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Chapter 24: The Laplace transform

24.1. The Laplace transform of the function f(t) is defined by

L{f(t)} = F (s) =
∫ ∞

0

e−stf(t)dt.

Use (24.2), (24.3) and (24.4).

(a) L{et} =
∫ ∞

0

ete−stdt =
1

s− 1
.

(b) L{4e−t} =
4

1 + s
.

(c) L{3et − e−t} = L{3et} − L{e−t} =
3

s− 1
− 1

s + 1
.

(d) L{3t2 − 1} =
6
s3
− 1

s
.

(e) L{ 1
2 t3 + 2t2 − 3} = 3

s4 + 4
s3 − 3

s .

(f) L{3 + 2t4} =
3
s

+
48
s5

.

(g) L{3 sin t− cos t} = L{3 sin t} − L{cos t} =
3

1 + s2
− s

1 + s2
=

3− s

1 + s2
.

(h) L{2(cos t− sin t)} = L{2 cos t} − L{2 sin t} =
2s

1 + s2
− 2

1 + s2
.

(i) L
{

1 +
t

1!
+

t2

2!
+ · · ·+ tn

n!

}
= s + s2 + s3 + · · ·+ sn+1.

24.2. The scale rule (24.5) states that, if L{f(t)} = F (s) and k > 0, then

L{f(kt)} =
1
k

F
( s

k

)
.

(a) Since L{et} = 1/(s− 1), then

L{e3t} =
1
3

1
( s
3 − 1)

=
1

s− 3
.
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(b) L{1− 2e−2t} =
1
s
− 2

s + 2
=

2− s

s(s + 2)
.

(c) L{sin ωt} =
ω

s2 + ω2
.

(d) L{cosωt} =
s

s2 + ω2
.

(e) L{3 cos 2t− 2 sin 2t} =
3s

4 + s2
− 4

4 + s2
=

3s− 4
4 + s2

.

(f) Use the identity cos2 t = 1
2 (1 + cos 2t). Then

L{cos2 t} = L{ 1
2 (1 + cos 2t)} =

2 + s2

s(4 + s2)
.

(g) Use the identity sin2 t = 1
2 (1− cos 2t), so that

L{sin2 t} =
2

s(4 + s2)
.

24.3. To evaluate these Laplace transforms use the scale, shift and other rules in Section 24.3.
(a) By (24.2), L{t2} = 2!/s3. Then by the shift rule (24.7)

L{t2et} =
2!

(s− 1)3
.

(b) In a way similar to (a), L{t} = 1/s2, so that, by the shift rule

L{te−2t} =
1

(s + 2)2
.

(c) Using the shift rule again

L{t2e−t} =
2!

(s + 1)2
.

(d) Since, by (24.4), L{cos t} = s/(s2 + 1), the shift rule (24.7) implies

L{e2t cos t} =
s− 2

(s− 2)2 + 1
=

s− 2
s2 − 4s + 5

.

(e) Since, by (24.4), L{sin t} = 1/(s2 + 1)}, the shift rule (24.7) implies

L{e−t sin t} =
1

(s + 1)2 + 1
=

1
s2 + 2s + 2

.

(f) Using the scale rule (24.6) and the shift rule (24.7)

L{et sin 3t} =
3

s2 − 2s + 10
.

(g) Using the scale rule (24.6) and the shift rule (24.7)

L{e−2t sin 3t} =
3

s2 + 4s + 13
.

2



(h) Using the scale rule (24.6) and the shift rule (24.7) again

L{e−3t cos 2t} =
3 + s

s2 + 6s + 13
.

(i) Let F (s) = L{cos 3t} = s/(s2 + 9). Using the multiplication rule

L{t cos 3t} = − d
ds

(
s

s2 + 9

)
=

s2 − 9
(s2 + 9)2

.

(j) Let F (s) = L{sin 3t} = 3/(s2 + 9). Now use the multiplication rule (24.8):

L{t sin 3t} = −dF (s)
ds

= − d
ds

(
3

s2 + 9

)
=

6s

(s2 + 9)2
.

(k) Let F (s) = L{sin t} = 1
s2+1 . By the multiplication rule (24.8):

L{t2 sin t} =
d2F (s)

ds2
=

d2

ds2

(
1

s2 + 1

)

= − d
ds

(
2s

(s2 + 1)2

)

=
6s2 − 2

(s2 + 1)3
.

(l) Let f(t) = t4e−t.
(i) Since L{t4} = 4!/s5, the shift rule (24.7) implies

L{f(t)} =
4!

(s + 1)5
=

24
(s + 1)5

.

(ii) Since L{e−t} = 1/(s + 1) = F (s), say, the multiplication rule (24.8) gives

L{t4e−t} = (−1)4
d4F (s)

ds4
=

d4

ds4

[
1

(s + 1)

]

=
24

(s + 1)5

(iii) The direct method requires repeated integration by parts:

L{f(t)} =
∫ ∞

0

t4e−tdt = [−t4e−t]∞0 +
∫ ∞

0

4t3e−tdt

= 0 + [−4t3e−t]∞0 +
∫ ∞

0

12t2e−tdt

= 12
∫ ∞

0

t2e−tdt =
24

(s + 1)5
.

24.4. From the definition (24.1):
∫ ∞

0

e−st cos ktdt =
s

s2 + k2
.

Differentiate both sides of this equation with respect to k. Then

−
∫ ∞

0

te−st sin ktdt = − 2ks

(s2 + k2)2
,
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so that
L{t sin kt} =

2ks

(s2 + k2)2
.

24.5. In these problems we have to find the function f(t) in the transform

F (s) =
∫ ∞

0

e−stf(t)dt,

when F (s) is given. We attempt this by using the tables in Section 24.4 and in Appendix F, and
the various rules. Note that all the time functions are defined to be zero for t < 0.
(a) F (s) = 1/s2 is the transform of f(t) = t by (24.2). We also write this as

1
s2
↔ t (see Section 24.4).

(b)
1
s
↔ 1 (see 24.2).

(c)
3
2s
↔ 3

2
.

(d)
3
s5
↔ t4

8
.

(e) Use the shift rule (24.7) L{ektf(t)} = F (s− k). Since L{1} = 1/s,

1
s− 3

↔ e3t.

(f) Using the shift rule again
1

s + 4
↔ e−4t.

(g)
3

2s− 1
↔ 3

2
e

1
2 t.

(h)
2

2− 3s
↔ −2

3
e

2
3 t.

(i) Using partial fractions
1

s(s− 1)
=

1
s− 1

− 1
s
↔ et − 1.

(j) Since s2 + s− 1 = (s + 1
2 − 1

2

√
5)(s + 1

2 + 1
2

√
5), the partial fractions expansion is

1
s2 + s− 1

=
1√
5

[
1

s + 1
2 − 1

2

√
5
− 1

s + 1
2 + 1

2

√
5

]

↔ 1√
5

[
e−

1
2 (1−√5)t − e−

1
2 (1+

√
5t)

]

(k) Using partial fractions

s

s2 − 1
=

1
2(s + 1)

+
1

2(s− 1)
↔ 1

2
[e−t + et].
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(l) Using partial fractions

2s− 1
s2 − 1

=
1

2(s− 1)
+

3
2(s + 1)

↔ 1
2
et +

3
2
e−t.

(m) By (24.4)
s

s2 + 1
↔ cos t.

(n) By (24.6c),
1

s2 + 4
↔ 1

2
sin 2t.

(o) By (24.6),
2s− 1
s2 + 4

=
2s

s2 + 4
− 1

s2 + 4
↔ 2 cos 2t− 1

2
sin 2t.

(p) Using partial fractions
2s− 1

s(s− 1)
=

1
s

+
1

s− 1
↔ 1 + et.

(q) Using partial fractions

s2 − 1
s(s− 1)(s + 2)(s + 3)

=
1
6s

+
1

2(s + 2)
− 2

3(s + 3)

↔ 1
6

+
1
2
e−2t − 2

3
e−3t

(r) Using partial fractions and (24.6)

s

(s− 1)(s2 + 1)
=

1
2(s− 1)

− s

2(1 + s2)
+

1
2(1 + s2)

↔ 1
2
et − 1

2
cos t +

1
2

sin t

(s) Since L{t2} = 2/s3, the shift rule (24.7) applied to this transform implies

1
(s− 1)3

↔ 1
2
ett2.

(t) Since s2 − 2s + 2 = (s− 1)2 + 1, we can write the transform as

2s + 1
s2 − 2s + 1

=
2(s− 1) + 3
(s− 1)2 + 1

.

Now use the shift rule (24.7) and (24.6b,c):

2s + 1
s2 − 2s + 1

↔ 1
2
et[cos t + 6 sin t].

(u) Using partial fractions

s

(s2 + 1)(s2 + 4)
=

s

3(s2 + 1)
− s

3(s2 + 4)
↔ 1

3
[cos t− cos 2t].

24.6. These problems use the results on the transforms of derivatives given in (24.12):

L{ẋ(t)} = sX(s)− x(0), L{ẍ(t)} = s2X(s)− sx(0)− ẋ(0).

(a) L{ẋ(t)} = sX(s)− x(0) = sX(s)− 6.
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(b) L{ẋ(t)} = sX(s)− x(0) = sX(s).

(c) L{ẍ(t)} = s2X(s)− sx(0)− ẋ(0) = s2X(s)− 3s− 5.

(d) L{ẍ(t)} = s2X(s)− sx(0)− ẋ(0) = s2X(s).

(e)

L{2ẍ(t) + 3ẋ(t)− 2x(t)} = 2s2X(s)− 2sx(0)− 2ẋ(0) + 3sX(s)− 3x(0)− 2X(s)
= (2s2 + 3s− 2)X(s)− (3 + 2s)x(0)− 2ẋ(0)
= (2s2 + 3s− 2)X(s)− 10s− 9

(f) L{3ẍ(t)− 5ẋ(t) + x(t)− 1} = (3s2 − 5s + 1)X(s)− 1
s
.

24.7. (a) Take the Laplace transform of the differential equation:

L{ẍ + 3ẋ + 2x} = s2X(s)− sx(0)− ẋ(0) + 3sX(s)− 3x(0) + 2X(s)
= (s2 + 3s + 2)X(s)− 1 = 0.

Therefore
X(s) =

1
(s + 1)(s + 2)

=
1

s + 1
− 1

s + 2
.

Taking the inverse transform x(t) = e−t − e−2t.
(b) Take the Laplace transform of the equation:

L{ẍ + ẋ− 2x} = s2X(s)− sx(0)− ẋ(0) + sX(s)− x(0)− 2X(s)
= (s2 + s− 2)X(s)− 3(s + 1) = 0.

Hence the transform of the solution is

X(s) =
3(s + 1)

s2 + s− 2
=

3s

(s− 1)(s + 2)
=

2
s− 1

+
1

s + 2
.

Hence the inverse transform is x(t) = 2et + e−2t.
(c) Take the Laplace transform of the equation:

L{ẍ + 4ẋ} = s2X(s)− sx0 − y0 + 4sX(s)− 4x0

= (s2 + 4s)X(s)− (s + 4)x0 − y0 = 0

Therefore the transform of the solution is

X(s) =
(s + 4)x0 + y0

s(s + 4)
=

4x0 + y0

4s
− y0

4(s + 4)
.

Hence the solution is
x = 1

4 (4x0 + y0)− 1
4y0e−4t.

(d) Take the Laplace transform of the equation:

L{ẍ + ω2x} = s2X(s)− sx(0)− ẋ(0) + ω2X(s) = (s2 + ω2)X(s)− sc = 0.

Therefore the transform of the solution is

X(s) =
sc

s2 + ω2
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giving the solution x = c cos ωt.
(e) Taking the Laplace transform of the equation:

L{ẍ + 2ẋ + 5x} = s2X(s)− 3s + 3 + 2sX(s)− 6 + 5X(s)
= (s2 + 2s + 5)X(s)− 3s− 3 = 0.

Therefore

X(s) =
3s + 3

s2 + 2s + 5
=

3(s + 1)
(s + 1)2 + 4

.

Using the shift rule
x = 3e−t cos 2t.

(f) For this fourth-order equation

s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0)− Y (s) = (s4 − 1)Y (s)− s3 = 0.

Therefore

Y (s) =
s3

s4 − 1
=

1
4(s− 1)

+
1

4(s + 1)
+

s

2(s2 + 1)
.

The solution can now be constructed using (24.6):

y = 1
4ex + 1

4e−x + 1
2 cos x.

24.8. Take the Laplace transform of the equation in each case.
(a) ẍ = 1 + t + et, x(0) = ẋ(0) = 0. Then

s2X(s) =
1
s

+
1
s2

+
1

s− 1
.

Hence
X(s) =

1
s3

+
1
s4

+
1

s2(s− 1)
=

1
s3

+
1
s4
− 1

s
− 1

s2
+

1
s− 1

.

Hence, using the table of Laplace transforms, the solution is

x = −1− t +
1
2
t2 +

1
6
t3 + et.

(b) ẍ + x = 3, x(0) = 0, ẋ(0) = 1. The Laplace transform of this equation is

s2X(s)− 1 + X(s) =
3
s
.

Hence
X(s) =

1
s2 + 1

+
3

s(s2 + 1)
=

1
s2 + 1

+
3
s
− 3s

s2 + 1
.

Using (24.6) for the inversion:
x = sin t + 3− 3 cos t.

(c) ẍ + 2ẋ + 2x = 3, x(0) = 1, ẋ(0) = 0. The Laplace transform of the system is

s2X(s)− s + 2sX(s)− 2 + 2X(s) =
3
s
.

Hence

X(s) =
s + 2

(s + 1)2 + 1
+

3
s[(s + 1)2 + 1]

=
s + 2

(s + 1)2 + 1
+

3
2s
− 3(s + 2)

2[(s + 1)2 + 1]

= − s + 1
2[(s + 1)2 + 1]

− 1
2[(s + 1)2 + 1]

+
3
2s

.
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Hence using the inverse table and the shift rule

x = −1
2
e−t(cos t + sin t) +

3
2
.

(d) ẍ− x = e2t, x(0) = 0, ẋ(0) = 1. The Laplace transform of the system is

ssX(s)− 1−X(s) =
1

s− 2
.

Hence
X(s) =

s− 1
(s− 2)(s2 − 1)

=
1

(s− 2)(s + 1)
=

1
3(s− 2)

− 1
3(s + 1)

,

using partial fractions. By inverting, we have

x =
1
3
(−e−t + e2t).

(e) ẍ− x = tet, x(0) = 1, ẋ(0) = 1. The Laplace transform of the system is

s2X(s)− s− 1−X(s) =
1

(s− 1)2
.

Hence

X(s) =
1

s− 1
+

1
(s− 1)2(s2 − 1)

=
9

8(s− 1)
− 1

8(s + 1)
− 1

4(s− 1)2
+

1
2(s− 1)3

.

The solution is
x = 9

8et − 1
8e−t − 1

4 tet + 1
4 t2et.

(f) ẍ− 4x = 1− e2t, x(0) = 1, ẋ(0) = −1. The Laplace transform of the system is

s2X(s)− s + 1− 4X(s) =
1
s
− 1

s− 2
.

Hence
X(s) = − 1

4(s− 2)2
+

7
16(s− 2)

− 1
4s

+
13

16(s + 2)
.

Inverting

x = −1
4
te2t +

7
16

e2t − 1
4

+
13
16

e−2t.

(g) ẍ− 4x = e2t + e−2t, x(0) = 0, ẋ(0) = 0. The Laplace transform of the system is

s2X(s)− 4X(s) =
1

s− 2
+

1
s + 2

.

Hence
X(s) =

1
(s2 − 4)(s− 2)

+
1

(s2 − 4)(s + 2)
=

1
4(s− 2)2

− 1
4(s + 2)2

.

Using the shift rule

x =
t

4
(e2t − e−2t).

(h) ẍ + ω2x = C cos ωt, x(0) = x0, ẋ(0) = y0. The Laplace transform of the equation is

s2X(s)− sx0 − y0 + ω2X(s) =
Cs

s2 + ω2
.

Hence
X(s) =

x0s + y0

(s2 + ω2)
+

Cs

(s2 + ω2)2
.
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Note that
L{sin ωt} =

ω

s2 + ω2
= F (s),

say, so that by (24.8)

−dX(s)
ds

= − d
ds

[
ω

s2 + ω2

]
=

2sω

(s2 + ω2)2
= L{t sin ωt}.

