integrals of the terms, so as to avoid double integrals (Chapter 32).
By the convolution theorem (27.28), used twice,

Fla(®) «{y(t) x 2(0)}] = Fla(®)|Fly(t) = 2(t)]
= Fle@]Fly(O]F[=(1)]-

The same product appears if the group is bracketed differently (or placed in any order).
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