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Chapter 28: Differentiation of functions of two variables

28.1 If z = f(x,y), then contours of the function are curves given by f(x,y) = ¢, a constant, for
selected values of c.

(a) The contours are given by the straight lines 2z — 3y +4 = c.

Figure 1: Problem 28.1(a)

(b) The contours are given by the straight lines —z +2y — 1 =c.

Figure 2: Problem 28.1(b)

(¢) The contours are given by (x —1)(y — 1) = c.

(d) The contours are given by z? + 332 — 1 = ¢, for ¢ > —1. They form a family of ellipses (see
Fig. 4).

(e) The contours are given by 22 + 2z + 4% = c or (z + 1)? +y? = ¢ + 1, which is a family of
concentric circles.

(f) The contours are given by (y/x) = ¢ or y = cz, which is a family of straight lines through the
origin.

(g) The contours are given by 32 — 22 = ¢ which is a family of hyperbolas.

(h) The contours are given by y/x® = c.

(i) The contours are given by x® + 4y* = c.

(j) The contours are given by y/(z +y) = ¢, or y = cz/(1 — ¢), or y = max, for any constant m.
These are straight lines through the origin (not shown).
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Figure 3: Problem 28.1(c)

Figure 4: Problem 28.1(d); Problem 28.1(e): the contours are concentric circles centred at (—1,0).

28.2. In Figure 7, Py : (x,y) is a point on a contour Cy, and C; is any closely adjacent contour
associated with a slightly higher level than Cy. P is the point on C; that is at the minimum
distance from Pp; therefore PyP; is in the direction of steepest ascent from Py on to the level on
C;. The angle between PyP; and Cy clearly approaches a right angle as the interval between the
contours approaches zero. Therefore the path of steepest ascent crosses every intersecting contour
at a right angle.

(a) z = 2z — 3y + 4. The contours are given by the parallel straight lines 2o — 3y + 4 = ¢. The
slopes of these lines are all % The slope of the steepest ascent through (1,1) is therefore equal to
—3, since —3 x 2 = —1 (see Figure 8).

(b) 2 = & —y. The contours are given by the parallel straight lines z — y = ¢, whose slope is equal
to 1. The slope of the path of steepest ascent through (1, 1) is therefore —1 (see Figure 8).

(c) z = 2%y?. The contours are given by 223> = ¢ shown, for the first quadrant, in Figure 9. These

are rectangular hyperbolas y = \/c/x, x > 0, with an axis of symmetry y = 2. This passes through

Figure 5: Problem 28.1(f): Problem 28.1(g)
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Figure 6: Problem 28.1(h); Problem 28.1(i).

C1

Figure 7: Problem 28.2

(1,1) and is perpendicular to all the contours

(d) z = (z — 1)? + 2(y — 1)*. The contours are given by (z — 1)+ 1(y — 1) = ¢ > 0, which is a
family of ellipses centred on (1,1) and axes parallel to the = and y axes. As we move away from
(1,1), z increases in all directions, but its steepest ascent directions are clearly in the = directions
where the ellipses are closest (see Figure 9).

28.3 (a) f(z,y) =3z + Ty — 2. Then

af 0
—=—Br+T7y—-2)=3

Ox 8:5( T =2)
everywhere including the point (2,1). Similarly
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Figure 8: Problem 28.2(a); Problem 28.2(b)
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Figure 9: Problem 28.2(c); Problem 28.2(d).

everywhere including the point (2, 1).
(b) f(z,y) = =2z + 3y + 4. Then

of _
oxr Oz
everywhere including the point (2,1). Also

dy

everywhere including the point (2, 1).

(c) f(x,y) = 22 — 3y?> — 2oy — x — y + 1. The partial derivatives are

Of _ gy _9y_1. 9 _
%—4:5 2y — 1, By

At the point (2,1), df/0x =5 and 0f /0y = —11

5}
—(—2r+3y+4) =

0]
—(—2x+3y+4)=3

(d) f(z,y) = %x?’ + 93 — 2y — 1. The partial derivatives are

of 3, of

3 2
gl = 3y% - 2.
or 8 Ay 3
At the point (2,1), 9f/0x = ‘; and 0f /0y = 1.
(e) f(x,y) = x*y? — 1. The partial derivatives are
af 32 Of 1
=1 — = 2z"y.

At (2,1), 0f /0x = 32 and Of /0y = 48.

(f) f(z,y) = (x — 1)(y — 2). The partial derivatives are

of _ ., of

ox =Y ) 67y
At (2,1), 0f/0x = —1 and Of /0y = 1.
(g) f(z,y) = 1/(xy). The partial derivatives are

o5 1o

)

oxr  xz2y’ Oy -

At (2,1), 0f/0x = —1 and Of /Oy = —3.

=x—1.

1

oy

-2

—6y — 22 — 1.



(h) f(z,y) = x/y. The partial derivatives are

of 1 or_
or y oy  y?
At (2,1), 0f/0x =1 and Of /0y = —2.
(i) f(z,y) = (x —y)/(x 4+ y). The partial derivatives are

gi 2y 5‘7f7 2x

dxr  (z+y)? oy  (z+y)?*

At (2,1), 0f J0x =2/9 and Of /0y = —4/9.
(i) f(z,y) = 3/(2* + y?). The partial derivatives are

of 2z of 2y

or (22 +y?2)?" oy (a2 +y?)?
At (2,1), 0f J0x = —4/25 and Of /0y = —2/25.
(k) f(z,y) = (z2 4+ y?)2. The partial derivatives are

of _ = 9y
O (a24y2)2’ Oy (a2+4y?)7

At (2,1), 0f J0x = 2/+/5 and Of /Oy = 1//5.
(1) f(z,y) = (2 — 3y + 2)3. The chain rule (Section 3.3) is required. The partial derivatives are

of _ of __

=6(2z — 2)2 2 — 2)2.
52 6(2z — 3y + 2)°, By 9(2z — 3y + 2)

At (2,1), 0f /0x =54 and Of /0y = —81.
(m) f(z,y) = e+’ Let u =22 + y? so that f = e®. The chain rule then implies
of _dfou

2
— =" 22 = 2xe”

_dfou _ e, O _dfou
Oxr duodz

T T v gy = e Y
9y dudy ¢ oy = se
At (2,1), 0f /0x = 4e® and Of /Oy = 2¢°.

(n) f(z,y) = cos(z? — y?). Use the chain rule. Let u = 2% — y? so that f = cosu. The partial
derivatives are
o _dfon

—_ = = — 1 = — i 2 - 2
5y = du s sin .2z 2 sin(2® — y°),
% = %% = —sinu.(—2y) = 2ysin(z® — y?).

At (2,1), 0f /0x = —4sin3 and Of /0y = 2sin 3.
(o) f(z,y) = sin(xz/y). Use the chain rule. Let u = x/y so that f = sinu. The partial derivatives

are
of _dfouw L 1o s(®
az—duax—cosu.y— COS Y s
of _dfow_ oz _ =z (%
ay_duay_ SU. y2 = y2 S .

At (2,1), 0f /0x = cos2 and Jf /0y = —2cos 2.
(p) f(z,y) = arctan(y/z). Use the chain rule. Let v = y/x so that f = arctanu. The partial

derivatives are
of _dfou _ 1 y y

Or  dudr 1+u® 22 22 4y?



of _ dfou 1 1 x

dy  dudy 1+uw2z  22+y?
At (2,1), 0f J0x = —1/5 and Of /Oy = 2/5.
28.4. (a) Given z = g(ax + by) and v = ax + b. Then, by the chain rule,

0z dg(u) ou
dr ?ﬂi : 3 = 9 (Wa=ag'(ax+by),
and 5 do(w) 9
z u) Ou
By~ du gy ==t D)
If 2 = g(u) = cosu and u = ax + by, then ¢'(u) = —sinu, and

% = ¢'(u)a = —asinu = —asin(az + by),
x

0z , ) )

90 =9 (u)b = —bsinu = —bsin(az + by).
Yy

To check these find /0 and 9/dy of ™% and cos(az + by) in the usual direct way.
If z = g(u) = e" and u = ax + by, then ¢'(u) = e*, and

% = ¢'(u)a = ae" = e, g—; = ¢’ (u)b = be* = be® T,

(b) In this case z = g(u) where u = sin(xy), g(u) = e" and ¢'(u) = e*. By the chain rule

0z  dg(u) Ou . sin(z

e !(Jl(u ) pr g (sin zy)y cos(zy) = @)y cos(zy),

%Z = di(;) Z—Z = ¢/ (sin zy)z cos(zy) = ¥ g cos(zy).
Directly

0z 0 4 ; 0 ;

e _ Y sin(zy) _ sin(zy) Y o _ sin(zy)

9~ Ba [e |=¢ o sin(zy) = € y cos(zy).

%Z — aﬁy[esin(my)] — esin(ry)agy bln(xy) — esm(f”y)xcos(xy).

(¢) V = g(r) where r = (22 + y2)z. In polar coordinates = rcos# and y = rsinf. By the chain
rule

oV o or o 2 2 %
5e =9 (g =91 +y7) ]7@2 A
ov 20T (a2 21 Y
_— = r)— = x° + 2 T
oy g()ay gl +y%) }(m2+y2)§
In terms of r and 6,
oV , oV , .
—-— = —-— = 0.
i (r) cos @, a9 g'(r)sin

28.5. Given r = (z2 4 ?)2 and z = r cos¥,

or o 0 2 2% o T
raitew (Gl ) ]*7($2+y2)%7
and 5 5
8—?25(7“0089):0059.



In terms of r and 6,

or  rcosf

%: " = cosf.

Hence, in terms of ¢

or Ox 2
32 B = cosf.cosf = cos“ 0 # 1,

in general.

Since r = (22 4+ y2)2, the increment 6r due to an increment 6z when y is held constant is given
by

or = ((x+0x)?+y?) — (2® +y?)*

1
9 ol 2xdx (6z)% \? 9, oyt  xbx
)2(1+x2+y2+x2+y2 ~l +y)2~(x2+y2)%

[
E)
_|_
<

= cosfdx

in terms of r and 6.
For & = rcosf, let §r be the incremental change in the direction r when 6 is held constant.
The corresponding change in z is

dx = (r+ dr)cosf — rcos = drcosd.