Use this result in the inversion the transform above:

x = x0 cosωt +
y0

ω
sin ωt +

Ct

2ω
sinωt.

(i) x··· − 2ẍ− ẋ + 2x = e−2t, x(0) = ẋ(0) = 0, ẍ(0) = 2. The Laplace transform of the equation is

s3X(s)− 2− 2s2X(s)− sX(s) + 2X(s) =
1

s + 2
,

or
(s3 − 2s2 − s + 2)X(s) = (s− 1)(s + 1)(s− 2)X(s) = 2 +

1
s + 2

.

Hence, applying partial fractions,

X(s) =
2

(s− 1)(s + 1)(s− 2)
+

1
(s− 1)(s + 1)(s− 2)(s + 2)

=
3

4(s− 2)
− 7

6(s− 1)
− 1

2(s + 1)
− 1

12(s + 2)
.

Inverting

x =
3
4
e2t − 7

6
et − 1

2
e−t − 1

12
e−2t.

24.9. (a) ẋ = x− y, ẏ = x + y, x(0) = 1, y(0) = 0. Let L{x} = X(s) and L{Y } = Y (s). Taking
Laplace transforms of the differential equations:

sX(s)− x(0) = sX(s)− 1 = X(s) + Y (s), sY (s)− y(0) = sY (s) = X(s) + Y (s),

which are simultaneous linear equations in X(s) and Y (s), namely

(s− 1)X(s) + Y (s) = 1, X(s) + (s− 1)Y (s) = 0.

Solving them

X(s) =
s− 1

(s− 1)2 + 1
, Y (s) =

s− 1
(s− 1)2 + 1

.

Finally invert the transforms using the shift rule (24.7) applied to (24.4) to give the solutions

x = et cos t, y = et sin t.

(b) ẋ = 2x+4y +e4t, ẏ = x+2y, x(0) = 1, y(0) = 0. Taking Laplace transforms of the differential
equations:

sX(s)− 1 = 2X(s) + 4Y (s) +
1

s− 4
, sY (s) = X(s) + 2Y (s),

or
(s− 2)X(s)− 4Y (s) = 1 +

1
s− 4

, X(s) + (s− 2)Y (s) = 0.

The solutions are

X(s) =
s− 2

s(s− 4)
+

s− 2
s(s− 4)2

, Y (s) =
1

s(s− 4)
+

1
s(s− 4)2

.
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Using partial fractions

X(s) =
3
8s

+
5

8(s− 4)
+

1
2(s− 4)2

, Y (s) = − 3
16s

+
3

16(s− 4)
+

1
4(s− 4)2

.

Finally, using (24.6a) and the rules (24.7) and (24.8):

x =
3
8

+
5
8
e4t +

1
2
te4t, y = − 3

16
+

3
16

e4t +
1
4
te4t.

(c) ẋ = x − 4y, ẏ = x + 2y, x(0) = 2, y(0) = 1. Taking Laplace transforms of the differential
equations:

sX(s)− 2 = X(s)− 4Y (s), sY (s)− 1 = X(s) + 2Y (s),

or
(s− 1)X(s) + 4Y (s) = 2, X(s)− (s− 2)Y (s) = −1.

Solving for X(s) and

X(s) =
2s− 8

s2 − 3s + 6
=

2s− 8
(s− 3

2 )2 + 15
4

, Y (s) =
s + 1

s4 − 3s2 + 6
=

s + 1
(s− 3

2 )2 + 15
4

.

These transforms can be inverted using the shift rule and (24.6b,c):

x = −2
3
e

3t
2

[
−3 cos

(√
15t

2

)
+
√

15 sin

(√
15t

2

)]
,

y =
1
3
e

3t
2

[
3 cos

(√
15t

2

)
+
√

15 sin

(√
15t

2

)]
.

24.10. (a) ẍ + x = et, x(0) = A, ẋ(0) = B. Take the Laplace transform of the equation:

s2X(s)−As−B =
1

s− 1
.

Hence

X(s) =
As + B

s2 + 1
+

1
(s− 1)(s2 + 1)

=
(A− 1

2 )s + (B − 1
2 )

s2 + 1
+

1
2(s− 1)

.

Inverting using (24.6)
x = (A−− 1

2 ) cos t + (B − 1
2 ) sin t + 1

2et.

(b) ẍ− x = 3, x(0) = A, ẋ(0) = B. The Laplace transform of the equation is:

s2X(s)−As−B −X(s) =
3
s
.

Hence
X(s) =

As + B

s2 − 1
+

3
s(s2 − 1)

=
3 + A + B

2(s− 1)
− 3

s
+

3 + A−B

2(s + 1)
.

using partial fractions. Inversion gives the solution

x = −3 + 1
2 (3 + A−B)e−t + 1

2 (3 + A + B)et.

(c) ẍ− 2ẋ + x = et, x(0) = A, ẋ(0) = B. The Laplace transform of the equation is:

s2X(s)−As−B − 2sX(s)−A + X(s) =
1

s− 1
.

Hence
X(s) =

As + B − 2A

(s− 1)2
+

1
(s− 1)3

=
A

s− 1
+

B −A

(s− 1)2
+

1
(s− 1)3

.
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Inversion gives the solution
x = Aet + (B −A)tet + 1

2 t2et.

24.11. d4y/dx4 − y = ex, y(0) = A, y′(0) = B, y′′(0) = C, y′′′(0) = D. The Laplace transform of
the equation is (with Ly(x) = Y (s))

s4Y (s)−As3 −Bs2 − Cs−D − Y (s) =
1

s− 1
.

Therefore, after a lengthy partial fraction expansion,

Y (s) =
As3 + Bs2 + Cs + D

(s4 − 1)
+

1
(s− 1)(s4 − 1)

=
1

4(s− 1)2
+
−3 + 2A + 2B + 2C + 2D

8(s− 1)
+

1 + 2A− 2B + 2C − 2D

8(s + 1)

+
1 + 2B − 2D + (1 + 2A− 2C)s

4(s2 + 1)
.

The inversion gives

y =
1
4
xex +

1
8
(2A + 2B + 2C + 2D − 3)ex +

1
8
(1 + 2A− 2B + 2C − 2D)e−x

+
1
4
(1 + 2A− 2C) cos x +

1
4
(1 + 2B − 2D) sin x.

24.12. The equation for x0(t) has a different form from the subsequent equations; its transform
using x0 = 1 is

sX0(s)− 1 + βX0(s) = 0,

so that
X0(s) =

1
s + β

, and x0(t) = e−βt. (i)

For all r ≥ 1, the form of the equation is

xr + βxr = βxr−1,

with xr(0) = 0. Therefore the transform is

sXr(s) + βXr(s) = βXr−1(s),

so that
Xr(s) =

β

s + β
Xr−1(s). (ii)

Starting with the case r = 1, and using (i), we obtain the sequence

X1(s) =
β

(s + β)2
, X2(s) =

β

s + β

β

(s + β)2
=

β2

(s + β)3
,

X3(s) =
β

s + β

β2

(s + β)3
=

β3

(s + β)4
, . . . ,

and, in general, for r ≥ 1,

Xr(s) =
βr

(s + β)r+1
. (iii)

From (24.2),
1

sr+1
↔ 1

r!
.
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From the shift rule (24.7), with k = −β, we obtain the inverse of (iii),

xr(t) =
βrtr

r!
e−βt, r ≥ 1.

Together with (i), this provides the required solution.

24.13. By the multiplication rule (24.8),

t cos tH(t) ↔ − d
ds

(
s

s2 + 1

)
=

s2 − 1
(s2 + 1)2

.

By the delay rule (24.15), with c = 2,

(t− 2) cos(t− 2)H(t− 2) ↔ e−2s(s2 − 1)
(s2 + 1)2

.

By the shift rule (24.7), with k = −1,

e−t(t− 2) cos(t− 2)H(t− 2) ↔ e−2(s+1)[(s + 1)2 − 1]
[(s + 1)2 + 1]

=
e−2(s+1)s(s + 2)
(s2 + 2s + 2)2

.

24.14. (a) G(s) = e−2s/(s + 3). By (24.6a),

1
s + 3

↔ e−3t.

Then by (24.15)
e−2s

s + 3
= e−3(t−2)H(t− 2).

(b) G(s) = (1− se−s)/(s2 + 1). G(s) is the sum of two transforms. For the first

1
s2 + 1

↔ sin t.

For the second start with
s

s2 + 1
↔ cos t.

Using (24.15),
se−2s

s2 + 1
↔ cos(t− 1)H(t− 1).

Finally, taking the difference

G(s) = (1− se−s)/(s2 + 1) ↔ sin t− cos(t− 1)H(t− 1).

(c) e−2s/(s− 4) ↔ e4t−8H(t− 2).

(d) G(s) = se−s/[(s + 1)(s + 2)]. The e−s term indicates that the delay rule will apply. Using
partial fractions

s

(s + 1)(s + 2)
= − 1

s + 1
+

2
s + 2

↔ −e−t + 2e−2t.

The delay rule (24.15) gives the required function:

(−e1−t + 2e2−2t)H(t− 1).

(e)
e−s

(s− 1)(s2 − 2s + 2)
↔ et−1[cos(t + 1)].
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24.15. All problems have the same initial conditions x(0) = ẋ(0) = 0.
(a) ẍ + x = f(t), where

f(t) = H(1− t) =
{

1 for 0 < t ≤ 1,
0 for t > 1.

.

Take the Laplace transform of the equation with the initial conditions x(0) = ẋ(0) = 0:

s2X(s) + X(s) =
∫ ∞

0

e−stf(t)dt =
∫ 1

0

e−stdt =
1− e−s

s
.

Hence

X(s) =
1− e−s

s(s2 + 1)
= (1− e−s)

[
1
s
− s

s2 + 1

]
.

Inverting using the delay rule:

x = 1− cos t− [1− cos(1− t)]H(t− 1).

(b) ẍ− 4x = f(t), where

f(t) =
{

1 for 0 < t ≤ 1,
0 for t > 1.

= H(1− t).

Taking Laplace transforms:

s2X(s)− 4X(s) =
1− e−s

s
,

as in (a). Hence, using partial fractions,

X(s) =
1− e−s

s(s2 − 4)
=

[
1

8(s− 2)
+

1
8(s + 2)

− 1
4s

]
− e−s

[
1

8(s− 2)
+

1
8(s + 2)

− 1
4s

]
.

Inverting

x =
1
8
e2t +

1
8
e−2t − 1

4
−

[
1
8
e2t−2 +

1
8
e−(2t−2) +

1
4

]
H(t− 1).

(c) ẍ− 4x = f(t), where

f(t) =





t for 0 < t ≤ 1,
2− t for 1 < t ≤ 2,
0 for t > 2.

In terms of step functions

f(t) = (2− t)H(2− t)− (2− 2t)H(1− t).

Taking Laplace transforms

s2X(s)− 4X(s) = L{f(t)} =
∫ 2

0

(2− t)estdt−
∫ 1

0

(2− 2t)e−stdt

=
[
e−2s

s2
− 1− 2s

s2

]
−

[
2e−s

s2
− 2(1− s)

s2

]

=
1− 2e−s + e−2s

s2

Hence

X(s) =
1− 2e−s + e−2s

s2(s2 − 4)
= (1− 2e−s + e−2s)

[
− 1

4s2
+

1
16(s− 2)

− 1
16(s + 2)

]
.
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Inverting this transform using the delay rule (24.15),

x = − 1
16

e−2t +
1
16

e2t − t

4
+

[
− 1

16
e4−2t +

1
2

+
1
16

e2t−4 − t

4

]
H(t− 2)

+
[
1
8
e2−2t − 1

2
− 1

8
e2t−2 +

t

2

]
H(t− 1)

(d) ẍ + x = f(t), where

f(t) =
{

cos t for 0 < t ≤ π,
0 for t > π.

so that f(t) = cos t[H(t)−H(t− π)]. Take the Laplace transform of the equation:

s2X(s) + X(s) =
(1 + e−πs)s

s2 + 1
.

Hence

X(s) =
(1 + e−πs)s

s2 + 1)2
.

The inversion gives the solution

x = −1
2
t sin t− 1

2
(t− π)H(t− π) sin t.

Chapter 25: Laplace and z transforms: applications

25.1. Use the division rule (25.1) which states that, if G(s) ↔ g(t), then G(s)/s ↔ ∫ t

0
g(τ)dτ .

Use also Table (24.10) of inverse transforms
(a) Since

1
s2 + 1

↔ sin t,

then
1

s(s2 + 1)
↔

∫ t

0

sin τdτ = [− cos τ ]t0 = 1− cos t.

(b) The division rule is applied to the result from (a) as follows:

1
s2(s2 + 1)

↔
∫ t

0

τ(1− cos τ)dτ = [τ − sin τ ]t0 = t− sin t.

(c) Apply the division rule again to the result in (b):

1
s3(s2 + 1)

↔
∫ τ

0

(τ − sin τ)dτ = [ 12τ2 + cos τ ]t0 = 1
2 t2 + cos t− 1

25.2. The RLC circuit has the equation

L
di

dt
+ Ri +

1
C

∫ t

0

i(τ)dτ = v(t).

Take the Laplace transform of the equation and use the division rule (25.1):

L[sI(s)− I(0)] + RI(s) +
1

Cs
I(s) = V (s),

where i(t) ↔ I(s) and v(t) ↔ V (s). Solving for I(s), we obtain

I(s) =
Cs[V (s) + Li(0)]
CLs2 + CRs + 1

,
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since I(0) = 0. Given the data L = 2, R = 3, C = 1
3 and v(t) = 3 cos t ↔ 3s/(s2 + 1):

I(s) =
3s2

(s2 + 1)(2s2 + 3s + 3)
=

3(3s− 1)
10(s2 + 1)

− 9(2s− 1)
10(2s2 + 3s + 3)

=
3(3s− 1)
10(s2 + 1)

− 9(2s− 1)
20[(s + 3

4 )2 + 15
16 ]

Using table (24.10) and the shift rule (24.7), the inverse is

i(t) =
9
10

cos t− 3
10

sin t +
3
√

15
10

e−
3
4 t sin

(√
15
4

t

)
− 9

10
e−

3
4 t cos

(√
15
4

t

)
.

(b) If v(t) = 0 and the capacitor has initial charge q0, the equation for the current is (see Sec-
tion 25.1)

L
di

dt
+ Ri +

1
C

(∫ t

0

i(τ)dτ + q0

)
= 0.

Taking the Laplace transform of the equation, noting that i(0) = 0,

LsI(s) + RI(s) +
1

Cs
I(s) +

q0

Cs
= 0.

Hence
I(s) = − q0

CLs2 + CRs + 1
= − 3q0

2s2 + 3s + 3
= − 3q0

2[(s + 3
4 )2 + 15

16 ]
.

The inverse of this transform is

i(t) = −2

√
3
5
q0e−

3
4 t sin

(√
15
4

t

)
.

(c) We can represent the applied voltage by v(t) = 300 × 0.01δ(t − t0) = 3δ(t − t0). Hence the
circuit equation for the current is

L
di

dt
+ Ri +

1
C

∫ t

0

i(τ)dτ = 3δ(t− t0).

Hence

I(s) =
3se−st0

2s2 + 3s + 3
=

3se−st0

2[(s + 3
4 )2 + 15

16 ]
.

Using the shift rule (24.7) and the delay rule (24.15), the inverse of the Laplace transform I(s) is

i(t) = e−
3
4 (t−t0)

[
−3

2
cos

(√
15
4

(t− t0)

)
+

3
√

15
10

sin

(√
15
4

(t− t0)

)]
H(t− t0).

25.3. The equation of motion is
ẍ + 2kẋ + ω2x = f(t).

The impulse can be represented by a delta function so that f(t) = Iδ(t − t0). Take the Laplace
transform of the equation, noting that x(0) = 1 and ẋ(0) = 1,

s2X(s)− s− 1 + 2ksX(s)− 2k + ω2X(s) = L{Iδ(t− t0)} = Ie−t0s.

Hence

X(s) =
s + 1 + 2k + Ie−t0s

s2 + 2ks + ω2
=

s + 1 + 2k + Ie−t0s

(s + k)2 − β2
, β2 = k2 − ω2.
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The term containing e−t0s arising from the impulse will lead to the term with a step function on
inversion (see the delay rule (24.15)). The full solution is

x =
1
2β

[(−k − 1 + β)e−t(k+β) + (k + 1 + β)e−t(k−β)]

+
I

2β
[e−(t−t0)(k−β) − e−(t−t0)(k+β)]H(t− t0).

for t > 0 and t0 > 0.

25.4. The displacement u(x) of the plank satisfies

K
d4u

dx4
= f(x).

The mountaineer standing at the centre of the plank is treated as a point load which can be
represented by the delta function Mgδ(x− 1

2 l), so that

K
d4u

dx4
= Mgδ(x− 1

2
l).

Let A = u′(0) and B = u′′′(0) since only u(0) = 0 and u′′(0) = 0 are given: the constants A and
B will be found from the conditions at x = l when we have solved the equation. The Laplace
transform of the equation is

Ks4U(s)−As2 −B = L{Mgδ(x− 1
2 l)} = Mge−

1
2 ls.

Therefore

U(s) =
1
K

[
A

s2
+

B

s4
+ Mg

e−
1
2 ls

s4

]
.

Inversion of this transform using table (24.10) and delay rule (24.15) gives

u(x) =
1
K

[
Ax + 1

6Bx3 + 1
6Mg(x− 1

2 l)3H(x− 1
2 l)

]
.

The conditions at x = l are u(l) = 0 and u′′(l) = 0. Hence

u(l) =
1
K

[
Al + 1

6Bl3 + 1
6Mg(l − 1

2 l)3H( 1
2 l)

]
=

1
K

[
Al + 1

6Bl3 + 1
48Mgl3

]
= 0,

and

u′′(l) =
1
K

d2

dx2

[
Ax + 1

6Bx3 + 1
6Mg(x− 1

2 l)3
]
x=l

=
1
K

[
Bl + 1

2Mgl
]

= 0.

Solving these equations
B = − 1

2Mg, A = 1
16Mgl2.

25.5. Use the impedance rules listed in (25.8) and (25.9).
(a) For the resistor r and inductor in parallel the impedance Z1 is given by

1
Z1

=
1
R

+
1
Ls

.

Therefore
Z1 =

RLs

R + Ls
.

The impedance Z1 is in series with the capacitor C. If Z is the impedance of the whole circuit,
then

Z = Z1 +
1

Cs
=

RLs

R + lsL
+

1
Cs

.
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Applying the given data

Z =
6s

2 + 3s
+

2
s
.

(b) These components are all in parallel. Hence the impedance Z is given by

1
Z

=
1
R

+
1
Ls

+
1

1/(Cs)
=

Ls + R + CRLs2

RLs
.

Hence
Z =

RLs

CRLs2 + Ls + R
=

2s

6s2 + s + 1
for the given data.
(c) For the parallel resistor R = 1 and the inductor L = 1 the impedance Z1 is given by

1
Z1

= 1 +
1
s

so that Z1 =
s

s + 1
.

The impedance is in series with the resistor R = 2 which has the impedance

Z2 = 2 + Z1 = 2 +
s

s + 1
=

3s + 2
s + 1

.

Finally Z2 is in parallel with the capacitor C = 2 giving the impedance

1
Z

=
1
Z2

+
1

2/s
=

6s2 + 5s + 1
2(3s + 2)

.

Therefore
Z =

3s + 2
6s2 + 5s + 1

.

25.6. (a) Let I1(s) be the current in the s domain through the capacitor C = 2, I2(s) be the
current through the resistor R = 3 and the inductor L = 1 and I3(s) through the resistor R = 5 .
Then by Kirchhoff’s laws

I(s)− I1(s)− I2(s) = 0, I1(s) + I2(s)− I3(s) = 0,

and
V1(s) = I2(s)(3 + s) + 5I3(s),

I1(s)
2s

− I2(s)(s + 3) = 0, V2(s) =
I1(s)
2s

.

It follows from the first two equation that I2(s) = I(s) − I1(s) and that (not surprisingly) that
I3(s) = I1(s) + I2(s) = I(s). Hence

V1(s) = (I(s)− I1(s))(s + 3) + 5I(s),

and
I1(s)
2s

− (I(s)− I1(s))(s + 3) = 0.

Eliminate I(s) between these equations so that

V1(s) = 2I1(s)(2s2 + 5s− 2)).

Therefore
V2(s)
V1(s)

=
1

2s(2s2 + 5s− 2)
.

and
V2(s)
I(s)

=
1

2s(2s2 + 6s + 1)
.
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(b) Let I1(s) be the current in the s domain through the inductor L = 2. Apply Kirchhoff’s law
in the s domain to the three subcircuits in Figure 25.22(b). Then

V1(s) = 2(I1(s) + I(s)) + sI(s) = 2I1(s) + 5I(s), (i)
(

2s +
1
2s

)
I1(s)− 3I(s) = 0, (ii)

V2(s) =
I1(s)
2s

. (iii)

From (ii) I(s) = I1(s)(4s2 + 1)/(6s). Using this equation eliminate I(s) in (i) so that

V1 =
(20s2 + 12s + 5)I1(s)

6s
.

Finally combining this equation with (iii):

V2(s)
V1(s)

=
3s

20s2 + 12s + 5
.

and
V2(s)
I(s)

=
I1(s)
2s

6s

I1(s)(4s2 + 1)
=

3
4s2 + 1

.

25.7. The convolution theorem (25.11) states that if

f(t) =
∫ t

0

g(τ)h(t− τ)dτ =
∫ t

0

h(τ)g(t− τ)dτ, G(s) ↔ g(t), H(s) ↔ h(t),

then
F (s) = L{f(t)} = G(s)H(s).

The convolution integrals are either integrated directly or by using the convolution theorem.
(a) g(t) = et, h(t) = 1. By direct integration

f(t) =
∫ t

0

g(τ)h(t− τ)dτ =
∫ t

0

eτdτ = [eτ ]t0 = et − 1.

Alternatively, using the convolution theorem and g(t) = et ↔ 1/(s− 1) = G(s), h(t) = 1 ↔ 1/s =
H(s), we obtain

F (s) = G(s)H(s) =
1

s(s− 1)
=

1
s− 1

− 1
s
↔ et − 1 = f(t).

(b) g(t) = 1, h(t) = 1. By direct integration

f(t) =
∫ t

0

g(τ)h(t− τ)dτ =
∫ t

0

dτ = t.

(c) g(t) = et, h(t) = et. By direct integration

f(t) =
∫ t

0

g(τ)h(t− τ)dτ =
∫ t

0

eτet−τdτ = et

∫ t

0

dτ = tet.

(d) g(t) = e−t, h(t) = t. Since e−t ↔ 1/(s + 1) and t ↔ 1/s2, the convolution theorem gives

F (s) = G(s)H(s) =
1

s2(s + 1)
= −1

s
+

1
s2

+
1

s + 1
↔ −1 + t + e−t = f(t).
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(e) g(t) = t, h(t) = sin t. Using the tables of transforms, t ↔ 1/s2 and sin t ↔ 1/(s2 + 1), the
convolution of g(t) and h(t) has the transform

F (s) = G(s)H(s) =
1

s2(s2 + 1)
=

1
s2
− 1

s2 + 1
↔ t− sin t = f(t).

(f) g(t) = cos t, h(t) = t. Using tables of transforms, t ↔ 1/s2 and cos t ↔ s/(s2 + 1), the
convolution of the transform is

F (s) = G(s)H(s) =
1

s(s2 + 1)
=

1
s
− s

s2 + 1
↔ 1− cos t = f(t).

(g) g(t) = sin 3t, h(t) = e−2t. The transforms of g(t) and h(t) are sin 3t ↔ 3/(s2 + 9) and
e−2t ↔ 1/(s + 2). Hence by the convolution theorem

F (s) = G(s)H(s) =
3

(s + 2)(s2 + 9)

=
3

13(s + 2)
+

6
13(s2 + 9)

− 3s

13(s2 + 9)

↔ 3
13

e−2t +
2
13

sin 3t− 3
13

cos 3t = f(t)

(h) g(t) = h(t) = sin t. Since sin t ↔ 1/(s2 + 1), the convolution theorem gives

F (s) = G(s)H(s) =
1

(s2 + 1)2
=

1
2

[
− s2 − 1

(s2 + 1)2
+

1
s2 + 1

]

↔ −1
2
t cos t +

1
2

sin t = f(t)

by (24.9).
(i) g(t) = t4, h(t) = sin t. Since t4 ↔ 24/s5 and sin t ↔ 1/(s2 + 1), the convolution theorem gives

F (s) = G(s)H(s) =
24

s5(s2 + 1)
= 24

[
1
s5
− 1

s3
+

1
s
− s

s2 + 1

]

↔ t4 − 12t2 + 24− 24 cos t = f(t)

(j) g(t) = tn, h(t) = tm. Since tn ↔ n!/sn+1 and tm ↔ m!/sm+1 (assuming that n and m are
positive integers), the convolution theorem gives

F (s) = G(s)H(s) =
n!m!

sn+m+2
↔ n!m!tn+m+1

(n + m + 1)!
= f(t).

25.8. (a) The Laplace transform of

d2x

dt2
+ ω2x = f(t)

is
s2X(s)− sx(0)− x′(0) + ω2X(s) = F (s),

where X(s) = L{x(t)} and F (s) = L{f(t)}. Choose a particular solution such that x(0) = 0 and
x′(0) = 0. Then

X(s) =
F (s)

s2 + ω2
.

From (24.6)
1

s2 + ω2
↔ sin t.
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Hence by the convolution theorem, a particular solution is

x(t) =
∫ t

0

f(τ) sin(t− τ)dτ.

(b) The Laplace transform of
d2x

dt2
− ω2x = f(t)

is.
s2X(s)− sx(0)− x′(0)− ω2X(s) = F (s).

Choose a particular solution such that x(0) = 0 and x′(0) = 0. Then

X(s) =
F (s)

s2 − ω2
=

1
2ω

[
1

s− ω
− 1

s + ω

]
↔ 1

2ω
[eωt − e−ωt].

Hence by the convolution theorem, a particular solution is

x(t) =
1
2ω

∫ t

0

f(τ)[eω(t−τ) − e−ω(t−τ)]dτ.

25.9. (a)
∫ t

0
x(τ)(t− τ)dτ = t4. Let X(s) = L{x(t)}. The transform of the equation is

X(s)L{t} = L{t4}, or X(s)
1
s2

=
4!
s5

.

Hence
X(s) =

24
s3

= 12t2.

Therefore the solution of the integral equation is x(t) = 12t2.

(b) x(t) = 1 +
∫ t

0
x(τ)(t− τ)dτ . Take the Laplace transform of the equation using the convolution

theorem:

X(s) =
1
s

+
X(s)
s2

so that X(s) =
s

s2 − 1
=

1
2

[
1

s− 1
+

1
s + 1

]
,

using partial fractions. Inversion gives the solution

x(t) = 1
2 [e−t + et] = cosh t.

(c) x(t) = sin t +
∫ t

0
x(τ) cos(t− τ)dτ . The Laplace transform of this integral equation is

X(s) =
1

s2 + 1
+ X(s)

s

s2 + 1
,

using the convolution theorem. Hence

X(s) =
1

s2 − s + 1
=

1
(s− 1

2 )2 + 3
4

.

We can invert this transform using (24.6c) and the shift rule (24.7) resulting in the solution

x(t) = 2√
3
e

1
2 t sin[ 12

√
3t].

25.10. The input f(t) = H(t) has the transform F (s) = 1/s. As in Section 25.6, the response
x∗∗(t) has the transform

X∗∗(s) = F (s)G(s) =
G(s)

s
so that G(s) = sX∗∗(s),
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where G(s) is the transfer function between input and output. The transform of the output x(t) is

X(s) = G(s)F (s) = X∗∗(s)sF (s).

Using the convolution theorem, the output

x(t) =
∫ t

0

x∗∗(t− τ)
[

d
dτ

(f(τ)) + f(0)
]

dτ,

by the derivative rule (24.12). Let

X∗∗(s)F (s) ↔ q(t) =
∫ t

0

x∗∗(τ)f(t− τ)dτ.

By the rule on the differentiation of integrals (15.20), the right-hand side can be expressed as

x(t) =
d
dt

[∫ t

0

x∗∗(τ)f(t− τ)dτ

]
.

In the example

X∗∗(s) =
1

(s− 1)(s + 2)
=

1
3(s− 1)

− 1
3(s + 2)

↔ 1
3
(et − e−2t),

and f(t) = H(t) sin ωt.

25.11. To model this problem, approximate by assuming that the learning/ forgetting process
takes place continuously through whatever time-range is involved. Note that the learning data
refers to new words (forgotten words are not revised). The words learned at a time t = τ through
a small period δτ is equal to 50δτ . at any later time t, the number of newly-learned words that
are remembered is 50δτe−0.01(t−τ), (that is, the elapsed time α is t− τ for this event). The total
number of words recalled at time t is the limit of the sum of the contributions between times 0
and t:

N(t) = lim
δτ→0

t∑
τ=0

50e−0.01(t−τ)δτ =
∫ t

0

50e−0.01(t−τ)dτ (i)

(which is the convolution 50 ∗ e−0.01t). Therefore

N(t) = 50e−0.01t

[
e0.01τ

0.01

]t

0

= 50
1− e−0.01t

0.01
.

(After 30 days N(t) becomes 50× 25.9 in place of 50× 30 attempted: a loss of 14%.)
(b) If the student aims at learning 50 + 0.1t words per day (thus increasing the input with time)
we obtain the convolution integral

N(t) =
∫ t

0

(50 + 0.1τ)e−0.01(t−τ)dτ = e−0.01t

∫ t

0

(50 + 0.1τ)e0.01τdτ (ii)

(by 25.11). The integration by parts formula (17.8) with u = τ , dv/dτ = eAτ gives
∫ t

0

τeAτdτ =
[

1
A

(
τ − 1

A

)
eAτ

]t

0

=
1
A

[
teAt +

1
A

(1− eAt)
]

,

and applying this to (ii) with A = 0.01,

N(t) = e−0.01t

[
−50

1− e0.01t

0.01
+

0.1
0.01

(
te0.01t +

1− e0.01t

0.01

)]

= e−0.01t

[
−40

1− e0.01t

0.01
+ 10te0.01t

]
.
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25.12. The original population p0 declines as p0e−γt. In time δτ , the number born is bp(τ)δτ , but
these individuals die out at the rate e−β(t−τ) after the elapsed time t − τ . At time t the balance
between these births and deaths together with the decline of p0 gives the population p(t) at time
t:

p(t) = p0e−γt + b

∫ t

0

p(τ)e−β(t−τ)dτ.

Taking the Laplace transform of this equation, which includes a convolution on the right-hand
side, we obtain

P (s) =
p0

s + γ
+

bP (s)
s + β

,

where P (s) = L{p(t)}. Therefore

P (s) =
p0(s + β)

(s + γ)(s + β − b)
=

p0

b + γ − β

[
b

s + β − b
+

γ − β

s + γ

]
.

This transform can now be inverted using (24.6a) giving the solution

p(t) =
p0

b + γ − β

[
be(b−β)t + (γ − β)e−γt

]
.

25.13. The equation of motion is

mẍ + kx = F0[H(t)−H(t− t0)],

where the difference of the unit functions on the right ensures that the forcing is zero for t > t0.
The initial conditions are x(0) = 0 and ẋ(0) = 0. The Laplace transform of this equation is

ms2X(s) + kX(s) = F0

[
1
s
− et0s

s

]
.

Therefore

X(s) =
F0(1− e−t0s)
ms(s2 + ω2)

=
F0

mω2

[
1− e−t0s

s
− s(1− e−t0s)

s2 + ω2

]

where ω2 = k/m. Inversion gives

x(t) =
F0

k
[(1− cos ωt)− (1− cos ω(t− t0))H(t− t0)].

Hence for t < t0, the solution is

x(t) =
F0

k
(1− cosωt),

whilst for t > t0 the solution is

x(t) =
F0

k
[cos ω(t− t0)− cosωt].