The incremental ratios dr/dz differ since the directions y = constant and § = constant are different.

28.6. (a) For z = sin(x — y), let w = & — y. Then, by the chain rule, the partial derivatives are

0z d .
9 = d smu%(x —y) = cosu.l = cos(z — y),
and P d
£ = sinua—y(a: —y) = cosu.(—1) = —cos(z — y),
Therefore

0z [0z  cos(x—vy) ]

ox/ 0y —cos(x—y)
(b) This result shows that (a) is generally true for z = g(x — y). As in (a), let u = x — y. Then,
by the chain rule

O o (r—y) = ()1 = ¢'(u),
and 0 d 0
gy~ du? gy~ v =9 W1 =~ (),
Therefore

9z [0z _ g'(w) _
ox/ dy —g'(v)

28.7. Let u = z/y in z = g(z/y). Then, by the chain rule, the partial derivatives are

0z d g (x\ _, |1
9 @g(u)afz <y> —9(“);»

and o q o
oz _ 4 N9 (TN _ -z
oy dug(u)ay (y> g (92 > '
Therefore 5 5 /() ()
z z g (u zg' (u
Tyl =gyt ),
xazﬂ/@y Ty Ty



28.8. (a) f(z,y) = ax + by + c. The first and second partial derivatives are

of . or_,
or 7 oy
O TR T
ox2 7 oy? 7 Qxdy  Oydxr
(b) f(z,y) = 2% + 2y? + 3zy — = + 1. The first and second partial derivatives are
of _ of _
%—Qx—l—?)y—l, ay—3m+4y,
or_, Fi_, Fp
0x2 7 oy 7 0xdy  Oydr
(¢) f(z,y) =sin(z — y). The first and second partial derivatives are
Of _ o5 of _
B cos(xz — y), 9y cos(x — y),
ﬁ——sin(an— ) ﬁ——sin(a:— ) cr _ 2 = sin(z — y)
0x? vl oy? vr 0xdy  Oydxr Yo
(d) f(z,y) = y/x. The partial derivatives are
or__y of _1
or  x2’ 9y
or _w 9f _ &r _oF_ 1
ox2 23 oy2 7 Oxdy  Oydxr a2’
(e) f(x,y) = e®**T3Y. The partial derivatives are
of 2043 of 2
2L 9g22+3y - z+3y
I e By e ,
ﬁ — 462:c+3y 827f — ge2m+3y 62f _ 82f — 6€2m+3y
Ox2 T oy? " dx0y  Oydx '

(f) f(z,y) = (1/z) + (1/y). The first and second partial derivatives are
of 1 of 1

oz 22y _E7
ef_2 of_2 &f &f
0x2  x3’ oy 3 Oxdy Oydr

(g) f(z,y) = sin 3z + cos2y. The first and second partial derivatives are

0 of

i 3 cos 3, 7 = —2sin 2y,
% = —9sin3z, ZZJ; = —dcos2y, 881‘28]; - 8?/282 -
(h) f(z,y) = (3z — 4y)*. The partial derivatives are
% = 12(3z — 4y)?, % = —16(3z — 4y)°,
% = 108(3z — 4y)?, ZZJ; = 192(3z — 4y)?,



2 2
oF _ 9O _ —144(3z — 4y)*.

dxdy  Oydxr
(i) f(z,y) = 1/(z +y). The first and second partial derivatives are
of 1 of 1

dx  (z+y)? Oy  (z+y)?’

o2f 2 orf 2 orf  Af 2

92~ (z+y)2 0y2  (x+y)? dxdy Oydx (x+y)?
() f(z,y) =In(zy) = Inz + Iny. The first and second partial derivatives are

of 1 0f _1

oy oy
0% f 1 0% f 1 0% f 0% f

)

or

922~ 5 92"y Dudy ~ Oydx =
(k) f(z,y) = 1/(z% + y*)2. The first and second partial derivatives are

of x of Yy
T Oy (x2+y2)%

9z (@2 +y) |
0% f B 222 — o2 0% f B —x2 + 292 0% f 0% f B 3zy

- )

022 (a2 4 y?)3

02 (221 y2)t Oxdy  Oydr (12 1 y2)3

28.9. If r = (2% + yz)% and z = Inr, then, using the chain rule,

Oz _deor 1 @ _ @
dr  drdz 7 (224¢2)z
and
P 0 (0:\_dz0(
0z2 Oz \ Oz dr 0z \ (22 +y2)%
1 2 1
- r (a:2—|—y2)2 x2—|—y2
1 22
= E

By symmetry in the variables # and y, we can write immediately

Pz 1 27

T
Therefore, putting z2 + 3% = r2,

Pz Pz 1 2 1 2y2_0

92 Tap T T T T
which is a partial differential equation called Laplace’s equation. It has been verified that
z=Inr = %111(1‘2 + y?) is a solution of Laplace’s equation.

28.10. Given the surface z = f(z,y) and a point @ : (a,b,c = f(a,b)) on the surface, then the
tangent plane at @) is given by

_(9f _ of _
Z_C_<a$>(a,b)(x a)+<3y)(a,b)(y b).



The direction of a normal to the surface at @ is given by the vector

(D), &), )
0 ) () \OY/ (ap)’

(a) Surface z = 22 + y? and point Q : (1,1,2). The first partial derivatives are

g:2962221‘5@7 g:2y:2atQ.
ox y

Hence the tangent plane is
z2—2=2(x—1)+2(y—1)or2x+2y—z=2.

A normal vector at @ is (2,2, —1).
(b) Surface z = xy and point @ : (2,2,4). The first partial derivatives are

of _ of _  _
%_y—2atQ7 ay—m—ZatQ.

Hence the tangent plane is
z—4=2(x—-2)+2(y—2)or 2z +2y —z=4.

A normal vector at @ is (2,2, —1).
(¢) Surface z = x/y and point @ : (2,1,2). The first partial derivatives are

of _1_ of _ = _
et A v

Hence the tangent plane is
z—2=(x—-2)-2y—1Dorz—2y—z=-2.
A normal vector at @ is (1, —2,—1).
(d) Surface z = (29 — 22 — 42)2 and point Q : (3,4,2). The first partial derivatives are

ﬁffézfgatQ, g—7+:—2a‘c@.

Or (29— a2 —y?)3 dy (29— a2 —y2)}
Hence the tangent plane is
z—2=—-3(x—3)—2(y—4) or 3z + 4y + 2z = 20.

A normal vector at @ is (—%, -2, -1).
(e) Surface z = 22 + 3% — 2x — 2y and the point Q : (1,2, —2). The first partial derivatives are
of of

Ay

— =2r—2=0at Q,

=2y—2=0at Q.
B Yy at @

Hence the tangent plane is
z24+2=0, or z =—2.

A normal vector is (0,0, —1).
(f) Surface z = e*¥ and point @ : (0,0,1). The first partial deritives are

87:ye7”y:0atQ7 g:xew:om@
ox dy
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Hence the tangent plane is
z—1=0, or z=1.

A normal vector is (0,0, —1).

28.11. The surfaces are z = x2 + y? and the plane z = x — y + 2. The point Q : (1,1,2) lies on
both surfaces. By (28.7), two normals are

(2 y?))Q’ (2 y2)>Q’—1

n l(a(x _aiH))Q’ (8(3: —83”))@,_1

The scalar product

n; = = [(2'1:)Q7 (zy)Q’ _1] = (27 2, _l)a

=(1,-1,-1).

ngne=(2,2-1)-(1,-1,-1)=2-2+1=1.
If 0 is the angle between the normals, then, by (10.4),

n; - ny = |ny||ng| cosé.

Therefore
n; -no 1 1
cosf = = = .
| ||ng| VA+44+1)/(1+1+1) 33

The angle between the normals is equal to the angle between the surfaces at @, which is 1.37...
radians or 78.9...°.

28.12. The stationary points of f(x,y) occur at all simultaneous solutions of 9f/0xz = 0, 0f /0y =

0. Let )
02 f 0% f 0% f o0 f
A === — A = .
@ =5 5a ()« Al =5
Let P : (a,b) is a stationary point. Then, from (28.9),
(i) P is a saddle if A(a,b) < 0;
(ii) P is a maximum if A(a,b) > 0 and A(a,b) < 0;
(iii) P is a minimum if A(a,b) > 0 and A(a,b) > 0.

(a) f(z,y) = (x — 1)(y + 2). The stationary point occurs where
of _ of _

9 19 —0 -
Ox vt T Oy

r—1=0,
that is, at (1, —2). The second derivatives are

vJ — -1
Ox2 T oy? " dx0y

T N

Hence A(1,—2) = —1 < 0, so that (1,—2) is a saddle.
(b) f(z,y) = 2% + y? — 22 + 2y. The stationary point occurs where

of of
9 —op—9=0, Y —9yt2=
o x 0, By Y+ 0,
that is, at (1, —1). The second derivatives are
or_, v, #1_,
ox2 7 oy T Oxdy

Hence A(1,—1) =4 > 0 and A(1,—1) =2 > 0, so that (1,—2) is a minimum.
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(c) f(z,y) = 223 — Ly3 — z + y + 3. Stationary points occur where

3 3
of _ of 2
or T Oy vt ’
that is, where (x —1)(x +1) = 0 and (y — 1)(y + 1) = 0. There are four stationary points at (1, 1),
(1,-1), (-1,1) and (—1,—1). The second derivatives are

0% f 0% f 0% f
Ox2 “ Oy? Y Oxdy 0

1,1). At this point A(1,1) = —4 < 0; hence (1, 1) is a saddle.
1 . At this point A(1,—1) =4 > 0 and A(1,—1) = 2 > 0; hence (1, —1) is a minimum.