25.14. The differential equation is

dx(t)
dt

= x(t− 1) + t,

and x(t) = 0 for t ≤ 0. Take the Laplace transform of the equation:

sX(s)− x(0) =
1
s2

+
∫ ∞

0

x(t− 1)e−stdt,

where X(s) = L{x(t)}. Since x(t) = 0 for t ≤ 0, and by using the second shift rule (24.15),

sX(s) =
1
s2

+
∫ ∞

1

x(t− 1)e−stdt =
1
s2

+
∫ ∞

0

x(τ)e−s(u+1)du =
1
s2

+ e−sX(s).
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Hence
X(s) =

1
s2(s− e−s)

=
1

s3(1− e−s/s)
.

Using the binomial expansion

X(s) =
1
s3

(
1− e−s

s

)−1

=
1
s3

+
e−s

s4
+

e−2s

s5
+ · · · .

The general term in this series is e−ns/sn+3. The function of which this the Laplace transform is

(t− n)n+2

(n + 2)!
H(t− n) =

{
(t− n)n+2/(n + 2)! n ≤ t
0 n > 0

We sum the series as far as n where bt − 1c < n ≤ btc and btc is the largest integer less than or
equal to t. Therefore

x(t) =
btc∑

n=0

(t− n)n+2

(n + 2)!
.

25.15. The Laplace transform of the integral equation

2
∫ t

0

cos(t− u)x(u)du = x(t)− t

is
2

s

s2 + 1
X(s) = X(s)− 1

s2
.

Hence

X(s) =
s2 + 1

s2(s− 1)2
=

2
(s− 1)2

− 2
s− 1

+
1
s2

+
2
s

using partial fractions. Finally, inverting this transform, the required solution is

x(t) = 2(t− 1)et + t + 2.

25.16. The differential equation is

d2x

dt2
+ t

dx

dt
− x = 0,

where x(0) = 0 and x′(0) = 1. The derivative dx/dt has a variable coefficient t. From (24.8)

L
{

t
dx

dt

}
= − d

ds
[sX(s)− x(0)] = X(s) + s

dX(s)
ds

.

Hence the Laplace transform of the full equation is

s2X(s)− 1−X(s)− s
dX(s)

ds
−X(s) = 0.

Therefore X(s) satisfies

−s
dX(s)

ds
+ (s2 − 2)X(s) = 1.

Let X(s) = 1/s2. Then

−s
dX(s)

ds
+ (s2 − 2)X(s) =

2
s2

+ (s2 − 2)
1
s2

= 1.

Hence X(s) = 1/s2 satisfies the equation. The corresponding time-solution is x(t) = t which we
can confirm satisfies the initial conditions.
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25.17. These equations have some coefficients which are not constant, and their transforms are
obtained by using the multiplication rule (24.8).
(a) tx′′(t) + (1− t)x′(t)− x(t) = 0, x(0) = x′(0) = 1. Take the Laplace transform of the equation:

− d
ds

[s2X(s)− sx(0)− x′(0)] + sX(s)− x(0) +
d
ds

[sX(s)− x(0)]−X(s) = 0,

or
−2sX(s)− s2X ′(s) + 1 + sX(s)− 1 + X(s) + sX ′(s)−X(s) = 0.

Hence
(s− 1)X ′(s) + X(s) = 0.

This a first-order separable equation with general solution X(s) = C/(s−1), where C is a constant.
By the Table of Laplace transforms (Appendix F), inversion gives x(t) = Cet. The initial condition
x(0) = 1 means that C = 1. Hence the required solution is x(t) = et.
(b) x′′(t) + tx′(t)− 2x(t) = 2, x(0) = x′(0) = 0. Take the Laplace transform of the equation:

s2X(s)− sx(0)− x′(0)− d
ds

[sX(s)− x(0)]− 2X(s) =
2
s
,

or
s2X(s)−X(s)− sX ′(s)− 2X(s) =

2
s
.

Hence

X ′(s)−
(

s− 3
s

)
X(s) = − 2

s2
.

This is a first-order differential equation of integrating-factor type (see Section 19.5). The inte-
grating factor is

e
∫

(−s+3/s)ds = e(− 1
2 s2+3 ln s) = s3e−

1
2 s2

.

The equation can be expressed in the form

d
ds

(X(s)s3e−
1
2 s2

) = −2se−
1
2 s2

.

Integrating

X(s)s3e−
1
2 s2

= −
∫

2se−
1
2 s2

ds + C = 2e−
1
2 s2

+ C,

where C is a constant. Hence the transform of the solution is

X(s) =
2
s3

+ C
e

1
2 s2

s3
.

Do not attempt to invert the second term on the right. The inverse of the first term is t2. This
term alone satisfies the initial conditions x(0) = x′(0) = 0. We conclude that C = 0 which means
that the required solution is x(t) = t2.
(c) tx′′(t)− x′(t) + tx(t) = sin t, x(0) = 1, x′(0) = 0. The Laplace transform of the equation is

−d
d

[s2X(s)− sx(0)− x′(0)]− sX(s) + x(0)− dX(s)
ds

=
1

s2 + 1
,

or
X ′(s) +

3s

s2 + 1
X(s) =

2
s2 + 1

− 1
(s2 + 1)2

.

This is an equation of integrating-factor type as in (b). The integrating factor is

e
∫

3s/(s2+1)ds = e
3
2 ln(s2+1) = (s2 + 1)

3
2 ,
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so that
d
ds

[X(s)(s2 + 1)
3
2 ] = 2(s2 + 1)

1
2 − (s2 + 1)−

1
2 .

Integrating:

X(s)(s2 + 1)
3
2 = 2

∫
(s2 + 1)

1
2 ds−

∫
(s2 + 1)−

1
2 ds + C

=
∫

d
ds

[s(s2 + 1)
1
2 ]ds + C

= s(s2 + 1)
1
2 + C

Hence
X(s) =

s

s2 + 1
+

C

(s2 + 1)
3
2
.

The inverse of the first term is cos t which alone satisfies the initial conditions. Therefore C = 0
and the required solution is x(t) = cos t.

25.18. (a) {1, 2, 1, 0, 0, 0, . . .}, 1+ 2
z + 1

z , and the Laplace transfrom 1+2e−Ts+e−2Ts are equivalent.
They represent the sum of the impulses: δ(t) + 2δ(t− T ) + δ(t− 2T ).
(b) The sequence {0, 1, 2, 3, . . .}; the z transform

1
z

+
2
z2

+
3
z3

+ · · · ,

and the Laplace transform
e−Ts + 2e−2Ts + 3e−3Ts + · · ·

are equivalent, representing the time function

δ(t− T ) + 2δ(t− 2T ) + 3δ(t− 3T ) + · · · .

Note also that
1
z

+
2
z2

+
3
z3

+ · · · = z

(1− z)2

for large z (compare Example 25.18), which is the z transform in finite terms.
(c) The notation {3} means here the sequence {3, 0, 0, 0, . . .}, standing for the z transform equal
to 3/z0 = 3. The Laplace transform therefore equals 3, corresponding to the time function 3δ(t).

(d) {(−2)n}, {1,−2, 22,−23, . . .}, 1− 2
z + 22

z2 − 23

z3 + · · ·, and
1−2e−Ts +22e−2Ts−· · · are all equivalent, and correspond to the time function δ(t)−2δ(t−T )+
22δ(t− 2T )− · · ·. In finite terms: the (geometric) series for the z transform has the sum

1
1 + 2/z

=
z

z + 2

for large z.
(e) {0, 0, 3}, or 3/z2, is the z transform, 3e−2Ts the Laplace transform and 3δ(t − 2T ) the time
function.

25.19. Note. The periods are denoted by T . Inputs and outputs are related through their z
transforms by Y(z) = G(z)X (z) (see (25.26)).

(a) Y(z) =
(

1 +
1
z

) (
1 +

1
z

)
= 1 +

2
z

+
1
z2

.

The inverse is
y(t) = δ(t) + 2δ(t− T ) + δ(t− 2T ).
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(b) G(z) = 1 +
1
2z

+
1

22z2
+ · · · , and X (z) = 1 +

1
z
.

Therefore

Y(z) = 1 +
(

1
2

+ 1
)

1
z

+
(

1
22

+
1
2

)
1
z2

+
(

1
23

+
1
22

)
1
z3

+ · · ·

= 1 +
3
2

(
1
z

+
1

2z2
+

1
22z3

+ · · ·
)

.

The inverse is given by

Y(t) = δ(t) +
3
2

[
δ(t− T ) +

1
2
δ(t− 2T ) +

1
22

δ(t− 3T ) + · · ·
]

.

(c)

Y(z) =
(

1− 1
z

+
1
z2
− · · ·

)(
2
z

+
2
z2

)
=

2
z

(
1 +

1
z

)(
1− 1

z
+

1
z2
− · · ·

)

=
2
z

(
1 +

1
z

)
· 1
1 + 1

z

=
2
z
.

Therefore y(t) = 2δ(t− T ).

25.20. G(s) = 1/(1 − 1
3e−Ts), X(s) = e−Ts + 2e−2Ts. Put eTs = z (see (25.22)); then the

corresponding z transforms are given by

G =
1

1− 1
3

1
z

, X (z) =
1
z

+
2
z2

.

Expand G(z) as a geometric series (see (5.4a)) in powers of 1/z:

G(z) = 1 +
1
3

1
z

+
1
32

1
z2

+ · · · .

Since Y(z) = G(z)X (z) (see (25.26)), we have

Y(z) =
(

1 +
1
3

1
z

+
1
32

1
z2

+ · · ·
)

1
z

(
1 +

2
z

)

=
1
z

(
1 +

(
1
3

+ 2
)

1
z

+
1
3

(
1
3

+ 2
)

1
z2

+
1
32

(
1
3

+ 2
)

1
z3

+ · · ·
)

=
1
z

+
7
3

(
1
z2

+
1

3z3
+

1
32z4

+ · · ·
)

The output y(t) is therefore given by

y(t) = δ(t− T ) + 7
3 [δ(t− 2T ) + 1

3δ(t− 3T ) + 1
32 δ(t− 4T ) + · · ·].

25.21. (a)

X (z) =
1
z

+
2
z2
− 1

z3
.

(b)

X (z) = 1− 1
z

+
1
z2
− 1

z3
+ · · · = 1

1 + 1/z
=

z

z + 1
(from (5.4a)) .

(c)

X (z) = {1,
1
2
,

1
22

, . . .} = 1 +
1
2z

+
1

22z2
+ · · ·

=
1

1− (1/2z)
=

2z

2z − 1
.
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from (5.4a).
(d) Put z = eTs as in (25.22):

X (z) =
1
z

1
1− (1/z2)

=
z

z2 − 1
.

25.22. (a) By sampling at times t = nT , n = 0, 1, 2, . . ., we obtain x(t) = {nT}. Then

X (t) =
T

z
+

2T

z2
+

3T

z3
+ · · · .

This series can be summed by using the process in Example 25.18 to give

X (z) =
Tz

(z − 1)2
.

(b) As in (a) we obtain

X (z) =
e−T

z
+

e−2T

z2
+ · · · = e−T

z

1
1− (e−T /z)

by summing the geometric series.
[Note: (c) and (d) have been deleted from the 2003 reprint.)

25.23. (a) Y = GX in general, so
(

1− 1
z

)
=

(
1 +

1
z

)
G(z)

which gives G(z) in the closed form

G(z) =
(

1− 1
z

)/ (
1 +

1
z

)
.

To obtain g(t), first expand G(z) in powers of 1/z for large z. We have (using (5.4a) for geometric
series)

G(z) =
(

1− 1
z

)(
1− 1

z
+

1
z2
− · · ·

)
= 1− 2

z
+

2
z2
− 2

z3
+ · · · .

Therefore
g(t) = δ(t)− 2δ(t− T ) + 2δ(t− 2T )− · · · .

(b) As in (a) (
1 +

1
z

)
=

(
1 +

3
z3

)
G(z),

so

G(z) =
(

1 +
1
z

)/(
1 +

3
z3

)
.

(c)
(

1 +
1
z

)
=

(
1− 1

z

)
G(z),

so that

G(z) =
(

1 +
1
z

)/ (
1− 1

z

)
.

(d) Y(z) = 1− 1
z2

+
1
z4
− · · · = 1

1 + (1/z2)
,
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X (z) = 1 +
1
z2

+
1
z4

+ · · · = 1
1− (1/z2)

.

Since G(z) = Y(z)/X (z),

G(z) =
1− (1/z)
1 + (1/z2

=
z(z − 1)
z2 + 1

.

(e) As in (d), we find

Y(z) =
1

1 + (1/z2)
, X (z) =

1
1− (1/z2)

,

so that

G(z) =
z2 + 1
z2 − 1

.

25.24. The transform of y(t), defined by the discrete values

{x0, x1e−CT , x2e−2CT , . . .}

is Y (z) given by

Y (z) = x0 +
x1e−CT

z
+

x2e−2CT

z2
+ · · ·

= x0 + x1

(
e−CT

z

)
+ x2

(
e−CT

z

)2

+ · · ·

= X (e−CT /z),

where X (z) = {x0, x1, x2, . . .}.
25.25.

(a) X (z) = x0 +
x1

z
+

x2

z2
+ · · ·

is the transform of x(t). The transform of (0, x0, x1, . . .) is

x0

z
+

x1

z2
+ · · · ,

and this is equal to 1
zX (z).

(b) The rule (a) applies to 1
zX (z) as it did to X (z): the introduction of a further zero to move

the row along causes the transform to be multiplied by a further factor 1
z , giving 1

z2X (z). Perform
this procedure N times to introduce N zeros; the transform becomes 1

zN X (z).

25.26. From the definition

{x0, x1, x2, . . .} = x0 +
x1

z
+

x2

z2
+ · · · = X (z).

Put
{xN , xN+1, . . .} = xN +

xN+1

z
+ · · · = X (N)(z) (say).

Obviously
zNX (z) = zNx0 + zN−1x1 + · · ·+ xN−1 + X (N)(z).

Therefore
X (N)(z) = zNX (z)− zNx0 − zN−1x1 − · · · − zxN−1.

25.27. Stability: the system is stable only if the poles of G(z) all have modulus less than 1.
(a) G(z) = (z + 1)/(z2 − 4). In the argand diagram the poles are at z = ±2 = c1, c2. Since |c1| (or
|c2|) > 1, the system is unstable.
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(b) G(z) = (z2 − z)/(4z2 − 1). There are poles at z = c1 = 1
2 and z = c2 = − 1

2 . Their moduli are
both < 1, so the system is stable.
(c) G(z) = 1/(4z2 + 1). The poles are at c1 = 1

4 i and c2 = − 1
4 i. |c1| and |c2| are both < 1, so the

system is stable.
(d) G(z) = (z3 + 1)/(2z4 + 5z2 + 2). The poles occur where 2z4 + 5z2 + 2 = 0. Solving this as a
quadratic equation for z2, we obtain z2 = − 1

2 and −2, so the poles are at z = ± 1√
2
i and ±√2i.

The poles at ±√2i have | ± √2i| = √
2 > 1, so the system is unstable.

Growth rate of transients. From the results leading up to eqn (25.40) the overall growth (or decay)
of responses of the system is determined by the behaviour of a factor |c|N , where c is the pole
associated with a particular mode or transient, and N = t/T , where t is time and T the period.
For the given functions G(z), we have :
(a) The factor is 2N for both poles.
(b) The factor is ( 1

2 )N for both poles.
(c) The factor is ( 1

4 )N for both poles.
(d) The factors are (

√
2)N = 2

1
2 N for two poles, and 2−

1
2 N for the other two.

25.28. Notes. For the solution method see Example 25.23, or use the general result from Prob-
lem 25.26. The notation ‘→’ stands for the words “has the z transform equal to”. The counter n
runs through n = 0, 1, 2, . . ..
(a) 4yn+2 − yn = xn; y0 = 1, y1 = 2. (i)
Put {xn} = {x0, x1, . . .} → X (z), and {yn} = {y0.y1, . . .} → Y(z). Then

{yn+2} → z2Y − z2y0 − zy1 = z2Y − (z2 + 2z)

(by Problem 25.26). The transform of (i) is therefore given by

4[z2Y − (z2 + 2z)]− Y = X ,

so that

Y(z) =
4(z2 + 2z) + X (z)

4z2 − 1
= 1 +

1 + 8z + X (z)
4z2 − 1

. (ii).