7_1)
1,1). At this point A(—1,1) =4 > 0 and A(-1,1) = —2 < 0; hence (-1, 1) is a maximum.
—1,—1). At this point A(—1,—1) = —4 < 0; hence (—1,—1) is a saddle.

d) f(z,y) = cosx + cosy. Stationary points occur where

of : 0 of . 0

— =—ginz =0, —— =—siny =0,

ox dy 4

The solutions of sinz = 0 are x = nw (n = 0,£1,42,...), and the solutions of siny = 0 are y = mn
(m = 0,%+1,+£2,...). Therefore stationary points occur at (nm, mm) for all the values of n and m
given. The second derivatives are

&*fcosx ﬁ*fcos 0°f =0
ox? ooy Y 0xdy
Hence A(nm,mn) = cosnmcosmm = (=1)*(—1)™ = (=1)"™ and A(nm,mn) = —cosnm. If

n + m is an odd integer, then the stationary point is a saddle. If n + m is an even number then
the stationary point is a maximum if, additionally, n is even (which is equivalent to m even), and
a minimum if n is odd (which is equivalent to m odd).

(e) f(z,y) = In(2? + z) + In(y? + y) (assume that z > 0 and y > 0, or that z < —1 and y < —1:
otherwise the logarithms are not real). Stationary points occur where

0 2 1 0 2 1
[ 2x+ 0 [ 2y+ —0

o 22+xz 0 Oy yP+y

The solution is z = f%, y = f%, but f(x,y) is not real at this point. Hence f(x,y) has no

stationary points.

(f) f(z,y) = e®"+¥*~2042y_ Stationary points occur where

OF _ ot 2evau(yy )=, O _ vt 2ev2u(y 4 9) g,

Ox Ay
that is, at (1, —1). The second derivatives are
82 32
aTJ; = 2% TV 20222 _ 4y 4 3), aT/J; = 207 Y 2042y (902 4 4y 4 3))
62f 2 2
:4m+y —2z+2y -1 1).
S = e (@ Dl+1)

Hence A(1,—1) =4e% -0 =4e~* > 0 and 2¢72 > 0. Therefore (1, —1) is a minimum.
(¢) f(z,y) =2y + (1/z) + (1/y). Stationary points occur where

of 1 B of I
%7 $2+y—0, y—x =0,
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Eliminate 3 between these equations giving x = z*, which has the solutions z = 0 and z = 1. We
discard & = 0 since f(z,y) is infinite there. The only stationary point is at (1,1). The second
derivatives are

dr2 23 9y2  y Oxdy -
Hence A(1,1) =4 —1=3> 0 and A(1,1) =2 > 0. Therefore (1,1) is a minimum.
(h) f(z,y) = 2® +y® — 3zy = 1. Stationary points occur where
of _ of

5 322 -3y =0, a—=3y2—3m207
T Yy

Pf 2 Af 2 9
- =

Eliminate y between these equations so that z* = z, which has the solutions z = 0 and = = 1.
There are two stationary points at (0,0) and (1,1). The second derivatives are

or_. Pr_, or_
ox2 7 oy Y 0xdy

(0,0). A(0,0) = —(—3)2 = —9 < 0. Therefore (0,0) is a saddle.
(1,1). A(1,1)=6x6—(—3)2 =27 >0 and A(1,1) = 6 > 0. Therefore (1,1) is a minimum.

(i) f(z,y) = sinz + siny. Stationary points occur where

~—

0
a—i::cosx:O, a—gjj:(:osy:(),
The solutions of cosz = 0 are x = %(271 + 1)m, (n = 0,£1,%2,...), and of cosy = 0 are y =
3(2m+ 1), (m =0,+1,42,...). Hence f(w,y) is stationary at (§(2n + 1)m, £(2m + 1)) for the
values of n and m stated. The second derivatives are

*f : *f . >*f
Froie —sinz, 8742 = —siny, m =0
Then
AZ@n+ D t@m+1)r) = sin[3(2n+ 1)n]sin[$(2m + 1)7]
(=)™ (=1™ = (=),
and

A @n+ Dm, $2m+ D7) = (—1)" !
Therefore the stationary point is a saddle if n + m is odd, a maximum if n + m is even and n is
even, and a minimum if n + m is even and n is odd.
() f(z,y) = zy* — 2%y + x — y + 1. Stationary points occur where
of of

2 2
—_— = —2zy+1=0 —=2zy—2°—-1=0
x Y ) 9y Y )

Adding the two equations we obtain 32 = 22, which implies y = +z. Substituting back into the
first equation for y = z:
2?2 =222 41=0, or 22 = 1.

This leads to two stationary points (1,1) and (=1, —1). Substituting back for y = —z leads to
22 +222+1=0, or 322 +1=0,

which has no real solutions.
The second derivatives are
0% f
— =9y,
0x2 Y

0%f
2 =-2 2y.
“ Oxdy Ty

°f _
oy?

13



(1,1). A(1,1) = -4 —0= —4 < 0. Hence (1,1) is a saddle.

(=1,-1). A(=1,—-1) = =4 < 0. Hence (—1,—1) is a saddle also.

(k) f(x,y) = 22 — y* + 22y. The stationary points occur where
0 of

opqoy=0 L =2-2=0,
ox Ty y v

The only stationary point is at (0,0). The second derivatives are

cf _, PF_ .,

922 oy 7 5‘:5834:

Hence A(0,0) = —4 — 22 = —8 < 0. Therefore (0,0) is a saddle.
(1) f(z,y) = (2 — 2% — y?)2. Stationary points occur where

of of
= =22 -y} =0, L =—-4y@2-2>—-9y*=0
D (2-2"—y7) =0, By y(2—a" —y7) =0,
This example is different in that all points on the circle 22 +y? = 2 have zero first partial derivatives,
but they cannot be classified using the second derivatives test since A = 0 on the circle. There is
also an isolated stationary point at (0,0). The second derivatives are
0% f 0% f o f

Z 4 - 27427 27 2 ZJ 27427 27 2 _
Ox2 8z (2-2"-v7), Oy? 8y (2-2"-v7), 0x0y

S8xy.

Hence A(0,0) =64 — 0 =64 > 0 and A(z,y) = —8 < 0 which means that (0,0) is a maximum.
(m) f(x,y) = 2* +y* +y — x. Stationary points occur where

of 3 of 3
I e —1=0, Y —gp 1=
Ox o 0, Oy vt 0,

at (1/43,—1/43). The second derivatives are

P _ 5 O
oy

0% f
12 =
v Oxdy 0

@ = 12332,

Hence A(1/43,—1/43) = 36 > 0 and A(1/43,—1/43) = 6 > 0. Therefore the stationary point is
a minimum.

(n) f(z,y) = 2* + y*. Stationary points occur where

of _ of _

=42® =0, =4y° =0,
Ox . dy Y

Hence there is one stationary point at (0,0). The second derivatives are

Pf _ya PF o 0

oz~ oy v 83:83/:

Obviously A(0,0) = 0, which means that the second derivatives test fails. However, f(0,0) = 0
and f(x,y) > 0 for all (z,y) # (0,0). Therefore the origin is a minimum.

28.13. Let f(z,y) = ax?® + 2hay + by?. Stationary points occur where

of of

— =2ax +2hy =0, —— =2hx+ 2by =0,
Ay

ox

The linear equations equations ax +hy = 0, ha + by = 0 only have the solution x = 0, y = 0, unless
ab— h? = 0, in which case = h\, y = —a\ where ) is an arbitrary constant (we can assume that
a#0and b#0).

14



The second derivatives are
2 2 2
o°f 5 o°f o o f

— = — = = 2h.
Ox2 @ Oy? T Oxdy

e Case ab— h? # 0. A(0,0) = 4ab — 4h? = 4(ab — h?) # 0 and A(0,0) = 2a. If ab — h? < 0, then
the origin is a saddle. If ab— h? > 0 and a > 0, then the origin is a minimum, whilst if ab—h? > 0
and a < 0, the origin is a maximum.

e Case ab — h? = 0. As we have seen, the stationary points occur at = h\, y = —a), which are
parametric equations of a straight line through the origin. At all points along the line f(x,y) = 0.

28.14. A and A are defined in Problem 28.12.
(a) Put ¢ =21 — a — b into abe, and let f(a,b) = ab(21 — a — b). Then

of of
L= e —21)=0, -L=
50 b(2a +b ) =0, 2
where a =0,0=0;a=0,b=21;a=21,b=0; and a =7, b = 7. Therefore the stationary points
occur at (0,0), (0,21), (21,0) and (7,7). The second derivatives are

2 2 2
OF _ o 9F_ o°f

a2~ e T Y Baow

¢(0,0). A(0,0) = —212 = —441 < 0 which means that (0,0) is a saddle.
(0,21). A(0,21) = —21% = —441 < 0 which means that (0,21) is a saddle.
(217 0). A(21,0) = —212 = —441 < 0 which means that (21,0) is also a saddle.
o (7,7). A(T, 7) =14 x 14 — 7% =147 > 0 and A(7,7) = —14 < 0. Hence (7,7) is maximum.
Therefore abc is a maximum at a =7, b=7, c = 7.
(b) Put ¢ = 64/(ab) into a+b+ ¢, and let f(a,b) = a+b+64/(ab). Stationary points occur where

of 64 of 64

0 T " wm Tw

The difference of these equations leads to

1 1 64
Al ) =L - =0
(ab2 a2b> a?b? (a—1)

Hence a = b is the only solution. Substitute back to obtain a = b = 4. The second derivatives are

—a(a+2b—21) =0,

=21 — 2a — 2b.

:07

or_um o s #f o
da?  a3b’  Ob%2  ab3’  Hadb  a2b?’

Hence
128 128 642 _3x 642

434445 4444 T 48
and A(4,4) = 128/4* = 1/512 > 0 which means that (4,4) is a minimum. Hence a + b + ¢ is a
minimum where a =4, b=4, c = 4.