The poles occur at z = ± 1
2 , for which |z| < 1. Inspection of (ii) shows that there are no growth or

non-diminishing terms arising from an impulsive input, so the system is stable.
(b) yn+2 − 3yn+1 + 2yn = 2xn; y0 = 0, y1 = 1. (ii)
Proceding as in (a), (ii) becomes

(z2Y − z) + 3zY + 2Y = 2X ,

so that

Y(z) =
2X (z) + z

(z + 1)(z + 2)
.

Since one of the poles has a modulus > 1, the system is unstable.
(c) 2yn+2 + yn+1 + yn = xn+1 − xn; y0 = 0, y1 = 1. (iii)
Proceeding as in (a), (iii) becomes

2(z2Y − z) + zY + Y = zX − zx0 −X ,

so that

Y(z) =
(z − 1)X (z)− zx0 + 2z

2z2 + z + 1
.

The poles are at z = 1
4 (−1 ± i

√
7), whose moduli are equal to 1/

√
2 < 1. The argument in

Section 25.10 leads us to expect stability; that is, no terms arising from an impulsive input whose
effect does not decrease to zero.

29



(d) 2yn+2 + 3yn+1 − yn = xn; y0 = 1, y1 = 1. (iv Proceeding as in (a), (iv) becomes

(2z2 + 3z − 1)Y − (2z2 + 2z + 3z) = X ,

or

Y(z) =
X (z) + 2z2 + 5z

2z2 + 3z − 1
.

There are poles at 1
4 [−3±√17] with modulus > 1, so the system is unstable.

Chapter 26: Fourier series

26.1. These functions are all odd 2π-periodic, which means that a0 = a1 = a2 = . . . = 0, whilst

bn =
2
π

∫ π

0

f(t) sin ntdt.

The figures show the graph of the function over the interval −π < t < π.
(a)

f(t) =
{ −1 (−π < t < 0)

1 (0 ≤ t ≤ π)

-Π Π

t

-1

1

x

Figure 1: Problem 26.1a

Therefore

bn =
2
π

∫ π

0

sin ntdt =
{

4/(nπ) n odd
0 n even

The Fourier series for f(t) is

4
π

sin t +
4
3π

sin 3t +
4
5π

sin 5t + · · · .

(b) f(t) = t. Then

bn =
2
π

∫ π

0

t sinntdt = −2(−1)n

n
.

-Π Π

t

-3

-2

-1

1

2

3

x

Figure 2: Problem 26.1b
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Figure 3: Problem 26.1c

(c)

f(t) =
{ −t2 (−π < t < 0)

t2 (0 ≤ t ≤ π)

Therefore
bn =

2
π

∫ π

0

t2 sin ntdt =
2

n3π
{2 + (−1)n[n2π2 − 2]}.

(d)

f(t) =
{

e−t − 1 (−π < t < 0)
−(et − 1) (0 ≤ t ≤ π)

-Π Π

t

-20

-10

10

20

x

Figure 4: Problem 26.1d

Therefore

bn = − 2
π

∫ π

0

(et − 1) sin ntdt = −2[−1 + (−1)n + (−1)n(1− eπ)n2]
n(1 + n2)π

.

(e)

f(t) =





1 (−π < t ≤ − 1
2π)

−1 (− 1
2π < t ≤ 0

1 (0 < t ≤ 1
2π)

−1 ( 1
2π < t ≤ π)

Therefore

bn =
2
π

∫ 1
2 π

0

sin ntdt− 2
π

∫ π

1
2 π

sin ntdt

=
2
π

{[
−cos nt

n

] 1
2 π

0

−
[
−cosnt

n

]π

1
2 π

}

=
2

πn
[1− 2 cos

1
2
πn + (−1)n].
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Figure 5: Problem 26.1e

The sequence of coefficients is

b1 = 0, b2 =
4
π

, b3 = b4 = b5 = 0, b6 =
4
3π

, b7 = b8 = b9 = 0, b10 =
4
5π

, . . . .

26.2. For even functions the coefficients bn are all zero, whilst for 2π-periodic functions

an =
2
π

∫ π

0

f(t) cos ntdt, (n = 0, 1, 2, . . .).

The diagrams show the functions over one period −π < t < π.
(a)

f(t) =




−1 (−π < t ≤ 1

2π)
1 (− 1

2π < t ≤ 1
2π)

−1 ( 1
2π < t ≤ π)

-Π -

Π

����

2
Π

����

2
Π

t

-1

1

x

Figure 6: Problem 26.2a

Then
an =

2
π

∫ π

0

f(t) cos ntdt =
4

nπ
sin

1
2
nπ.

The even coefficients a0, a2, a4, . . . are zero, whilst

a1 =
4
π

, a3 = − 4
3π

, a5 =
4
5π

, . . . .

(b) f(t) = t2, (−π < t ≤ π)..
In this case

an =
2
π

∫ π

0

t2 cos ntdt =
4(−1)n

n2
, (n ≥ 1)

integrating by parts. For n = 0, a0 = 2π2/3.
(c) f(t) = cos 1

2 t, (−π < t ≤ π).
Then

an =
2
π

∫ π

0

cos
1
2
t cos ntdt = − 4 cos nπ

(4n2 − 1)π
= − 4(−1)n

(4n2 − 1)
, (n = 0, 1, 2, . . .).
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Figure 8: Problem 26.2c

26.3. The Fourier coefficients for a 2π-periodic function f(t) are

an =
2
π

∫ π

0

f(t) cos ntdt, (n = 0, 1, 2, . . .).

bn =
2
π

∫ π

0

f(t) sin ntdt. (n = 1, 2, . . .).

(a)

f(t) =
{

0 (−π < t < 0)
t (0 ≤ t ≤ π) .

-Π Π

t

1

2

3

x

Figure 9: Problem 26.3a

The Fourier coefficients are

a0 =
1
π

∫ π

0

tdt =
π

,
an =

1
π

∫ π

0

t cos ntdt =
(−1)n − 1

n2π
, (n = 1, 2, . . .)

bn =
1
π

∫ π

0

t sin ntdt = − (−1)n

n
, (n = 1, 2, . . .).

(b)

f(t) =
{

t + π (−π < t < 0)
t (0 < t ≤ π) .
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Figure 10: Problem 26.3b

The Fourier coefficients are

a0 =
1
π

∫ π

−π

f(t)dt = π, an =
1
π

∫ π

−π

f(t) cos ntdt = 0, (n = 1, 2, . . .),

bn =
1
π

∫ π

−π

f(t) sin ntdt = −1 + (−1)n

n
.

26.4. The half-rectified sine wave is generated by the 2π-periodic function

f(t) =
{

0 (−π < t ≤ 0)
sin t (0 < t ≤ π) .

The Fourier coefficients are

a0 =
2
π

, a1 = 0, an = −1 + (−1)n

(n2 − 1)π
(n = 2, 3, 4, . . .),

b1 =
1
2
, an = 0, (n = 2, 3, 4, . . .).

The Fourier series is

f(t) =
1
π

+
1
2

sin t− 2
(22 − 1)π

cos 2t− 2
(42 − 1)π

cos 4t− · · · .

26.5. The Fourier coefficients of the 2π-periodic function

f(t) =
{

0 (−π < t ≤ 0)
1 (0 < t ≤ π)

are
a0 = 1, an =

1
π

∫ π

0

cos ntdt = 0 (n = 1, 2, 3, . . .),

bn =
1
π

∫ π

0

sin ntdt =
1− (−1)n

n
(n = 1, 2, 3, . . .).

Hence b1 = 2/π, b2 = 0, b3 = 2/(3π), b4 = 0, b5 = 2/(5π), and so on, which generates the Fourier
series

1
2

+
2
π

(
sin t +

1
3

sin 3t +
1
5

sin 5t + · · ·
)

.

At t = 0, the Fourier series takes the value 1
2 , in agreement with the definition f(0) = 0. There

is a discontinuity in f(t) at t = 0. By (26.12), the Fourier series takes the average value of the left
and right hand values of the function at the discontinuity.

Put t = 1
2π. Then sin 1

2π = 1, sin 3π
2 = −1, sin 5π

2 = 1 and so on. Since the Fourier series
equals the function on continuous parts of the curve,

f( 1
2π) = 1 = 1

2 + 2
π

(
1− 1

3 + 1
5 − 1

7 + · · ·).
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Therefore
1− 1

3
+

1
5
− 1

7
+ · · · = π

4
.

26.6. The fully rectified sine wave of period 2π is f(t) = F | sin t|. This is an even function so that
bn = 0. The other Fourier coefficients are

an =
1
π

∫ π

−π

| sin t| cosntdt

=
2
π

∫ π

0

sin t cosntdt = −2(1 + (−1)n

(n2 − 1)π
, (n = 0, 1, 2, . . .).

Hence
| sin t| = 2

π
− 4

3π
cos 2t− 4

15π
cos 4t− · · · .

The amplitude of the first non-zero harmonic (period π) is 4/(3π).

26.7. The Fourier series is ∞∑
n=1

n + a

n3 + an + 3
sin nt.

The first two harmonics have amplitudes (a + 1)/(a + 3) and (a + 2)/(2a + 11). These are in the
ratio 2 : 1 if

a + 1
a + 3

2a + 11
a + 2

= 2.

Therefore

(a + 1)(2a + 11) = 2(a + 3)(a + 2), or 2a2 + 13a + 11 = 2(a2 + 5a + 6).

Hence a = 1
3 .

The next harmonic (n = 3) has amplitude

3 + a

27 + 3a + 3
=

3 + 1
3

27 + 1 + 3
=

10
93

.

26.8. (See Section 26.9) Note that both functions are odd with period 2π. From Figure 26.18(a)
the straight line is given by x = Ft/π. Its Fourier series is given essentially by Problem 26.1(b),
with coefficients (suitably scaled)

an = 0, (n = 0, 1, 2, . . .), bn = −2F (−1)n

nπ
, (n = 1, 2, . . .).

The second step function can be obtained from Problem 26.1(a) by inserting a minus sign. Its
Fourier coefficients are

cn = 0, (n = 0, 1, 2, . . .), dn =
{ −4/(nπ) n odd

0 n even .

The Fourier series is therefore
∞∑

n=1

(bn + dn) sin nt =
2F − 4

π
sin t− F

π
sin 2t +

2F − 4
3π

sin 3t− F

2π
sin 4t + · · · .

The leading harmonic has zero amplitude if F = 2.

26.9. The T -periodic function is Q(t) = 1
4T 2 − t2 for − 1

2T ≤ t ≤ 1
2T , and it is even. Hence all

bn = 0. The other Fourier coefficients are

a0 =
2
T

∫ 1
2 T

− 1
2 T

( 1
4T 2 − t2)dt =

T 2

6
.
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an =
2
T

∫ 1
2 T

− 1
2 T

(1
4T 2 − t2) cos(2πnt/T )dt = − (−1)nT 2

n2π2
, (n = 1, 2, 3, . . .).

The approximation given by the first four terms of the Fourier series is

Q4(t) = =
1
2
a0 + a1 cos(2πt/T ) + a2 cos(4πt/T ) + a3 cos(6πt/T )

= T 2

[
1
6

+
1
π2

cos(2πt/T )− 1
4π2

cos(4πt/T ) +
1

9π2
cos(6πt/T )

]
.

(a) At t = 0, Q(0) = 1
4T 2 = 0.25T 2 and Q4(0) = ( 1

6 + 31
36π2 )T 2 = 0.2539 . . . T 2.

(b) At t = 1
4T , Q( 1

4T ) = 3
16T 2 = 0.1875T 2 and Q4( 1

4T ) = ( 1
6 + 1

4π2 )T 2 = 0.1919 . . . T 2.

26.10. The 2π-periodic function

f(t) =
{

βt(π − t) (0 < t ≤ π)
βt(π + t) (−π < t ≤ 0) .

is odd, so that all Fourier coefficients an are zero. The other coefficients are

bn =
2
π

∫ π

0

βt(π − t) sin ntdt =
4(1− (−1)n)β

n3π
,

using integration by parts. The Fourier series is

f(t) =
∞∑

n=1

4(1− (−1)n)β
n3π

sin nt

=
8β

π
sin t +

8β

27π
sin 3t +

8β

125π
sin 5t + · · · .

The ratio of the first and third harmonics is

b1

b3
=

8β

π

27π

8β
= 27.

Let
f3(t) =

8β

π
sin t +

8β

27π
sin 3t.

Then comparison of f(t) and f3(t) at t = 1
2π gives

f(1
2π) = π2β

4 = 2.467 . . . β, f4( 1
2π) = 8β

π − 8β
27π = 2.452 . . . β.

26.11. The function f(t) = t(π2 − t2) is an odd function which means that all coefficients an = 0.
The sine coefficients are given by

bn =
1
π

∫ π

−π

t(π2 − t2) sin ntdt = −12(−1)n

n3
.

The Fourier series of f(t) is

f(t) =
∞∑
0

bn sin nt = −
∞∑

n=0

12(−1)n

n3
sin nt. (i)

The derivative of f(t) is f ′(t) = π2 − 3t2. As expected f ′(t) is an even function so that the
coefficients bn = 0. The cosine coefficients are

a0 = 0, an =
1
π

∫ π

−π

(π2 − 3t2) cos ntdt = −12(−1)n

n2
.
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The Fourier series of f ′(t) is

−
∞∑

n=1

12(−1)n

n2
cos nt.

It can be seen that this Fourier series is the derivative of the Fourier series in (i), which confirms
that, in this case, the derivative of the Fourier series of f(t) is the Fourier series of the derivative
of f(t).

The function g(t) = t3 is odd so that all the Fourier coefficients an are zero. The sine coefficients
are given by

bn = −2(−1)n

n3
(n2π2 − 6), (n = 1, 2, . . .)

Hence

g(t) =
∞∑

n=1

2(−1)n(6− n2π2)
n3

sin nt.

The derivative g′(t) = 3t2 which is an even function. Hence all bn = 0, and

a0 = 2π2, an =
12(−1)n

12n2
, (n = 1, 2, . . .)

Therefore

g′(t) = 3t2 = 2π2 +
∞∑

n=1

12(−1)n

n2
cos nt.

Clearly the derivative of the Fourier series of g(t) obtained by term-by-term differentiation, namely,

∞∑
n=1

2(−1)n(6− n2π2)
n2

cosnt

is not the Fourier series of g′(t). A problem arises because the series
∑∞

n=1 cosnt which occurs
among the terms in this expression does not converge. This series does not have a sum.

26.12. A 2π-periodic rectified sine wave is defined by

x = P (t) =
{

0 (−π ≤ t ≤ 0)
| sin 2t| (0 < t ≤ π)

(see Fig. 11).

-2 Π -Π Π 2 Π
t

1

x

Figure 11: Problem 26.12

The Fourier coefficients are given by

a0 =
4
π

, an =
∫ π

0

| sin 2t| cosntdt = − 4
(n2 − 4)π

[−(n + 1)− 4 cos 1
2nπ],

bn =
∫ ∞

0

| sin 2t| sin ntdt = − 8
(n2 − 4)

sin 1
2nπ.
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26.13. One particular representation of the function f(t) = t on −π < t ≤ π is obtained by
considering its periodic extension (see Section 26.7). The Fourier coefficients are an = 0, (n =
0, 1, 2, . . .), and

bn =
1
π

∫ π

−π

t sinntdt = −2(−1)n

n
.

Hence

t = 2
∞∑

n=1

(−1)n−1

n
sin nt,

on −π < t ≤ π, as required.
Integrate this series term-by-term from t = 0 to t = x:

∫ x

0

tdt =
1
2
x2 =

∫ x

0

2
x∑

n=1

(−1)n−1

n
sin ntdt

= −2
∞∑

n=1

(−1)n−1

n2
[cos nt]xt=0

= −2
∞∑

n=1

(−1)n−1

n2
cos nx + 2

∞∑
n=1

(−1)n−1

n2
.

Therefore, for −π < x ≤ π,

x2 = 4
∞∑

n=1

(−1)n−1

n2
− 4

∞∑
n=1

(−1)n−1

n2
cosnx. (i)

Equation (26.10) states that the average value of the function is equal to 1
2a0. The average

value of x2 over a period is
1
2π

∫ π

−π

x2dx =
1
3
π2.

Therefore the constant term in (i) is given by

4
∞∑

n=1

(−1)n−1

n2
=

1
3
π2.