A(4,4) = >0,

28.15. Let f(z,y) = (2 — 22 — y?)2. The function is stationary where (see also Problem 28.12(1))

% = —4x(2 — 2% —?), Z—ch = —4y(2 — 2 — ).
The function is stationary at all points on the circle 2 4+ y? = 2, but these cannot be classified by
using (28.9): on this circle f(z,y) = 0. The function is also stationary at (0,0), where it is a (local)
maximum as shown in Problem 28.12(1). Its value there is f(0,0) = 4. However, it is possible
that the function has a greater value at some point on the boundary of the rectangle —1 < z < 2,
—1 <y <1 where f(z,y) is not stationary. We can only check by calculating f(x,y) on each edge
of the rectangle. Thus

15



e f(—1,y) = (1 — 9?2 For —1 <y < 1, its maximum value is 1 at y = 0.

(

e f(z,1) = (1 —2?)% For —1 <z < 2, its maximum value is 9 at z = 2.
(2,y) = (=2 — y?)% For —1 < y < 1, its maximum value is 9 at y = +1.
(

Therefore the maximum value of f(z,y) = (2 — 2% — y?)? is 9, which occurs at the points (2, 1)
and (2,—1).

28.16. The lines can be represented parametrically by
Tr = y =z = A’

and
2r=y=z2z+2=uyp, ora;:%u, Yy=pu, 2=p+2.

For any value of X\ and u these represent points on the lines. The distance p(A, 1) between these
general points is given by

PO ) =[N =202 + (A= )2 + (A — p— 2)%]5.

At the stationary points of p(A, u)

gi:WB(A—;u)+2(/\—u)+2(k—u—2)]=0,
o 6\ —5u—4=0 (i)
and P 1 1
p _
@—m[—()\_5#)_2()‘_M)_2()‘_M_2)]—0,

—10A + 948 = 0. (i)

The solution of the linear equations (i) and (ii) is A = —1, and p = —2.
The second derivative test, which is lengthy in this case, is summarized. The second partial
derivatives are
0%p 1 0%*p 1

244 +1 L = (N2 422+1
(1* + 4p +16), o 2p(>\,u)3(/\ +2X +10),

a2~ 2p(\, p)?
0%p B (
O 2p(\, p)?
Then, using the notation of Problem 28.12,

3 9 5\ 1
act-0- 70 () =170

and A(—1,-2) = 3/v/2 > 0. Hence a minimum occurs at A = —1, u = —2. The shortest distance
joins the points (—1,—1,—1) on the first line and (—1,—2,0) on the second line. This line is
perpendicular to both lines.

A+ 20+ p+ 12).

28.17. Let p(z, y) sum of the squares of the distances of P : (x,y) from the N points (x1,y1), (z2,¥2), ..., (TN, YN)-

Then
N

p(m,y) = Z[(‘T - xr)Z + (y - yr)Z]'

r=1

16



The function is stationary where

Ip(z, y) > a
) T —x,.) =2Nxz —2 z, =0,
ool 2

0
and where N N
Ip(z,
(ayy) :22(9_3/7“) ZQNZ/_ZZZJT =0.
r=1 r=1

Hence the stationary point is at

1 & 1<
.IZZN;%‘T, y:N;yr-

The second derivatives are
&p(x,y)

9*p(z,y) 9*p(,y)
IPEY) _ gy, LY oy TPLY) g
Ox? ’ Oy? ’ Oxdy 0

Hence, in the notation of Problem 28.12,

N N N N
A (Zxr/N,Zyr/N> =4N?>0and A (Zxr/N,Zyr/N> =2N > 0.
r=1 r=1

r=1 r=1

Therefore the point (an\;l x. /N, Zi,v:l yr/N) minimizes the sum of the squares.
28.18. (a) Let the edges of the box be of lengths , y, z. Then the surface area « is given by

a =2yz + 2zx + 2zy,

whilst the volume V = zyz and V is fixed. Hence z = V/(xy), and, eliminating z,
%
a=2(y+x)— + 2zy.
ry

This area is stationary where

foJe 2V Oa 2V
Oz Y= T Oy “ y?
From these equations, V = 2%y and V = zy?. Hence z =y = V3, and also z = V/(zy) = V3: all
the edges have the same lengths, which means that the box is a cube. The second derivatives are
a4V 0Pa AV 0%

92 B 0P P dady
Therefore L L
A(V3,V3)=4x4-22=12>0, and A(V3,V3)=4>0,
which means that the area is a minimum.

(b) Let x and y be the lengths of the edges of the base of the box, and z its height. Then the
surface area « is given by
a =2yz+ 2zx + zy,

whilst the volume is V = xyz. Eliminating z:

v
a=2(y+z)— +zy.
Yy

17



This area is stationary where

Oa _ 2V _o Oa_ 2V _,
or Y ;2 oy y2
From these two equations it follows that z = y = (2V)7, and that z = (V/4)3. The base is square
and the height of the box is half the edge-length of the base. The second derivatives are
a4V a4V PPa

_—— _—— 7:1'
0x2 3’ 9x22 Y3 0Oxdy

Therefore L L
A(V3 V3)=2x2-1=3>0, and A(VE,V3)=2>0,
which means that the area is a minimum.
(c¢) Let r be the radius of the cylinder and h its height. The volume V of the cylinder is given by
V = mr2h.
(i) With a lid, its surface area is a = 2wr? + 27rh. Eliminating h:

2V
o = 27T7"2 + 7

This is a function of a single variable r so that ordinary differentiation will do. Hence

where r = [V/(27)]3. The corresponding height is h = (4V/7)3. The second derivative is

d’a 4V
for r = [(V/(2n)]5. Hence the surface area is a minimum.
(ii) Without a lid, its surface area is o = 7r? 4 27rh. Eliminating h:

oz:7r7’2+—.
r

Its derivative is
do 9 2V 0
— =21r — — =
dr r2

where r = (V/n)3. The corresponding height is h = (V/7)3 which equals the radius of the cylinder.
The area is a minimum since
dQ—a =21+ i =6r >0
dr? r3
for r = (V/m)3.
(d) Let x,y, z be the lengths of the edges. In this case « is fixed and V = zyz.
(i) Asin (a), @ = 2yz + 2zx + 2zy. Therefore

a —2zy .
z=—". (1)
2(y + )
Eliminate z in the formula for V', so that
_ ay(o — 2ay)
2y +x)
The volume V' will be stationary where
81_ y? (o — 222 — 4ay) B 67‘/_ 2% (o — 2y? — 4ay) _0
or 2(x + y)? T oy 2(x +y)? -

18



Since neither = nor y will be zero for a maximum volume, we conclude that
a—2z® —4ry =0, and a — 2y? — dzy = 0,

which means that x = y restricted to positive solutions. Hence z = y = /(a/6), and from (i),
z = +/(a/6) also. The rectangular container of maximum volume is a cube.
The second derivatives are
*V. yra+2y%) 9PV a®(a+22?)

Ox? (x+y)>? = o2 (z+y)?

)

*V  ay(a— 222 — 6xy — 2y°)
dxdy (z+y)3 ’

Hence

AlV(a/6), V(@/6)] = § >0, A/(a/6), V(a/6)] = =% <0,

showing that the cube is a maximum.
(ii) As in (b), the area a = 2yz + 2za + xy where the base edges are z and y. Then

L e~y
S 2(y+a)
and
_ wyla—ay)
20y +z)
The volume will be stationary where
oV _ya—eP-2ey) 0 OV _aa—y’—2wy) _
or  2x+y)? 7 9y 2(x+y)? B

The required non-zero solutions are z = y = \/(a/3). It follows that z = $/(v/3).
The second derivatives are
*V.  yra+y?) 0V 2P (a+a?)

9z~ (z+y)®) 9?2 (z+y)3

0’V B _:cy(—a + 22 + 3zy + y?)
oxdy (x +y)3

Hence

A(V(a/3), V(@/3)) = 15, and A(V(a/3), V/(/3)) = %43),

Hence the box with dimensions
1 «
r=y=(a/3), z=3v(3)

has the maximum volume.

28.19. The table of data is

|1 2 3 4 5
y[31 21 20 18 12

By (28.10), the least squares straight line fit to the points (zn,y»), (n =1,2,...,N)isy = ax +b,
where a and b satisfy the linear equations

N N N
2 b _
a Ty + Ly = TnYn,
n=1 n=1 n=1

19



N N
aan—i—bN = Zyn
n=1 n=1

In this problem N =5, and

5 5 5 5
S oar =55 ) @, =15, > Tpyn =265 Y y, =102
n=1 n=1 n=1 n=1

Therefore a and b satisfy
5ba 4+ 15b = 26.5, 15a + bb = 10.2,

which have the solution a = —0.41, b = 3.27. The required straight line is
y = —0.41x + 3.27.

28.20. The table of data is (to 2 decimal places in the third row)

t |0 2 3 5 8 10 12
p 1223 26 60 170 300 690
y=InP | 248 313 326 409 514 570 6.54

We assume that the growth takes the form P = Ae’. Take the logarithm of the relation, so
that
InP=InA+ bt =a+ bt,

where In A = a. We estimate a least squares fit using data in the first and third rows in the table.
Thus N =7, and

7

7 7 7
Z t2 = 346, Z t, = 40, Z tntyn = 216.35, Z Yn = 30.34.
n=1

n=1 n=1 n=1

Therefore a and b satisfy
346a + 40b = 216.35, 40a + 7b = 30.34,

which have the solution a = 0.37, b = 2.24 to 2 decimal places. Since A = e* = 1.45, the
exponential fit to the data is P = 1.45e%-24¢.

28.21. By (28.10), the stationary values of the function f(a,b), where

N N
fla,b) = Z ei = Z(yn — aTp — b)Q (i)
n=1 n=1

(which is the sum of the squares of the errors in fitting the given points (z,,y,) by the straight
line y = ax + b) are obtained by solving for a, b in the equations

N N N
afol—i—ben:Z@“nyn, (ii)
n=1 n=1 n=1

N N
a Z z, +bN = Z Un. (iif)
n=1 n=1

We shall show that f(a,b) is a global minimum by showing that if we take any different pair of
constants then the sum of the squares of errors is increased. Suppose that the new values are given

20



by a + « and b+ 3, where « or ( is different from zero. Then the new ZnN:1 €2 is given by

[yn — (a+ a)zy — (b+ )]

]
I
WE

3
|
-
3
I
—

[(yn — aTp — b) - (O‘xn + ﬂ)]2

I
] =

n;l N
= Z(yn— Z axy, + B)(Yyn — ax, — b)
n=1 n=1

N
Z (ax, + B)?
n=1

N
= f(aa b) —2a Z(xnyn - CLZEEL - bxn)
n=1

N

N
+28> (g — azn —b) + Y _ (0w, + §)%.
n=1

n=1

The first term represents the value of f at the stationary point. The second is zero by eqn (ii). The
third is zero from eqn (iii). The final term is the sum of squares, and is therefore always positive.
Finally we have

N N
Y= flab)+ Y (awn + 5] => f(a,b),
n=1 n=1

for all @ and (3, which proves that f(a,b) is the smallest value attainable by f.

28.22. Let L£i{z(x,t)} = Z(x, s). The Laplace transform with respect to ¢ of the partial differential

equation

%4—;10%—}—2—2:6
ot ox n

is, using the derivative rule (24.12),

0Z(x,s)

2z
. + Z(z,s) =xL{l} = <

sZ(x,s) — sz(z,0) +x

or

0Z(x,s) (1+s)
Ox +

The Laplace transform of the boundary condition becomes Z(0, s) = 0. The differential equation is
a first-order equation with variable x of integrating-factor type (see Section 19.5). The integrating

1

factor is . q
exp {/ (Jrs):c} =exp[(1+s)lnz] = 2°Th
x
Therefore
i(l‘s—HZ(l‘ S)) —_ zl“g+1
dx ’ s '
Integrating
27512 2x C(s)
stly = C Z = :
T (z,s) T2 + C(s), or Z(z,s) S5 +2) +x5+1

Since Z((0,s) = 0, we conclude that C(s) = 0, so that
2z 1 1
Z(r,s) = —2 = - ).
(z,5) s(s+2) * (25 2(s—|—2)>
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Inverting the Laplace transform, using (24.6),
2(x,t) = x — xe”

which is the solution.

28.23. The height z of the grain in the silo is given by
2= fla,y) = {26° - (@ - Ja)? 2} a = (Ga® —a® + az — ) a
on the square region O PQR defined by
0<z<a, 0<y<a

(see Fig 10).

ne
Q

Figure 10: Problem 28.23

As in problem 23.15, the overall maximum or minimum might occur either:
(a) at points in the interior of the square where 0z/0x and 9z/0y are zero, and a local maximum
or minimum occurs, or
(b) on certain points on the edges, excluding the corners, or
(c) at one or more corners.
In cases (b) and (c), 0z/0x and 9z/0y will not necessarily be zero, so we must examine the edges
and corners separately from the interior o OPQR.

(a) Points interior to OPQR: 0 <z < a, 0 <y < a.
From (i),
0z 2r+a 0z 2y
or a ' 0y  a’
These are both zero only at the point T : (3a,0). Since this point is on the edge OP we do not
have to take note of it.

(b) The edges excluding the corners.
On OP,
z= f(z,0) = (2a® + az — 2?)/a,

where 0 < x < a. This is a function of the single variable x, and can be treated as in Section 15.4.
There is a maximum, with value z = 2a, at x = %a: so z = 2a at T in Fig 10.

On PQ, z = f(a,y) = (2a®> —y*)/a, 0 < y < a.
There are no stationary points in this range.

On RQ, z = f(a,y) = (3a* + az — 2?)/a, 0 < z < a.
There is a maximum, with value z = 2a, at z = %a; so z = 2a at S on Fig. 10.

On OR, z = f(0,y) = (£a®> = y?)/a, 0 < y < a.
There are no stationary points in this range.
(¢) The corners O, P,Q, R.

7. 3. 3

The values of z at these points are respectively Za, Ta, 3a, 3a.
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Finally, the overall maximum z = 2a occurs on the edges at S and T', and the overall minimum
value z = %a at the corners @ and R.

28.24. By (28.3) the order in which the individual differentiations are carried out in evaluating
an nth order partial derivative 0" f/0x"0y" " is immaterial. Therefore, If n is a fixed number,
the number of distinct nth order derivatives which may be formed is equal to the order r of the
z-derivative involved. We may have r = 0,1,2,...,n. Therefore the number of possible distinct
derivatives is n + 1.

Suppose that we had to write out all the possible nth order derivatives in all possible ways.
Then the first differentiation could be either with respect to = or y, the second with respect to x
or y and so on. Combining these possibilities, there would be 2 x 2 x --- x 2 = 2™ possible forms
for the derivatives.

28.25. Note that the correct form of the equation is g(z,y) = H{f(z,y)}, where H is a single-
valued function of a single variable. By (28.4),

99 _ gy of 99 _ of
Therefore 5 of o o7
g g /
_— _— = — _— = H
et R T}
so that
9fog 9199 _
oxdy Oyodx
for all z, y.

Chapter 29: Functions of two variables: geometry and formulae

29.1. Let z = f(z,y), and dx, oy be given increments in x and y. The corresponding increment
in z, 6z about a ‘representative point’ (z,y), is defined (exactly) by

0z = f(x +dz,y + dy) — f(x,y). (i)
By (29.2), the ‘incremental approximation’ to ¢z is
0z =~ g—i&c + g—‘;éy (ii)

for sufficiently small §x and dy, where the derivatives are evaluated at a representative point. The
‘percentage error’ E in the estimate (ii) to dz is given by

E 100 (approximation (ii) — exact value (1))

exact value (i)

Note: In physical applications the numerical values of the increments that appear in problems may
seem to be too large to qualify as ‘sufficiently small’ (for example, in Problem 29.5 an increment
of 50 occurs). However, a mere change of units could reduce this number to a small value without
changing the percentage error. A discussion of this point in one dimension follows Example 4.15.
(a) 2 = 2% + y* at (3,1), and dz = 0.1, §y = 0.3. The partial derivatives are

at (3,1). Hence, the incremental approximation is
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The exact value is
6z =[(3.1)* + (1.3)%] — [3* + 1] = 1.3.

The percentage error E in 0z is given by

1.2

—-1.3
E =100 <13> =—7.7%.

(b) z =sinzy at (0.5,1.2) and dz = 0.1, dy = —0.05. The partial derivatives are

3] 3]
a—z = ycosxy = 1.2cos(0.6) = 0.990, a—z = zcosxy = 0.5cos(0.6) = 0.413
€ Yy

at (0.5,1.2) to 3 significant figures. The incremental approximation is
0z ~ (0.990 x 0.1) — (0.413 x 0.05) = 0.0783,
and the exact value of §z is
0z =sin(0.6 x 1.15) — sin(0.5 x 1.2) = 0.0719.

The percentage error in §z is

0.0783 — 0.0719

E=1
00 < 0.0719

> = 8.9%.

(c) z=e"" 3" at (1,1) and 6z = 0.1, 5y = 0.2. The partial derivatives are

oz

5 ZE _ Gye 3" = 327.6
X

d
— 2™ 3 = 109.2,
dy

at (1,1). Hence the incremental approximation is
6z~ 109.2 x 0.1 + 327.6 x 0.2 = 76.44,
and the exact value of §z is
bz = M ITBXL2) _ ot — 19754,
The percentage error in §z is

76.44 — 197.54

E=1
00 ( 197.54

> = —61.3%.
In this case, dy is too large for the incremental formula to give a useful result.
(d) z =1/(z2 +y2)7 at (2,1) where 6z = —0.2, dy = 0.1. The partial derivatives are

0z x 2 0z Y 1

dr (@49t 55 9y @+t 5VB

at (2,1). Hence the incremental approximation is

) 2 x (—0.2) 1 x 0.1 = 0.0268328
R ——— -0.2) — — .1=0. .,
5v5 5v5
and the exact value of 6z is
0z = ! — ! = 0.0268319.

(1.82+1.12)2 (22 +12)2
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The percentage error in §z is

0.0268328 — 0.0268319
0.0268319

E =100 ( ) = 0.0034%.

29.2. Given z = 22 — 32 and the points P : (1.0,2.1) and Q : (1.2,2.0). The partial derivatives of
z are

0z 0z

2 0y, Lo gy

Oz “ Oy Y

(a) At P, 0z/0x = 2.0 and 0z/0y = —4.2. Between P and @, 0z = 1.2 — 1.0 = —0.2 and
0y = 2.0 — 2.1 = —0.1. Hence, by (29.2), the change in z from P to @ is given approximately by

85z~ <82>P Sz + (62>P Sy = (2.0 x 0.2) + (—4.2) x (=0.1) = 0.82.

ox Jy
(b) At @, 9z/0x = 2.4 and 0z/0y = —4. Between @ and P, dz = 1.0 — 1.2 = —0.2 and
dy = 2.1 — 2.0 =0.1. Hence, by (29.2), the change in z from @ to P is approximated by

0z =~ (g;)@ dx + (g;)@ dy = [2.4 x (—0.2)] + [(—4) x 0.1] = —0.88.

(c) Although the dz and dy increments from P to @ are minus the increments from @ to P, the
partial derivatives at P and @ differ slightly, leading to small discrepancies in the estimates of [0z].

29.3. The error E(dx,dy) in the approximation to §f at the point (zg,yo) is given by

Sy — ) 5y).
FE. " y — f(xo + oz, yo + 0y)

(z0,90)

(a) f(z,y) = xy near (2,1). The partial derivatives are
of of
5z~ 5 °
Hence the error in ¢ f is
E(6z,0y) =2+ (1 x 6x) + (2 x dy) — (2 + 0x)(1 + dy) = —dxdy.
(b) f(z,y) = x/y near (2,1). The partial derivatives are
of 1 of =z

or y oy w2

e 2446 0y(dx + 2dy)
_ x y(0x Y
E(0x,0y) =24 (1 x 0z) + (2 x dy) oo 1+ oy

29.4. (See Example 29.5.) The focal length f is given by

1 1 1 uUv
— 4+ — = = so that f = .
U + v f so that f u+v
The partial derivatives are
of  ? of P

ou  (u+v)2 v (utv)?’
The measured values of v and v are v = 0.31(£0.01) and v = 0.56(£0.03). Choose as the reference
values the central values © = 0.31 and v = 0.56, from which we obtain

of 0
— =0.12 — = 0.414.
ou 0-127 ov 0
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Therefore
Af ~ 0.127Au + 0.414Av,

which takes its greatest magnitude 0.013 when Au = 0.01 and Av = 0.03. At v = 0.31, v = 0.56,
f = 0.20. Hence, the greatest possible error in estimating f is Af = 0.20(£0.01) to two decimal
places. The percentage error is 5%.