This inverse method determines the sum of the series on the left.

26.14. The Fourier series for t2 can be obtained by referring back to Problem 26.13. Quoting the
result

t2 =
1
3
π2 + 4

∞∑
n=1

(−1)n

n2
cos nt.

Integrate both sides of this equation:
∫ x

0

t2dt =
1
3
x3 =

1
3
π2

∫ x

0

dt + 4
∞∑

n=1

(−1)n

n2

∫ x

0

cos ntdt

=
1
3
π2x + 4

∞∑
n=1

(−1)n

n3
[sinnt]x0

=
1
3
π2x + 4

∞∑
n=1

(−1)n

n3
sinnx

Finally

x3 − π2x = 12
∞∑

n=1

(−1)n

n3
sin nx.
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26.15. The T -period function

P (t) =
{ −2t (− 1

2T ≤ t < 0)
2t (0 ≤ t < 1

2T )

is even, so that the Fourier coefficients bn are all zero. The cosine coefficients are given by

a0 = T, an =
4
T

∫ 1
2 T

0

2t cos(2πnt/T )dt =
2((−1)n − 1)T

n2π2
(n = 1, 2, . . .).

Hence

P (t) =
1
2
T +

2T

π2

∞∑
n=1

(−1)n − 1
n2

cos(2πnt/T )

=
1
2
T − 4T

π2

∞∑
m=0

1
(2m + 1)2

cos[2π(2m + 1)t/T ].

The spectral components are | 12a0|, |a1|, |a3|, |a5| . . ., that is

T

2
,
4T

π2
,

4T

9π2
,

4T

25π2
, . . . ,

at n = 0, 1, 3, 5, . . .. The spectrum is shown in Fig. 12.

1 2 3 4 5 6 7
n

0.1

0.2

0.3

0.4

0.5

amplitude�T

Figure 12: Problem 26.15

26.16. Use formula (26.15) with f(t) = 1 and t0 = 1.
(a) For the half-range sine series, the coefficients are

bn = 2
∫ 1

0

sin(nπt)dt =
2[1− (−1)n]

nπ
.

Therefore

1 =
∞∑

n=1

2[1− (−1)n]
nπ

sin(nπt) =
4
π

∞∑
r=1

sin(2r − 1)πt

2r − 1
.

for 0 < t < 1. Note that this series represents an odd function which takes the value −1 for
−1 < t < 0, and (by (26.12)) zero at t = 0. It is shown in Fig. 13.
(b) For the half-range cosine series, the coefficients are

a0 = 2, an = 2
∫ 1

0

cos(nπt)dt =
2

nπ
[sin(nπt)]10 = 0.

This represents an even function which is 1 for all t. In other words the function is its own
half-range cosine series

26.17. Use formula (26.15) with f(t) = t and t0 = 1
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Figure 14: Problem 26.16b

(a) For the half-range cosine series, the coefficients are

a0 = 2
∫ 1

0

tdt = 1, an = 2
∫ 1

0

t cos(nπt)dt =
2((−1)n − 1)

n2π2
.

Hence

t =
1
2

+
2
π2

∞∑
n=1

[(−1)n − 1]
n2

cos(nπt) =
1
2
− 4

π2

∞∑
r=1

cos[(2r − 1)πt]
(2r − 1)2

.

(b) For the half-range sine series, the coefficients are

bn = 2
∫ 1

0

t sin(nπt)dt =
2(−1)n+1

nπ
.

Therefore the half-range sine series is

t =
2
π

∞∑
n=1

2(−1)n+1

n
sin(nπt),

for 0 < t < 1. For −1 < t < 0 the sum of the series is −t.

26.18. Use formula (26.15) with f(t) = sin ωt and t0 = π/ω. The coefficients for the half-range
cosine series are

a0 =
4
π

, a1 = 0,

an =
2ω

π

∫ π/ω

0

f(t) cos(nωt)dt =
2ω

π

∫ π/ω

0

sin(ωt) cos(nωt)dt

= −2(1 + (−1)n

π(n2 − 1)
, (n = 2, 3, 4, . . .)

Hence

sin ωt =
2
π
− 2

π

∞∑
n=2

(1 + (−1)n)
n2 − 1

cos(nωt) =
2
π
− 4

π

∞∑
r=1

cos(2rωt)
4r2 − 1

,
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Figure 15: Problem 26.18

for 0 < t < π/ω. The series represents an even function with sum | sin ωt|, which is shown in Fig.
15.

26.19. Use formula (26.15) with f(t) = cos ωt and t0 = π/ω. The coefficients for the half-range
sine series are

b1 = 0, bn =
2ω

π

∫ π/ω

0

cos(ωt) sin(nωt)dt =
2n(1 + (−1)n)

π(n2 − 1)
.

Hence

cosωt =
2
π

∞∑
n=2

n(1 + (−1)n)
n2 − 1

sin(nωt) =
8
π

∞∑
r=1

r

4r2 − 1
sin(2rωt),

for 0 < t < π/ω. The sum of the series is odd, so that for −π/ω < t < 0 the sum is − cosωt except
at t = nπ/ω, where its sum is zero.
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Figure 16: Problem 26.19

26.20. Use formula (26.15) with f(t) = cos t and t0 = 2π. The coefficients for the half-range sine
series are

bn =
1
π

∫ 2π

0

cos t sin(nt/2)dt = −2n[(−1)n − 1]
π(n2 − 1)

,

provided n 6= 2. For n = 2, b2 = 0. Hence

cos t =
4
π

∞∑
r=1

sin[ 12 (2r − 1)t]
(2r − 1)2 − 4

,

for 0 < t < 2π.

26.21. Use formula (26.15) with f(t) = cos t and t0 = 2π.The coefficients for the half-range cosine
series are given by

a0 =
1
π

∫ 2π

0

cos tdt = 0, a2 =
1
π

∫ 2π

0

cos2 tdt = 1,

an =
1
π

∫ 2π

0

cos t cos(nt/2)dt = 0, (n = 1, 3, 4, . . .).

The function f(t) = cos t is its own half-range cosine series.

41



26.22. The function f(t) is given by

f(t) =
{

1 (0 ≤ t < 1
2π)

0 ( 1
2π ≤ t ≤ π)

In (26.15), t0 = π. (a) For the half-range sine series the coefficients are

bn =
2
π

∫ π

0

f(t) sin ntdt

=
2
π

∫ 1
2 π

0

sin ntdt =
2

nπ
[1− cos( 1

2nπ)].

Hence the half-range sine series is

f(t) =
2
π

∞∑
n=1

[1− cos 1
2nπ]

n
sin nt.

The terms for which n = 4, 8, 12, . . . are all zero.
(b) For the half-range cosine series the coefficients are a0 = 1 and

an =
2
π

∫ π

0

f(t) cos ntdt

=
2
π

∫ 1
2 π

0

cos ntdt =
2

nπ
sin

1
2
nπ.

Hence

f(t) =
1
2

+
2
π

∞∑
n=1

sin 1
2nπ

n
cosnt =

2
π

∞∑
r=1

(−1)r+1

2r − 1
cos(2r − 1)t.

26.23. (See Section 26.9) The 2π-periodic function specified by

P (t) =
{ −t (−π ≤ t ≤ 0)

t (0 ≤ t ≤ π)

has the Fourier series

P (t) =
1
2
π − 4

π

(
cos t

12
+

cos 3t

32
+

cos 5t

52
+ · · ·

)
.

(a) Rescale t by putting t = πτ/2 so that when t = π, τ = 2. Hence

P (πτ/2) =
1
2
π − 4

π

(
cos(πτ/2)

12
+

cos(3πτ/2)
32

+
cos(5πτ/2)

52
+ · · ·

)
.

Finally, rescaling P ,

Q(τ) =
6
π

P (πτ/2) =
{ −3τ (−2 ≤ τ ≤ 0)

3τ (0 ≤ t ≤ 2)

= 3− 24
π2

(
cos(πτ/2)

12
+

cos(3πτ/2)
32

+
cos(5πτ/2)

52
+ · · ·

)
.

The symbol τ can be replaced by t in the answer.
(b) First rescale t by putting t = πτ , so that when t = π, τ = 1. Therefore

P (πτ) =
1
2
π − 4

π

(
cos πτ

12
+

cos 3πτ

32
+

cos 5πτ

52
+ · · ·

)
.
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Then

R(τ) = 1− 1
π

P (πτ) =
1
2

+
4
π

(
cosπτ

12
+

cos 3πτ

32
+

cos 5πτ

52
+ · · ·

)
.

As before τ can be replaced by t.
(c) P (t) has the spectral components

π/2, 4/π, 4/(9π), 4/(25π), . . . at n = 0, 1, 3, 5, . . . .

The functions Q(t) and R(t) have spectral components at the same values of n but scaled in
magnitude.

26.24. (See Section 26.9) The period-2 function

P (t) =
{ −1 (−1 ≤ t < 0)

1 (0 ≤ t < 1)

has the Fourier series

P (t) =
2
π

(
sin πt +

1
3

sin 3πt +
1
5

sin 5πt + · · ·
)

.

Let t = 2τ/T so that when t = 1, τ = 1
2T . Hence

P (2τ/T ) =
2
π

(
sin(2πτ/T ) +

1
3

sin(6πτ/T ) +
1
5

sin(10πτ/T ) + · · ·
)

.

Multiply both sides by a and change the sign. Then

Q(τ) = −aP (2τ/T ) =
{

a ( 1
2T ≤ t < 1

2T )
−a (0 ≤ 0)

=
2a

π

(
sin(2πτ/T ) +

1
3

sin(6πτ/T ) +
1
5

sin(10πτ/T ) + · · ·
)

This function is periodic with period 2a, which means that Q(τ) = a for 1
2T ≤ t < T .

26.25. The 2π-periodic function f(t) = t, (−π ≤ t ≤ π) is odd so that the coefficients an are all
zero. The sine coefficients are given by

bn =
1
π

∫ π

−π

t sin ntdt = −2(−1)n

n
, (n = 1, 2, 3, . . .).

Hence

t = 2
∞∑

n=1

(−1)n+1

n
sin nt.

To determine a particular solution of

d2x

dt2
+ Ω2x = K sin ωt,

try a solution x = A cosωt. Then

d2x

dt2
+ Ω2x−K sinωt = −Aω2 cosωt + Ω2A cosωt−K cos ωt

= [A(Ω2 − ω2)−K] cos ωt = 0

for all t, if A = K/(Ω2 − ω2). The forced solution is therefore

x =
K cosωt

Ω2 − ω2
, (Ω2 6= ω2)
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Consider the general term in the Fourier series for f(t), namely

2
(−1)n+1

n
sin nt.

Comparison with the particular solution just found thus generates a forcing term (with K =
2(−1)n+1/n, ω = n),

2(−1)n+1 cos nt

Ω2 − n2
,

provided Ω2 6= n2. We now sum these terms over n to give the forced solution

x = 2
∞∑

n=1

(−1)n+1

Ω2 − n2
cosnt.

The system will resonate if Ω is close to any positive integer n.

26.26. Multiply both sides of

f(t) =
1
2
a0 +

∞∑
n=1

(an cos ωt + bn sin ωt)

by f(t) and integrate term-by-term over the interval (− 1
2T, 1

2T ):

∫ 1
2 T

− 1
2 T

f(t)2dt

=
1
2
a0

∫ 1
2 T

− 1
2 T

f(t)dt +
∞∑

n=0

(
an

∫ 1
2 T

1
2 T

f(t) cos ωtdt + bn

∫ 1
2 T

1
2 T

f(t) sin ωtdt

)

=
1
2
a2
0 +

∞∑
n=1

(a2
n + b2

n),

using (26.9) for the Fourier coefficients.
(a) With T = π and the odd function

f(t) =
{ −1 (− 1

2π < t ≤ 0)
1 (0 < t ≤ 1

2π) ,

the Fourier coefficients an = 0 and

bn =
4
π

∫ 1
2 π

− 1
2 π

sin 2ntdt =
2(1− (−1)n)

nπ
.

Hence
b1 =

4
π

, b2 = 0, b3 =
4
3π

, b4 = 0, b5 =
4
5π

, . . . .

Hence, using Parseval’s identity,

1
2
a2
0 +

∞∑
n=1

(a2
n + b2

n) =
16
π2

∞∑
m=1

1
(2m + 1)2

=
2
π

∫ 1
2 π

− 1
2 π

f(t)2dt =
2
π

∫ 1
2 π

− 1
2 π

dt

= 2.

Therefore ∞∑
m=1

1
(2m + 1)2

=
π2

8
.
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(b) The Fourier coefficients of f(t) = t, (−π < t ≤ π) are

an = 0, bn =
2(−1)n+1

n

(see Problem 26.1b). Using Parseval’s identity

∞∑
n=1

(a2
n + b2

n) = 4
∞∑

n=1

1
n2

=
1
π

∫ π

−π

t2dt =
1
3π

[t3]π−π =
2π2

3
.

Hence ∞∑
n=1

1
n2

=
π2

6
.

26.27. As far as the Laplace transform is concerned, the transform is that of the function f(t)H(t),
which is zero for t < 0. The Laplace transforms of cos nωt and sin nωt are

L{cosnωt} =
s

s2 + n2ω2
, L{sin nωt} =

nω

s2 + n2ω2
.

Hence

F (s) = L{f(t)} =
a0

2s
+

∞∑
n=1

ans + bnnω

s2 + n2ω2
.

The Fourier coefficients of the function

f(t) =
{ −t2 (−π < t < 0)

t2 (0 ≤ t ≤ π)

are
an = 0, bn =

2
n3π

{2 + (−1)n[n2π2 − 2]}.

Hence the Fourier transform of the function f(t)H(t) is

F (s) =
2
π

∞∑
n=1

2 + (−1)n[n2π2 − 2]
n2(s2 + n2)

.

26.28. A radio wave is defined by

x(t) = a cos ωt cos ω0t,

where ω0 is very much greater than ω. Using the product formula in Appendix B(d),

x(t) = 1
2a[cos(ω0 − ω)t + cos(ω0 + ω)t].

The figure shows the wave x(t) = cos t cos(10t) for −20 < t < 20.

-20 -10 10 20
t

-1

-0.5

0.5

1

x

Figure 17: Problem 26.28
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(a) With ω = 500 and ω0 = 100001, the sums and differences are

ω0 + ω = 100501, ω0 − ω = 99501.

The greatest common divisor of these numbers is 1: hence the period of x(t) is 2π.
(b) If ω = p/q and ω0 = r/s, then

x(t) = a cos(pt/q) cos(rt/s).

Then x(t) is periodic with period T if T is the smallest values for which x(t + T ) = x(t) for all t.
For the given function

x(t + T ) = a cos
(

p(t + T )
q

)
cos

(
r(t + T )

s

)
.

This equals x(t) if pT/q and rT/s are integer multiples of 2π. Since q and s have only the common
divisor 1 the smallest value of T is 2πqs, which is the period of x(t).

As the sum of two waves

x(t) = a cos
(

pt

q

)
cos

(
rt

s
x

)
=

a

2

[
cos

(
r

s
− p

q

)
t + cos

(
r

s
+

p

q

)
t

]
.

This is the Fourier cosine series of x(t) over the period 2πsq.
(c) Given x1(t) = cos t cos

√
2t, then

x(t + T ) = cos(t + T ) cos(
√

2t +
√

2T ).

In this case we require T and
√

2T to be integer multiples of 2π which is impossible since by
definition

√
2 can never be equal to the ratio of two integers.

26.29. (a) If m = n then

∫ 1
2 T

− 1
2 T

ei2πnf0te−i2πmf0tdt =
∫ 1

2 T

− 1
2 T

dt = T.

If m 6= n and f0 = 1/T , then

∫ 1
2 T

− 1
2 T

ei2πnf0te−i2πmf0tdt =
∫ 1

2 T

− 1
2 T

ei2π(n−m)f0tdt =
[
T e2πit(n−m)/T

2πi(n−m)

] 1
2 T

− 1
2 T

=
T sin 2π(n−m)

π(n−m)
= 0

(b) From (26.18a),

xP (t) =
∞∑

n=−∞
Xnei2πnf0t.

Multiply both sides by e−i2πNf0t and integrate over one period, from t = − 1
2T to 1

2T :

∫ 1
2 T

− 1
2 T

xP (t)ei2πNt/T dt =
∞∑

n=−∞
Xnei2πnt/T e−i2πNt/T dt = XNT = XN/f0.

Result (26.18) follows.

26.30. For xP (t) = t/T , the coefficients of the two-sided Fourier series are, from (26.18), given by

X0 =
f0

T

∫ T

0

tdt =
1
2
T,
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Xn =
f0

T

∫ T

0

te−i2πnf0tdt =
i

2nπ
.

Hence
t

T
=

1
2

+
i

2π

∞∑
n=−∞

1
n

ei2πnt/T .

Chapter 26: Fourier transforms

27.1 The real and imaginary parts of the integral

2
∫ ∞

0

e−te2πiftdt

give the Fourier cosine and sine transforms Xc(f) and Xs(f) respectively of e−t:

Xc + iXs = 2
∫ ∞

0

et(−1+2πif)dt =
2

−1 + 2πif
[et(−1+2πif)]∞0

=
2

1− 2πif
=

2(1 + 2πif)
(1− 2πif)(1 + 2πif)

=
2(1 + 2πif)
1 + (2πf)2

=
2 + 4πif
1 + 4π2f2

Therefore
Xc =

2
1 + 4π2f2

, Xs =
4πf

1 + 4π2f2
.

The inverse is
I(t) = 2

∫ ∞

0

4πf

1 + 4π2f2
sin(2πft)df.

I(t) is zero at t = 0. This is connected with (27.9). I(t) is an odd function on −∞ < t < ∞;
I(t) = e−t for t > 0 and I(t) = −e−t for t < 0, so it jumps in value at t0 = 0, the mean of the
values at either side of t = 0 being zero.

27.2. The cosine transform of

x(t) =
{

1− t, 0 ≤ t ≤ 1
0, t > 1

is

Xc(f) = 2
∫ ∞

0

x(t) cos(2πft)dt = 2
∫ 1

0

(1− t) cos(2πft)dt.

By integrating by parts we obtain

Xc =
2

(2πf)2
[1− cos(2πf)] =

4 sin2(πf)
(2πf)2

=
sin2(πf)

π2f2
= sinc 2f.

The inverse of Xc(f) is

2
∫ ∞

0

sin2(πf)
π2f2

cos(2πft)df.

This is an even function of t; it delivers (1− t) for t > 0, and (1 + t) for t < 0, and is continuous
at t = 0, taking the value 1. Therefore put t = 0 into the inverse integral; we obtain

2
∫ ∞

0

sin2(πf)
π2f2

df = 1.
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Now put πf = u; then the equality becomes

2
∫ ∞

0

sin2 u

u2

du

π
= 1, or

∫ ∞

0

sin2 u

u2
du =

1
2
π.

27.3. Here, x(t) = e−t2 , and we require the cosine transform Xc(f), where

Xc(f) = 2
∫ ∞

0

e−t2 cos(2πft)dt.

By differentiating with respect to f under the integral sign

dXc

df
= −4π

∫ ∞

0

(te−t2) sin(2πft)dt. (i)

Integrate by parts, putting into eqn (17.8) u = sin(2πft), and dv/dt = te−t2 so that v = − 1
2e−t2 :

dXc

df
= −4π

{[
sin(2πft)

(
− 1

2e−t2
)]∞

0
−

∫ ∞

0

(− 1
2e−t2)[2πf cos(2πft)]dt

}

= −4π2f

∫ ∞

0

e−t2 cos(2πft)dt = −2π2fXc.

The differential equation
dXc

df
= −2π2fXc (ii)

is separable: ∫
dXc

Xc
= −2π2

∫
fdf,

leading to the general solution
Xc(f) = Ke−π2f2

where K is an arbitrary constant. The inverse integral is therefore

x(t) = 2K

∫ ∞

0

e−π2f2
cos(2πft)df (iii)

for some value of K.
To find K, put t = 0 into (iii). We have x(t) = e−t2 , so

x(0) = 1 = 2K

∫ ∞

0

e−π2f2
df =

2K

π

∫ ∞

0

e−u2
du =

2K

π

√
π

2
=

K√
π

,

from the standard integral given. Therefore K =
√

π, and

e−t2 ↔ √
πe−π2f2

.

27.4. (a) x(t) is an even function, that is x(t) = x(−t). The Fourier transform is given by

F [x(t)] =
∫ ∞

−∞
x(t)e−2πiftdt =

∫ ∞

0

x(t)e−2πiftdt +
∫ 0

−∞
x(t)e−2πiftdt.

Change the variable in the second integral by putting t = −t′, and put x(−t′) = x(t′) (evenness
property):

F [x(t)] =
∫ ∞

0

x(t)e−2πiftdt +
∫ ∞

0

x(t′)e2πift′dt′

= 2
∫ ∞

0

x(t)
e2πift + e−2πift

2
dt

= 2
∫ ∞

0

x(t) cos(2πft).dt (i)
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The right-hand side of (i) is the Fourier cosine transform Xc(f).

(b) The function e−t2 is even, so eqn (i) applies. We then have

F [e−t2 ] ≡ Xc(f) =
√

πe−π2f2
.

By the time-scaling rule (27.18b),

F [e−αt2 ] ≡ F [e−(α
1
2 t)2 ] =

1
α

1
2
Xc

(
f

α
1
2

)
=

√
π

α
e−π2f2α.

(Notice that if α = π, the result becomes symmetrical: e−πt2 ↔ e−πf2
.

27.5. With x(t) an odd, real function

X(f) = F [x(t)] =
∫ ∞

−∞
x(t)e−2πiftdt =

∫ ∞

0

x(t)e−2πiftdt +
∫ 0

−∞
x(t)e−2πiftdt.

Change the variable in the second integral to t′ = −t, and use the oddness property, x(−t′) =
−x(t′):

X(f) =
∫ ∞

0

x(t)e−2πiftdt−
∫ ∞

0

x(t′)e2πift′dt′

=
∫ ∞

0

x(t){e−2πift − e2πift}dt

= −2i
∫ ∞

0

x(t) sin(2πft)dt = −iXs(f)

where Xs(f) is the sine transform of x(t).

27.6. See the answer to Problem (27.4b), in the special case of α = π.

27.7. To derive a form of Fourier transform pair that is an alternative to that in eqns (27.8).
Change the frequency variable f in eqns (27.8) to a new variable ω through the relation f =

ω/(2π) (ω then takes the meaning of circular, or angular frequency ). Then (27.8a) becomes

x(t) =
∫ ∞

−∞
X

( ω

2π

)
eiωt dω

2π
, (i)

and (27.8b) becomes

X
( ω

2π

)
=

∫ ∞

−∞
x(t)e−iωtdt. (ii)

Now put
1√
(2π)

X
( ω

2π

)
= X1(ω).

Then (i) and (ii) become

x(t) =
1√
(2π)

∫ ∞

−∞
X1(ω)eiωtdω,

and
X1(ω) =

1√
(2π)

∫ ∞

−∞
x(t)e−iωtdt,

as required

27.8. (This is an alternative approach from that in Problem 27.4.) In (27.8b), change the variable
from t to (−t) and use the evenness property of x(t). We then have two alternative forms of the
equation:

X(f) =
∫ ∞

−∞
x(t)e−2πiftdt and X(f) =

∫ ∞

−∞
x(t)e2πiftdt.
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Add the two versions and divide by 2:

X(f) =
1
2

∫ ∞

∞
x(t)(e2πift + e−2πift)dt =

∫ ∞

−∞
x(t) cos(2πft)dt

= 2
∫ ∞

0

x(t) cos(2πft)dt, (i)

since the integrand is even in t. Also X(f) is even (in f), so to obtain the inverse, start with
(27.8a), and carry out a similar process of changing the variable from f to (−f), obtaining

x(t) = 2
∫ ∞

0

X(f) cos(2πft)df. (ii)

Equations (i) and (ii) take a real form (though x(t) may be complex), recognizable as a Fourier
cosine transform and its inverse.

27.9. The function x(t) is odd (that is, x(−t) = −x(t)). In (27.8b) change the variable from t to
(−t) and use the oddness property. We now have two alternative forms for X(f):

X(f) =
∫ ∞

−∞
x(t)e−2πiftdt and X(f) = −

∫ ∞

−∞
x(t)e2πiftdt.

Add the two versions and divide by 2; we obtain

X(f) =
1
2

∫ ∞

−∞
x(t)(e−2πift − e2πift)dt = −i

∫ ∞

−∞
x(t) sin(2πft)dt

= −2i
∫ ∞

0

x(t) sin(2πft)dt, (i)

since the integrand is an even function of t.
Notice that X(f) is an odd function of f (that is, X(−f) = −X(f)), and consider the in-

verse integral (27.8a), changing the variable (as before) from f to (−f) so as to obtain a second
representation of x(t):

x(t) =
∫ ∞

−∞
X(f)e2πiftdf and x(t) = −

∫ ∞

−∞
X(f)e−2πiftdf.

Add the two versions and divide by 2:

x(t) =
1
2

∫ ∞

−∞
X(f)(e2πift − e−2πift)dt = i

∫ ∞

−∞
X(f) sin(2πft)df

= 2i
∫ ∞

0

X(f) sin(2πft)dt (ii)

Now define a function X1(f) by writing iX(f) = X1(f). Then (i) and (ii) become the pair

X1(f) = 2
∫ ∞

0

x(t) sin(2πft)dt,

and
x(t) = 2

∫ ∞

0

X1(f) sin(2πft)df.

This is the sine transform pair (eqn (27.5)), and is a real form (though x and X may be complex).

27.10. Time-scaling rule (27.18b). Let x(t) ↔ X(f), and consider the transform of x(At):

F [x(At)] =
∫ ∞

−∞
x(At)e−2πiftdt.
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Change the variable of integration by putting At = t′. If A > 0, we obtain

1
A

∫ ∞

−∞
x(t′)e−2πift′/Adt′ =

1
A

X

(
f

A

)
.

If A < 0, we obtain (note the inversion of the limits in the integral):

1
A

∫ −∞

∞
x(t′)e−2πift′/Adt′ = − 1

A
X

(
f

A

)
.

Both results can be combined into one by writing

F [x(At)] =
1
|A|X

(
f

A

)
.

Time-delay rule (27.18c).

F [x(t−B)] =
∫ ∞

−∞
x(t−B)e−2πiftdt.

Put t−B = t′. The integral becomes
∫ ∞

−∞
x(t′)e−2πif(t′+B)dt′ = e−2πifBX(f).

27.11. (a) By the time-delay rule (27.18c), with B = 1
2 ,

F [Π(t− 1
2 )] = e−2πi(1/2)f sinc f = e−πif sinc f.

(b) To confirm this directly: Π(t− 1
2 ) is zero when t− 1

2 < − 1
2 and t− 1

2 > 1
2 , so

F [Π(t− 1
2 )] =

∫ 1

0

(1)e−2πiftdt = − 1
2πf

[e−2πift]10

= −e−2πif − 1
2πif

=
(eπif − e−πif )e−πif

2πif
= e−πif sin πf

πf

= e−πif sinc f.

(c) The graph of x(t) is shown in the figure. It is obtained by moving a centrally-placed rectangle
of width c given by Π(t/c) a distance b > 1

2c to the left, and changing its sign to produce A, and
a distance b to the right to produce B.

t
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1

x

A

B

b

-b

b+
c
����

2
b-

c
����

2

-b+
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2
-b-

c
����

2

Figure 18: Problem 27.11

Therefore

x(t) = −Π
(

t + b

c

)
+ Π

(
t− b

c

)
.
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By the time-delay rule (28.18c), with B = ±b,

F [x(t)] = (−e2πibf + e−2πibf )F
[
Π

(
t

c

)]

= (−e2πibf + e−2πibf )[c sinc (cf)]
(by the time-scaling rule (28.18b) with B = 1/c)

= −2ic sin(2πbf)sinc (cf).

27.12. (a) Given that Λ(t) ↔ sinc 2f , we obtain from the time-scaling rule (27.18b) with A = 2:

Λ(2t) ↔ 1
2 sinc 2( 1

2f).

(b) In general, suppose that x(t) ↔ X(f). To obtain F [x(2t− 3)] we can use the time-scaling rule
(27.18b), then the time-delay rule (27.18c), as follows:

x(2t) ↔ 1
2X( 1

2f) (time-scaling).

and
x(2t− 3) = x(2[t− 3

2 ]) ↔ e−2πi(3/2)f{ 1
2X( 1

2f)} = 1
2e−3πifX( 1

2f).

For the particular case of x(t) = Λ(t), X(f) = sinc 2f , so that we have

Λ(2t− 3) ↔ 1
2e−3πif sinc 2( 1

2f).

27.13. (a) Frequency shift rule (27.18e). From the definition of F

F [x(t)e2πiDt] =
∫ ∞

−∞
x(t)e2πiDte−2πiftdt

=
∫ ∞

−∞
x(t)e−2πi(f−D)tdt = X(f −D)

where X(f) = F [x(t)].

(b) F [x(t)e±2πif0t] = X(f ∓ f0), (from (a))

(c) From (b)

F [x(t) cos(2πf0t)] =
1
2
F [x(t){e2πif0t + e−2πif0t}]

=
1
2
{X((f − f0) + X(f + f0)}, .

F [x(t) sin(2πf0t)] =
1
2i
F [x(t){e2πif0t − e−2πif0t}]

=
1
2i
{X((f − f0)−X(f + f0)} .

(d) F [Π(t)] = sinc f . By the time-scaling rule (27.18b) with A = 1
2 ,

F [Π( 1
2 t)] = 2sinc 2f.

Apply the results in (c); then

F [Π(1
2 t) cos(2πf0t)] = sinc 2(f − f0) + sinc 2(f + f0),

and
F [Π(1

2 t) sin 2πf0t)] = −i{sinc 2(f − f0)− sinc 2(f + f0)}.
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27.14. (a) To obtain F [sinc 2t], given that F [Λ(t)] = sinc 2f . In the duality rule (27.18b) put
X(t) = sinc 2t and x(−f) = Λ(−f) = Λ(f) since Λ is an even function. We obtain F [sinc 2t] =
Λ(f).

This result may alternatively be obtained without using (27.18b). From the basic transform
pair, starting with the inverse relation (27.8a), we know that

∫ ∞

−∞
e2πiftsinc 2fdf = Λ(t).

This equation is an identity, so if we interchange the letters f and t in it, the result remains true:
∫ ∞

−∞
e2πiftdt = Λ(f)

for all values of the parameter f . Therefore
∫ ∞

−∞
e2πi(−f)tsinc 2tdt = Λ(−f),

or ∫ ∞

−∞
e−2πiftsinc 2dt = Λ(−f) ≡ Λ(f)

since Λ is even. Therefore F [sinc 2t] = Λ(f).
(b) Given that F [sinc 2t] = Λ(f), the time-scaling rule (27.18b) with A = a gives

F [sinc 2(at)] =
1
a
Λ

(
f

a

)
.

Now write sinc 2(at+ b) ≡ sinc 2[a(t+(b/a))], and use the time-delay rule (27.18c) with B = −b/a:

F [sinc 2(at + b)] =
1
a
e2πibf/aΛ

(
f

a

)
.

27.15. (a) To prove the differentiation rule (27.18h). From (27.8a),

x(t) =
∫ ∞

−∞
e2πiftX(f)df.

By differentiating with respect to t under the integral sign:

dx(t)
dt

=
∫ ∞

−∞
e2πift{2πifX(f)}df,

that is
dx(t)

dt
↔ (2πif)X(f).

As each subsequent differentiation introduces another factor 2πif , we have

dnx(t)
dtn

↔ (2πif)nX(f).

(This process can only be carried out so long as the functions on the right continue to have valid
Fourier integrals.)
(b) Given e−|t| ↔ 2/(1 + 4π2f2), to find the inverse of if/(1 + 4π2f2). The differentiation rule in
(a), with x(t) = e−|t|, gives

d
dt

(e−|t|) =↔ 4πif
1 + 4π2f2

. (i)
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Also
d
dt

(e−|t|) =
{

et for t < 0
−e−t for t > 0 ,

that is,
d
dt

(e−|t|) = −e−|t|sgn (t),

where sgn (t) stands for the sign of t (see Section 1.4). At t = 0 the derivative does not exist.
Therefore, from (i), the inverse of if/(1 + 4π2f2) is

− 1
4π

e−|t|sgn (t).