29.5. If the errors in d and [ are Ad and Al respectively, then by (29.3), the resultant error An in

7 is estimated by
on In .
An~ —Ad+ —Ap.
R Gt 5, A (i)
Taking reference values for the derivatives at the central points d = 0.002, [ = 0.1, p = 5000 and
q = 1.66,
@ B wpd3 B @ B wd*
od — 32ql op  128¢l

From (i), and the error ranges specified, the error An of the greatest magnitude occurs when
Ad = £0.0001 and Ap = £50. In that case

23.7, and =23.7x107".

An ~ £0.00249,
leadiong to an error of about 21%. (For a comment on the apparently large size of the increment
Ap, see the note at the opening of Problem 29.1.)
29.6. (See also Example 29.4.) The solution z(b, ¢) and its derivatives are given by

v = glbt (7 — do)3; (i)

b 2 2b2—dc)r dc (b2 —4c)3
where the exact values of b and ¢ are b = 20.4 and ¢ = 95.5; and the rounded values are b = 20
and ¢ = 96. Denote the rounding errors in b, ¢ and = by Ab, Ac, Az, where

Ab=—04, Ac=0.5.

The incremental approximation is

ox = %56 + %&v. (iii)
We may choose the ‘representative values’ of b, ¢ (at which the derivatives in (iii) are to be
evaluated) to be the rounded values b = 20, ¢ = 96. In this case the arithmetic is much simpler.
Then the incremental formula requires 6b, ¢ and dz to stand for ‘(exact value)-(rounded value)’.
Therefore we should put

0b=04=—-Ab, dc=-05=—-Ac, ox=Ax, (iv)
along with
oz oz
G =2 g, =02 (v)

into the incremental approximation (iii). Then
Ax = —dr = —(2 x 0.4) — [(—0.25) x (—0.5)] = —0.925.

The rounding error Az is about —0.9, and the percentage error (based on the rounded approxi-
mation to (i)) is about 11%.

26



29.7. The area of a triangle with base b and base angles A and C' is given by

B b2 tan A tan C
~ 2(tan A +tanC)’

The partial derivatives of S with respect to A and C are

as b? sec? Atan? C as b2 sec? C'tan? A
0A  2(tanA+tanC)2’ 0C  2(tan A +tanC)2’

The incremental approximation is

08 0S8
08 =~ a—A(;A + %50.

The nominal values are b = 2, A = 30° and C = 60°, so that at these values 0S5/0A = % and
dS/8C = L. We now put 6C =5 x 60/100 = 3° = 0.0524 radians. Thus

3 1 3 1
0S =~ 55/1 + 550 = 5514 + 50.0524.
S will take the same value if 65 = 0. Therefore
0A = —% x 0.0524 = —0.0175 radians.

Hence A must be reduced by 0.0175 radians or 1°.

29.8. We are given S = ahr3/p?, where a is fixed but h, r and p are measured and contain errors.
Take the logarithms of S:

3

h
V=InS=In [‘12] —Ina+Inh+3nr—2lnp.
b

Using the incremental formula for a single variable (see 4.4) applied to the individual terms:

L3S Joh or b

% 5 h+r

29.9. (a) The directional derivative at the point P in the direction 6 on the surface z = f(z,y) is

given by
dz  (0f afy\ .
F (ax)PCOSG—i— (ay>P51n0.

Along the contour through P, the derivative dz/ds = 0, so

wi=(2),/ (%),

Following Example 29.9, the directions of steepest ascent and descent are perpendicular to the
contour directions. These are the directions in which d(dz/ds)/df) = 0. The steepest ascent
occurs along the direction in which dz/dz is a maximum, namely

d72 % <0
de? \ ds ’
by eqn (4.2) (or it can be deduced from the contour heights).
(a) 2 = f(z,y) = 2% + y? at (1,2), direction § = 30°. The partial derivatives of f are

of af

L —9r =29 =2y =4, at (1,2).
817 X 9 ay y 73'(7)
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Therefore the directional derivative is

% — 208 30° + 4in 30° = 2? +4% — V342
S

The directions of the contour at P are given by the solutions of

offoxr 2 1

= ey T 1T

which are the directions —26.6° and 153.4°.
The directions of steepest ascent and descent are perpendicular to these directions. They are
respectively 63.4° and —116.6°.

(b) f(z,y) = x2y? at (2,1), direction § = —45°. The partial derivatives are

of of

— =2y? =4, — =22%y=28, at (2,1).
B = 20y gy T Y at (2,1)
Therefore the directional derivative is
d 1 1
S — 4cos(—45°) + 8sin(—45°) = —2V/2.

4%—852

The directions of the contours at P are given by the solutions of tan 8 = %, which are the directions
0 = 26.6° and 6§ = —153.4°.
To find the direction 6 of steepest ascents at (2, 1),

ds

d
g _ 4cosf + 8sinb,
ds

so that 4 7d £ /d
z z
— [ — ) = —4si — =) =-4 — 8sinf.
T (ds) sinf + 8 cos 0, 102 (ds) cosf — 8sinf
The steepest paths occur where tanf = 2, in directions § = 63.43° and § = —116.57°. For
0 = 63.43°,

d? /dz 1 2
— (Z)=-4—-8"2=-4/5<0.
do? (d) VARVARRCE

Hence dz/ds is a maximum which means that this direction is the steepest ascent.

(c) f(x,y) = 2%y — xy® + 2 at (—1,1), direction § = 120°. The partial derivatives are

of 9 af 9
o Ty —y 3, 9y T zy =3, at (—1,1)

The directional derivative is

dz o oo 3 3V3 3

oo = 3c0s120° +3sin120° = D+ = = S(1+ V3).
The directions of the contours are 6 = 45° and § = —135°. The steepest ascent is in the direction
0 = 135°.

(d) f(z,y) =sinzy at (%, m), direction 8 = —90°. The partial derivatives are

0
§g — Yeosay = 0, a =zxcosxy =0, at (%77{)
The directional derivative is d
z
0
ds ’
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independently of the direction 6, because (3,) is a stationary point of f(z,y). The second
derivative test (28.9) fails for this stationary value. Since f(z,y) can never exceed 1, and f(1,7) =
1, the contour through (%, ) is given by axy = %ﬂ', which is a rectangular hyperbola. There is no
steepest ascent at (1,7).

(e) f(z,y) = cos(z? — y) at (0, —7), direction # = 0. The partial derivatives are

% = —2zsin(2? —y) =0, g—‘; =sin(z? —y) =0, at (0, —7)
The directional derivative is q
z
i

independently of the direction 6, because (0, —7) is a stationary point of f(x,y). Asin (d) above,
the second derivative test (28.9) fails. The contour through (0, —) is given by

cos(z? —y) = cosm = —1,

2

which is the parabola y = x* — 7. Since

f(z,y) — f(0,—7) =cos(z? = 1) +1>0

1

smand ¢ = f%w perpendicular to the contour

there will be a steepest ascent in the directions 6 =
through (0, —m): there are no steepest descents.

(f) f(z,y) =e* ¥ at (1,1), direction § = —45°. The partial derivatives are

Of _ vy 9 _

- - =" =1, at (1,1).
81‘ € I ay € ?a’(7)

The directional derivative is a ) )
z
Z=1x—=+41x—==1V2.
ds V2 V2
The contour through (1, 1) is in the directions given by tan § = 1, which are 6 = 45° and § = —135°.
The steepest ascent is in the direction 8 = —45°.

29.10. The implicit-differentiation formula (29.6) for the slope of f(z,y) = ¢ at any point (x,y)

is given by . o /o7
@ __°97 /9
de  0xz/ Oy’

(a) f(z,y) =y =1 at (2,3). The partial derivatives are

1 1
g:y:77 g:[]}:2’at (2’2).

Ox 27 Oy
Therefore
dy _ _3_ 1
dz 2 4’
(b) f(z,y) = 2® + y*> = 25 at (3,4). The partial derivatives are
of of
B x =6, By y =38, at (3,4)
Therefore
vy _ 6_ 3
de 8 4
(¢) f(z,y) =1/x —1/y at (1,2). The partial derivatives are
of 1 af 1 1
S < )
Ox x2 oy y? 47 at (1,2)
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Therefore
dy _ (=D
dz

1
1
(d) f(z,y) = 52% + £y* =1 at (2,3). The partial derivatives are
of = 2 of 2y 2
9 T _ 2 92 (2,3).
or 5 5 oy 15 5 M3
Therefore
dy _
de

(e) f(z,y) =23+ 2y® = 3 at (1,1). The partial derivatives are

of 2 of 2
932 —3 L _gy2 =6, at (1,1).
5 = 5% g~ Y at (1,1)
Therefore
dy 3 _ 1
dx 6 2
(f) f(z,y) = 23y + 322 —y?> — 19 = 0 at (2,1). The partial derivatives are
0 0
8—?; = 32%y + 6z = 24, a—g =2% -2y =6, at (2,1).
Therefore
dy _ 24,
de 6 7
(g) f(z,y) = 2y* — 2%y + 6 = 0 at (3,2). The partial derivatives are
% =y? — 2zy = -8, % =2zy — 2% =3, at (3,2).
Therefore
dy __—8_38
dz 3 3
(h) f(z,y) = 2% + y*> = 4 at (2cosf,2sin ). The partial derivatives are
0 0
a—i = 2x = 4cosd, a—z =2y = 4sinf, at (cos,sind).
Therefore
dy ~ 4cosf _ cot 0
der  4sinf ’
(i) f(z,y) = 2%/a® + y?/b?> = 1 at (acost,bsint). The partial derivatives are
2 2 2 2
g = —f = — cost, ? = b—g = gsint, at (acost,bsint).
x  a a y
Therefore
d;y = —é cott
dr  a '

(j) f(z,y) =xcosy —ysina = 0 at (3m,0). The partial derivatives are
of

—— =cosy —ycosx =1, —— =—zsiny—sinz = -1, at (%7‘(,0).

or dy

dy _ (1) _
de -1/
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(k) f(x,y) = y* — 4ax = 0 at (at?,2at). The partial derivatives are

of of 2
- = _4 = 2 = 4 .
o a, a9y Yy at, at (at®, 2at)

dy _ (—de) _ 1
dr 4at )t
29.11. The result can be verified by direct differentiation since V' = RT/P implies

vy _ BT

oP ), P2’
ory _V.oo(oTy _ P
or), R \oV), R

A ory  _ BT V. /P
op), \or),/ \av), = "P2 R/ V

RT RT

Therefore

and T'= PV/R implies

Hence

0,

since V.= RT/P.
The result to be proved is that

(55), = (). / (&),

which bears a close formal resemblance to the implicit-differentiation formula (29.6). If we rewrite
that formula in the more explicit form

(&) (5:),/ (3)
dz f(z,y),constant ox ), oy),’

an exact match is obtained by putting x = P, y = V and T = f(P,V) (ignoring R, which is
constant throughout). The result therefore holds good for a general relationship between P, V' and
R; not simply to PV = RT'. Several such thermodynamic formulae are proved in Section 31.2.

29.12. Require the tangent line to the given curve at the point (z1,y;) on the curve. Use (29.6)
for the slope.
(a) The circle f(z,y) = 2% + y? = a®. The slope at (z1,y;) is given by

_dy _ _of jof 2z m

M=~ oz oy 2y oy

Hence the tangent at (x1,y1) is (see (2.8))
T1

y—yr=m(r—x1) = —y—(x—xl), or T1x + y1y = a’.
1

(b) The ellipse f(x,y) = 22/a® + y?/b*> = 1. The slope at (x1,y1) is given by
dy 2z b x1b?
m= Y _

S dx a2 2 - a2’
Hence the tangent at (x1,y1) is

rr | yiy
(x — 1), or ey bT:l.




(c) f(z,y) = a®2? — b?y? = c. The slope at (z1,y;) is given by

dy 20’z a’ry
m = — — — = —_—
dzx —2b2%y b2y,

Hence the tangent at (x1,y1) is (since x1y7 = 1),

Y—y = @(m — 1), or a’z iz — bAyy = c.

(d) The rectangular hyperbola f(z,y) = xzy = 1. The slope at (z1,y1) is given by

dy oy oy
m= - -

T dx T =z T
Hence the tangent at (x1,y1) is

Y—y1= —i—l(a: — 1), or Y1& + 21y = 2wy = 2.
1

(e) fz,y) = 23 +y3 = 1. The slope at (z1,y1) is given by

()

T

Wl
ol
wl=

T
i

)

wiN
wl=

Hence the tangent at (x1,y1) is

_ (Y’ IR SO
Y—Yyr=— = (x—x1), or yf o +ziy =aiy;.
(f) F(z,y) = ax® + 2hay + by? + 292 + 2fy + ¢ = 0. The slope at (z1,y;) is given by

m—%——a—F 8£__2ax+2hy+29__ax1+hy1+g
S dr 9x/) Oy 2hx+2y+2f  hxy by + f

Hence the tangent at (x1,y1) is

ari +hy +g

" har + by +f<x — o),

Yy—uy1 =

or
ar1z + h(y1z + z1y) + by + fy1 + gy1 + ¢ = 0.

29.13. The curves f(z,y) = o and g(x,y) = [ intersect at (a,b). By (29.6) the slopes of the two
curves are respectively

my = _Of Jor 99 /99
YT o) ey P ax) By
at (a,b). The curves intersect at right angles if m;mq = —1, that is, if

_Of JOFN(_99 [Og)\ _ | . 0fdg 0fdg _,
ox/ Oy ox/ oy) 7 T 0xrdx Oyody
(a) f(z,y) =2 +y* = a, g(z,y) = y/z = 3. Then

9f0g  0f0g _ v 1) _
8x6m+8y8y_(2x)( x2)+2y x =0

for all z and y. Hence the curves always intersect at right angles: the two families of curves are
said to be orthogonal.
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(b) f(z,y) =2 —y* = o, g(x,y) = xy = 5. Then

0f 99 , 9109 _ o) —
Oz Ox * oy oy 22}y + (=2y)z =0

for all x and y. The two systems of curves are orthogonal.
(¢) f(z,y) =y® —2® =, g(a,y) =1/y + 1/z = . Then

ofdg  0f0g _, , o 1 o 1Y _
mm+@@<wwaﬁ+w><w>o

for all z and y. The two systems of curves are orthogonal.
(d) flz,y) = (2® +y?)/z =, g(z,y) = (z* +y?)/y = 8. Then

ofdg  9fdg (. v*\ (2= 29\ (_2* _
8m8m+8y8y<1 2\ )T \% 2 )=

for all  and y. Hence the two system of curves are orthogonal.

29.14. At any point on the curve f(z,y) =y° — 2% =1,

dy _ 9f 8f_3x2_xj
de  0x/ Oy 32  y?’
using (29.6).
The differential equation
dy
24y _ 2
4 dx *

is a separable first-order equation (see Section 22.3) with solution

1 1
/dey = /:c2dz +C, or gy?’ = 5333 +C,

where C is a constant. For the curve given in the problem, C' = % All the solutions are given by
y3 — 23 = A, where A is any constant.

29.15. (a) Let f(z,y) = 22 + 2y>. Then the slope at any point on the curve x? + 2y? = c is given
by
dy _ of jor _ o

dz ox/ Oy 4y _@
using (29.6). The family of curves is generated by the differential equation

dy
22 = —z.
ydx *
The computed contours (they are ellipses) are shown in Figure 11.
(b) Let f(x,y) = 22 + 2y — y>. Then the slope at any point on the curve x? + 2y — y> = c is given
by
dy 7% (’Lf _ 2z+y
de  0x/ Oy = —3y?

using (29.6). The family of curves is generated by the differential equation

d
(x = 3y*) 7> = —(22 +y).

The computed contours are shown in Figure 12.
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Figure 11: Problem 29.15a
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Figure 12: Problem 29.15b

(c) Let f(z,y) = (22 +y)/(z+y?). Then the slope at any point on the curve (z%2+y)/(z+y?) = ¢
is given by

dy  of Jof  [(2®—y+2xy° (z+1y)?

de  0x/ oy (x4 y?)? T — 222y + 92
using (29.6). The family of curves is generated by the differential equation

dy
(¢ =22y +y°) = —(@" —y+20y%).

The computed contours are shown in Figure 13.

Figure 13: Problem 29.15c

(d) Let f(z,y) = xzye~*. Then the slope at any point on the curve xye™® = ¢ is given by
dy _ _of Jof _ y(l—w)e™™  y(l—x)

dx ox/ Oy re % T
using (29.6). The family of curves is generated by the differential equation

dy _

— —y(1—a).
T y(1—x)

The computed contours are shown in the figure.
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Figure 14: Problem 29.15d
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29.16. (See Example 29.12.) (a) f(z,y) = y*> — 22 = c. The differential equation which generates
this family of curves is given by

dy  of Jof _ -2\ oz
& ()

dz ~ ox/ 0y

)

Since the orthogonal system is everywhere perpendicular to the family above, its differential equa-
tion is
dy _ v

dz x
This is a separable equation (see Section 22.3) with solution

d d
Zy:_/£+c7 or Injy|=—In|z|+C, or Injzy| =C.

All cases are covered by the family of rectangular hyperbolas xy = A, which is the orthogonal
system.

(b) f(z,y) = y> + 2® = c. The differential equation which generates this family of curves is given

by

dy  of Jof _ 32 B z?

de  0z/ Oy 3y? Y2’
Since the orthogonal system is everywhere perpendicular top the family above its differential equa-
tion is

dy _ v

de 22’
This is a separable equation (see Section 22.3) with solution
d d 1
Y €T ) €T

The orthogonal system is
x

T 1-Cz
(c) f(z,y) = y?/x = c. The differential equation which generates this family of curves is given by

dy _ _9f 5f_<_92)/<2y>y
de  0ox/ oy x2 r ) 2z

Since the orthogonal system is everywhere perpendicular to the family above its differential equa-
tion is

Y

%7 2x

de ~ gy’

This is a separable equation (see Section 22.3) with solution

1
/ydy:—/dex—i—C, or 51/2:—952—&—07
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which is the orthogonal system (a family of ellipses).

(d) f(x,y) = e¥ — e® = ¢. The differential equation which generates this family of curves is given
by

dy __of Jjof _ (=¢ — oY

de  0x/ Oy ev '

Since the orthogonal system is everywhere perpendicular top the family above its differential equa-
tion is

dy _
de

This is a separable equation (see Section 22.3) with solution

_e¥®

/e_ydy =— /e_zda: +C,or —e¥V=e¢""4+C,
or
e f4+eV=-C,
which is the orthogonal system.

29.17. Let z = f(z,y), and let A = 0f/0x and B = 0f /0y at the point P : (a,b). The slope on
the surface z = f(z,y) in the direction 6 at P is

d—z = Acosf + Bsin#.
ds

Then the direction of steepest ascent occurs when

d (dz , d? (dz .
d€<d€>:—Asm@—i—BcosO—OandM—daQ(CLS>——ACOS€—381119<O

at P by the test (4.2) for a local maximum .
(a) z = f(z,y) = 22 + y*. Then

_of _ _
—%—x—a, B

_9f _

A =5 =

2y = 2b
at P. The directions of steepest ascent/descent are given by tanf = B/A = 2b/a, that is where
6 = a; = arctan(2b/a) and 6 = ag = arctan(2b/a) + 7 . Further, for § = «y,

M = —acosa; — bsina; = —/(a® + 2b%) < 0.