27.16. Given (eqn (27.17)) that 1/(α + 2πif) is the transform of the function h(t) defined by

h(t) =
{

0, t < 0
e−αt, t > 0

to obtain F [e−α|t|]. It is easy to show that

e−α|t| = h(t) + h(−t),

by sketching diagrams of f(t) and f(−t). From the time-reversal rule (27.18b),

F [e−α|t|] = F [h(t)] + F [h(−t)]

=
1

α + 2πf
+

1
α + 2π(−f)

=
2α

α2 + 4π2f2
.

27.17. (a) H(t) is the Heaviside unit function, eqn (1.13).

F [e−αtH(t)] = X(f) =
1

α + 2πif
,

from eqn (27.17). From the modulation rules (27.18f), with K = β/(2π),

F [e−αt cos(βt)H(t)] =
1
2

{
X

(
f − β

2π

)
+ X

(
f +

β

2π

)}

=
1
2

{
1

α + 2πi(f − β
2π )

+
1

α + 2πi(f + β
2π )

}
(i)

and

F [e−αt sin(βt)H(t)] =
1
2i

{
1

α + 2πi(f − β
2π )

− 1
α + 2πi(f + β

2π )

}
(ii)

(b) In the case of F [e−αt cos(2πf0t + φ)H(t)], expand the cosine term, obtaining

F [e−αt cos(2πf0t + φ)H(t)] =
cos φF [e−αt cos(2πf0t)H(t)]− sin φF [e−αt sin(2πf0t)H(t)].

The results (i) and (ii) above, with β = 2πf0, apply to the two terms, giving

1
2

cos φ

{
1

α + 2πi(f − f0)
+

1
α + 2πi(f + f0)

}
−

1
2i

sin φ

{
1

α + 2πi(f − f0)
− 1

α + 2πi(f + f0)

}

=
1
2

{
eiφ

α + 2πi(f − f0)
+

e−iφ

α + 2πi(f + f0)

}

=
(α cosφ− 2πf0 sin φ) + 2πif cosφ

α2 − 4π2(f2 − f2
0 ) + 4πiαf

.
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27.18. By (27.27), the notation x1(t) ∗ x2(t) means
∫ ∞

−∞
x1(τ)x2(t− τ)du.

Put x2 = H(t) and x1(t) = x(t)H(t). Then x2(τ) is zero for τ < 0 and x(t− τ) is zero for t− τ < 0,
or τ > t. Therefore

x1(t) ∗ x2(t) =
∫ t

0

x(τ)dτ.

27.19. (a)

e−tH(t) ∗ e−tH(t) =
∫ ∞

∞
e−ue−(t−u)H(u)du = I(t), say.

If t > 0, H(u)H(t − u) is zero for u < 0 and u > t. If t < 0, then H(u)H(t − u) is zero for all u.
Therefore

I(t) =
{ ∫ t

0
e−ue−(t−u)du = e−t

∫ t

0
du = te−t for t > 0

zero for t < 0.

(b) From (27.17), F [e−tH(t)] = 1/(1 + 2πif). From (a)

F [te−tH(t)] = F [e−tH(t) ∗ e−tH(t)].

Therefore, by the convolution theorem (27.28),

F [te−tH(t)] = F [e−tH(t)]F [e−tH(t)] =
1

1 + 2πif)2
. (i)

(c) H(αt) = H(t) for α > 0, so the time-scaling rule (27.18b) applied to (i) gives

F [αte−αtH(t)] =
1
α

1
(1 + 2πif/α)2

=
α

(α + 2πif)2
.

Therefore, dividing through by α,

F [te−αtH(t)] =
1

(α + 2πif)2
. (ii)

(d) From (27.17), F [e−αtH(t)] = 1/(α + 2πif) for α > 0
∫ ∞

−∞
e2πift df

α + 2πif
= e−αtH(t).

Differentiate both sides with respect to α; we obtain

−
∫ ∞

−∞
e2πif df

(α + 2πif)2
= −te−αtH(t).

Therefore
te−αtH(t) ↔ 1

(α + 2πif)2
,

as already found in (ii)

27.20. By (27.15), F [Π(t)] = sinc f . From the time-delay rule (27.18c):

F [t± 1
2 ] = e±πif sinc f.

Therefore by the convolution theorem

F [Π(t− 1
2 ) ∗Π(t + 1

2 )] = F [Π(t− 1
2 )]F [Π(t + 1

2 )]

= (e−iπf sinc y)(eiπf sinc y) = sinc 2f
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(b) By proceeding as in (a), we obtain

F [Π(t− a)] ∗Π(t− b)] = (e−2πiaf sinc f)(e−2πibf sinc f)
= e−2πi(a+b)f sinc 2f

(c) In the definition (27.27a) put x1(t) = Π(t), x2(t) = Π( 1
2 t), and use the second form in (27.27a)

for simplicity. Then put

Π(t) ∗Π( 1
2 t) =

∫ ∞

−∞
Π(t− u)Π( 1

2u)du = (t). (i)

Π(t− u) is zero for t− u < − 1
2 and for t− u > 1

2 , and Π( 1
2u) is zerofor u < −1 and for u > 1. By

sketching a diagram as in Example 27.10 we can establish the effective limits of the integral in (i)
in terms of t.

3
����

2
-1

-

1
����

2
1
����

2
3
����

2

t

-1

-

1
����

2

1
����

2

1

u

Figure 19: Problem 27.20

Also F (t) is an even function, so we only have to calculate for t ≥ 0 and the values for t < 0
will echo those values. The diagram has boundaries u = ±1 and u = t± 1

2 . The values of F (t) are
given in the following table.

Range of t F (t)
t < − 3

2 zero
− 3

2 ≤ t ≤ − 1
2

∫ t+ 1
2

−1
du = t + 3

2

− 1
2 ≤ t ≤ 1

2

∫ t+ 1
2

t− 1
2

du = 1
1
2 < t ≤ 3

2

∫ 1

t− 1
2

du = 1− (t− 1
2 ) = −t + 3

2

t > 1
2 zero

27.21. By Section 27.9, the energy E is given by

E =
∫ ∞

−∞
{e−αtH(t)}2dt =

∫ ∞

−∞
e−2αtH(t)dt, (since [H(t)]2 = H(t))

=
∫ ∞

0

e−2αtdt =
1
2α

.

The transform (frequency distribution) of e−αt is 1/(α + 2πf) = X(f), say, by (27.17). The
energy associated with the frequency range −f0 ≤ f ≤ f0 in the expression (27.33) is

∫ f0

−f0

|X(f)|2df =
∫ f0

−f0

df

|α + 2πif |2 =
∫ f0

f0

df

α2 + 4π2f2

=
α

2π

1
α2

∫ 2πf0/α

−2πf0/α

du

1 + u2
(after putting f = αu/(2π))

=
1

2πα
[arctanu]2πf0/α

−2πf0/α =
1

πα
arctan

(
2πf0

α

)
.
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27.22. The problem asks you to show that if x(t) is zero for t < − 1
2T and t > 1

2T , then qqT (t)∗x(t)
is periodic with period T . By the convolution theorem

F [qqT (t) ∗ x(t)] = F [qqT (t)]F [x(t)]. (i)

Here

F [x(t)] =
∫ 1

2 T

− 1
2 T

e−2πiftx(t)dt,

and from (27.32), since f0 = 1/T ,

F [qqT (t)] =
1
T
qq 1

T
(f) =

1
T

∞∑
n=−∞

δ(f − (n/T )).

Therefore (i) becomes

F [qqT (t)] =
∞∑

n=−∞

(
1
T

∫ 1
2 T

− 1
2 T

e−2πiftx(t)dt

)
δ(f − (n/T ))

which, by (27.21), is the Fourier transform of the T -periodic extension of x(t) to all values of t
(remember that 1/T = f0 in (27.21)).

27.23. Take the Fourier transform of the differential equation

d2x

dt2
− x =

1
1 + t2

,

using the differentiation rule (27.18h) to convert the derivative:

F
[
d2x

dt2
− x

]
= (2πif)2X(f)−X(f) = F

[
1

1 + t2

]
.

Therefore

X(f) = − 1
1 + 4π2f2

F
[

1
1 + t2

]
= −1

2
F [e−|t|]F

[
1

1 + t2

]

(by Example 27.3). This is the product of two transforms, so by the convolution theorem the
inverse x(t) of X(f) can be written as the convolution integral

x(t) = −1
2

∫ ∞

−∞

e−|t−u|

1 + u2
du.

(There are, of course, two linearly independent solutions but only one has a Fourier transform.)

27.24. Π(t) is continuous at t = 0 taking the value 1. Therefore we may put t = 0 into the defining
Fourier integral ∫ ∞

−∞
e−2πiftsinc tdt = Λ(t).

We obtain ∫ ∞

−∞
sinc tdt = 1 = 2

∫ ∞

0

sinc t dt,

since sinc t is even. Therefore
∫∞
0

sinc t dt = 1
2 .

(b)
∫ ∞

−∞
e−2πifte−πt2dt = e−πf2

, (see Problem 27.6)
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Differentiate both sides of the equation with respect to f :

−2πi
∫ ∞

−∞
e−2πiftte−πt2dt = −2πfe−πf2

,

so F [te−πt2 ] = −ife−πf2
.

27.25. By the convolution theorem and the result F [sinc t] = Π(f),

F [sinc t ∗ sinc t] = F [sinc t]F [sinc t] = Π2(f) = Π(f).

Similarly, and using the time-delay rule (27.18c),

F [sinc (t− a) ∗ sinc (t + a)] = (e−2πiafΠ(f))(e2πiafΠ(f)) = Π2(f) = Π(f).

27.26. (a) Moving average of g(t). To show that

gτ (t) =
1
τ

∫ t+ 1
2 τ

t− 1
2 τ

g(u)du

can be written as
1
τ

Π
(

t

τ

)
∗ g(t).

The convolution is defined by (27.27):

1
τ

Π
(

t

τ

)
∗ g(t) =

1
τ

∫ ∞

−∞
Π

(
t− u

τ

)
g(u)du. (i)

Π[(t−u)/τ ] is zero when [(t−u)/τ ] < − 1
2 or [(t−u)/τ ] > 1

2 ; that is, when u > t+ 1
2τ or u < t− 1

2τ .
Therefore the integral is zero for these ranges, and equals g(u) elsewhere, and (i) becomes

1
τ

∫ t+ 1
2 τ

t− 1
2 τ

g(u)du = gτ (t).

(b) The moving average of Π(t) over intervals of length τ is given by Fτ (t), where

Fτ (t) =
1
τ

∫ ∞

−∞
Π(t− u)Π

(u

τ

)
du, (i)

(using (a) with the convolution form (27.26b), with Π(t) for x1(t) and x2(t) = Π(t/τ), the averaging
function). Although this looks more complicated than the direct definition of gτ (t), it permits
evaluation on the lines of Example 27.10 and Fig. 27.14, which allows extensions to other functions
also.

The boundary of the region where the integrand is nonzero (it takes the value 1) is shown by
the parallelogram in the figure. The formulae giving the effective limits of integration in (i) change
as t passes over the points A′, B′, B, A. The figure shows a case where τ > 1, together with
the values of t at these critical points. When τ < 1 the construction is the same and the formula
is the same, but B will be on the negative side of the u axis and B′ on the positive side. Both
possibilities are covered by expressing the results in the following way:

− 1
2 (τ + 1) ≤ t ≤ − 1

2 |τ − 1| Fτ = 1
τ

∫ t+ 1
2

− 1
2 τ

du = 1
τ {(t + 1

2 )− (− 1
2τ)} = 1

τ (t + 1
2τ + 1

2 );

− 1
2 |τ − 1| ≤ t ≤ 1

2 |τ − 1| Fτ (t) = 1
τ

∫ 1
2 τ

− 1
2 τ

du = 1;
1
2 |τ − 1| ≤ t ≤ 1

2 (τ + 1) Fτ (t) = 1
τ

∫ 1
2 τ

t− 1
2

du = 1
τ (−t + 1

2τ + 1
2 );

(note that, predictably, this is an even function of t.) Fτ (t) = 0 elsewhere.
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Figure 20: Problem 27.26

27.27. The definition of the convolution is

F (t) =
∫ ∞

−∞
g(w + b)Π

(
w + b

τ

)
qqT (t− w − a)dw

with τ ≤ T . Put w − a = u:

F (t) =
∫ ∞

−∞
g(u + a− b)Π

(
u + a− b

τ

)
qqT (t− u)du

=
∞∑

n=−∞

∫ ∞

−∞

{
g(u + a− b)Π

(
u + a− b

τ

)}
δ(t− u− nT )du (i)

This resembles the form in Example 27.11, with the function x(t) displaced along the u axis by a
distance a− b to the left, as in the figure.
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����

2
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Figure 21: Problem 27.27

The condition τ ≤ T ensures that the nonzero segment of the function does not extend beyond
the range AB: −a + b− 1

2T ≤ u ≤ −a + b + 1
2T . The argument in Example 27.11 can be adapted

to fit this case. For a given t, there is always exactly one value of n, say N , such that a single
impulse in (i) lies in the interval AB of length T . But if n is any integer

(t− nT ) + (N + n)T ≡ t−NT,
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so (from the sifting property) the value picked out is reproduced at t − nT , for all n. Therefore
the convolution represents the periodic extension, period T , of g(u + a− b) as depicted.

27.28. The function
h(t) = Π(t) ∗ Λ(t) =

∫ ∞

−∞
Π(u)Λ(t− u)du

from (27.27). Π(u) is zero for u < 1
2 and u > 1

2 , and Λ(t− u) is zero for t− u < −1 and t− u > 1.
To obtain the effective limits of integration, follow the procedure leading to Fig. 27.14 in the book.
The boundaries of the region of the (t, u) plane on which the integrand is nonzero are u = ± 1

2 and
t− u = ±1, shown in Fig. 22. (The definition of Λ(u) is given in Example 27.10.) We have, for
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Figure 22: Problem 27.28

t ≤ 3
2 h(t) = 0;

− 3
2 ≤ t ≤ − 1

2 h(t) =
∫ t+1

− 1
2

(1 + u)du = 1
2 t2 + 2t + 15

8 ;

− 1
2 ≤ t ≤ 0 h(t) =

∫ 1
2
− 1

2
(1 + u)du = 1;

0 ≤ t ≤ 1
2 h(t) =

∫ 1
2
− 1

2
(1− u)du = 1;

1
2 ≤ t ≤ 3

2 h(t) =
∫ 1

2
t−1

(1− u)du = 1
2 t2 + 2t + 15

8 ;
t ≥ 3

2 h(t) = 0.

By the convolution Theorem (27.28),

F [h(t)] = F [Π(t)]F [Λ(t)] = sinc f sinc 2f = sinc 3f

(by Example 27.10). Therefore, since h(t) is continuous (no jumps) the inverse of F [h(t)] for all t
is given by ∫ ∞

−∞
e2πiftsinc 3fdf = h(t).

Put t = 0: ∫ ∞

−∞
sinc 3fdf = h(0) = 1.

27.29. (a)

x(t) ∗ {Ay(t) + Bz(t)} =
∫ ∞

−∞
x(u){Ay(t− u) + Bz(t− u)}du

= A

∫ ∞

−∞
x(u)y(t− u)du + B

∫ ∞

−∞
x(u)z(t− u)du

= Ax(t) ∗ y(t) + Bx(t) ∗ z(t).

(b) Quoted in (27.26) in the text: here we check it directly:

x(t) ∗ y(t) =
∫ ∞

−∞
x(u)y(t− u)du.
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Change the variable to v = t− u:

x(t) ∗ y(t) = −
∫ −∞

∞
x(t− v)y(v)dv

=
∫ ∞

−∞
y(v)x(t− v)dv = y(t) ∗ x(t)

(c) We shall consider the Fourier integrals of the terms, so as to avoid double integrals (Chapter 32).
By the convolution theorem (27.28), used twice,

F [x(t) ∗ {y(t) ∗ z(t)}] = F [x(t)]F [y(t) ∗ z(t)]
= F [x(t)]F [y(t)]F [z(t)].

The same product appears if the group is bracketed differently (or placed in any order).
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