Therefore the direction «a; is the direction of steepest ascent.
(b) 2 = f(z,y) = 23y3. Then

0 0
A:—f:3x2y3:3a2b3, B:—f:3x3y2:3a3b2
or dy

at P. The directions of steepest ascent/descent are given by tand = B/A = a/b, that is where
0 = a; = arctan(a/b) and 0 = as = arctan(a/b) + 7 . Further, for § = a,

M = —3a?b3 cos a; — 3a®V? sinay = —3a%b%\/(a® + b?) < 0.

Therefore the direction o is the direction of steepest ascent.
(c) z= f(z,y) = 3y°> —y — 2°. Then

_9f _
A—%—

—2r = —2a, B:g:y—lzb—l
dy
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at P. The directions of steepest ascent/descent are given by tanf = B/A = —(b—1)/(2a), that is
where 6 = oy = arctan[—(b — 1)/(2a)] and 6 = az = arctan[—(b — 1)/(2a)] + 7.

eb# 1. For = o, M(ay) = —/(4a® + (b—1)?) < 0. Hence the steepest ascent is in the
direction aj.

eb = 1. In this case A = —2a and B =0, and a1 = 0 and as = 7. Hence M(a;) = 2a. Hence a3
is the direction of steepest ascent if a < 0 and as is the direction of steepest ascent if a > 0. If

a = 0, then the point (0,1) is a minimum of z = $y* — z%.

29.18. Given f(z,y) = 22 + 2xy + y? = ¢, direct differentiation gives
d d
22+ 257 v oy 12457 =0
dz dx

as stated in the question. Hence
dy

dez

Using (29.6) instead,
dy _ oF Jof _ 2e+2y

dx ox/) Oy  2a+2y

confirming the result.

29.19. The slope at a point P on the curve f(x,y) = ¢ is, by (29.6),

(), (&),

Hence a normal vector n to the curve at P is

=), (),

(see (29.7)).

(a) Let f(z,y) = 2y = 2 and g(z,y) = 2% — y?> = —3. Then normal vectors to the two curves are
of of 99 g
= (2,21 = = (2,1 = (22,29 = (22,—2y) = (2, —4
m= (5L )~ =20, m= (JL50) = o2 - 29
at P:(1,2). By (10.4), the angle 6 between the normals n; and n, is given by
cosf = L 22 _
0y [[ng|

Hence the curves meet at right angles at (1,2).

(b) Let f(z,y) =y — 2 = 0 and g(z) = 2* + 3y* = 36. The normal vectors to the two curves are

n; = (gi,gﬁ = (=32%,1) = (-12,1), ny = (gigg) = (2z,y) = (4,8)

at P:(2,8). By (10.4), the angle 6 between the normals n; and ns is given by

n; - no —48—|—8 2
cosf = =

Ini||na| ~ V14580 V29

(c) Let f(z,y) = 2>+ 2y +y* = 3 and g(z) = x +y = 2. The normal vectors to the two curves are

o — (0f 9F
'\ 02 oy

) =Q2z+y,r+2y) =(3,3), ny= (é)z 89) =11
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at P:(1,1). By (10.4), the angle 6 between the n; and ny is given by

n;-no - 3+3 -1
ni|n2| /182

The surfaces have a common tangent plane at (1,1).
(d) Let f(x) = ax? + 2hxy + by? + ¢ = 0 and

cosf =

g(z) = awoz + $h(wo + ) (Yo +y) + byoy + ¢ =0

(note the correction to g(z)). The normal vectors to the two curves at (zg,yo) are

n, = <8f, af) = (2axo + 2hyq, 2hxo + 2by0),
Ox ay (z0,Y0)
dg 1
n, = ﬁ’ﬁ = (axo + hyo, hwo + byo) = -ny.
Ox 8y (z0,Y0) 2

The normals n; and ny are parallel and in the same direction at (zg,yo), so 8 = 0. Note that any
point (zg, yo) on the first curve also lies on the second. In fact the second equation is the equation
of the tangent line at (zg,yo) (compare Problem 29.12(f)).

29.20. (a) Let f(z,y) = 2* — y* = 1. Then, by (29.6),

dy of /of a3 3dy 3 .
— = R A = 0. (1)

de oz oy

Differentiate this equation with respect to x treating y as a function of x. Then
dy 2 d?y
37 (== 2 =32 =0,
Y (dx) TV g T

23\ d%y
3y° | = S 327 =0
Y <y3> TG T

or

using (i). Hence
d?y _ 32%(y* — %)

dz2 y7

(b) Let f(x,y) =ay = 1. Hence
dy _y dy
Er it orxdx—i—y—O.

Differentiate this equation with respect to x so that

dy d%y dy

Therefore
d2y dy 2y 2
W lam e
The result can be checked by differentiating y = 1/ directly.
(c) Let f(z,y) = zye™ = 1. By (29.6)

dy  ye™ + xy’e®V B
dz e + 22yery

y
=
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(Note that this can also be inferred since zy = constant.) The answer is therefore the same as the

previous one:
d?y 2y 2

dax?2 22 23

29.21. (a) f(x,y) =1/(z +y) at (1,—2). The gradient is given by

grad f = (gi,g‘;) = (—(xjy)y—(zjyy) =(-1,-1)

at (1, —2). Further, the direction of the gradient is —135° to the positive  axis, and its magnitude
is |grad f| = /(1 +1) = V2.
(b) f(z,y) = y/x at (2,0). The gradient is given by

grad f — (_y 1) 0,1

at (2,0). The direction of the gradient is at 90° to the z axis, and its magnitude is |grad f| = 1.
(c) f(z,y) =y* —32% + 1 at (0,0). The gradient is given by

grad f = (—6xz,2y) = (0,0)

at (0,0). Since this is a vector of zero magnitude, we cannot associate a direction with it.
(d) f(z,y) =1/x — 1/y at (2,1).The gradient is given by

11 )
gradf: <_$27y2> :(_171)
at (2,1). Its direction is 30° to the x axis., and its magnitude is about 104° to the z axis.

(e) flz,y) =1/r =1/(z®+y?)2 at any point. The gradient is given by

< Y < Y
rad f = [ — y — :(—*,,—*,)-
srad = @+ ) <x2+y2>%) R
A vector with components (z,y) points outward radially. The gradient has components which ar

proportional to these. The negative sign means that the gradient always points towards the origin.

29.22. A normal to the curve f(z,,y) = c at any point is grad f and a unit normal is grad f/|grad f|.
(a) f(z,y) =2z — 3y + 1 =0 at any point. A unit normal is given by

gradf  (2,-3) _<\2F_\3F)
3 VI3

(b) f(z,y) =2? +y* =5 at (2,1). A unit normal is given by
grad f  (4,2) <2 1)
V5 V5
(¢) f(z,y) = 2%+ y* = r? at (x0,90). Since this point lies on the circle, r> = 23 + y3. A unit
normal is given by

"7 Jgrad f| T V(22 +37)

"7 Jgrad f] T J(#2+22)

"7 Jgrad f] T V(d2? +4y7)

grad f  (2z,2y) (@ @)
r’or
at (zo,Yo)-
(d) f(z,y) = 2?/a® + y*/b* = 1 at (x0, o). Since this point lies on the ellipse, x3/a? + y2/b* = 1.
A unit normal is given by

L gradf (22 2y oy : _ (ob? yoa?)
lgrad f| a?’ b? at bt V(z3b* + y3a?)
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at (2o, Yo).
(e) f(z,y) =y — 3z? = —2 at (2,10). A unit normal is

grad f  (—6z,1) (—12,1)

" T lgrad f] T V(3622 +1) /45

at (2,10).

29.23. See (29.9) and Problem 29.19.

(a) Let f(z,y) = y? — 22 = =3 and g(x,y) = 23 — y> = 7 at (2,1). Then normal vectors to the
two curves are

of 0
n; = (ai, 85) = (—2z,2y) = (—4,2),

99 9y 2 g2
=2 22 = - = (12. —
n, (8w’8y> (32, —-3y*) = (12,-3)
at (2,1). By (10.4), the angle 8 between the normals n; and ny is given by

n; -1nso (—4, 2) . (12, —3) 9

cosf = = = —

Ini|lng| /201153 V85

Hence 6 = 167°.
(b) Let f(z,y) = 2%y —ay? =0 and g(x,y) = /y — y/x = 0 at (2,2). Then normal vectors to the

two curves are of of
= _— = —_ 2 2 —_ = —_
n; = (al" ay) (2$y y,T 2l’y) (47 4)3

_ (%9 99\ _ (L y & 1\ _ .
n2_<axaay>_<y+x2a y2 $>_(1, 1)

at (2,2). By (10.4), the angle 6 between the normals n; and ny is given by

n;-no - (4, —4) . (17—1)
Iy [[ng] V32v/2
Hence the curves intersect at right angles.

(c) Let f(w,y) =a?+y?* +2r —4y+4=0and g(z,y) =y — 2> —22—2=0at (—1,1). Then
normal vectors to the two curves are

cosf =

_ (o2 9\ _ 4= (0 —
n; = (f)ac’c‘?y) = (2x + 2,2y — 4) = (0,-2),

(2999 _ L9y 91 =
n2—<axvay>_( 2z 271)_(071)

at (—1,1). By (10.4), the angle 6 between the normals n; and n, is given by

n; -1 o (0, —2) . (0, 1)

cost = =
|n1\|n2| 2x1

=1

Hence 6 = 180°, which means that the curves touch at (—1, 1) having a common tangent there.

29.24. From (29.12), the directional derivative is given by

4f = |grad f|cos ¢
ds

where ¢ is the smaller angle between grad ¢ and the chosen direction.
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(a) Along the contour through a given point f is constant so that df/ds = 0. Hence cos¢ = 0
and ¢ = 90°. The directional derivative df/ds takes its greatest and least values where ¢ = 0 and
¢ = 7 which are both perpendicular to the contour.

(b) The maximum rate of increase of f is equal to |grad f|, achieved when ¢ = 0.
Chapter 30: Chain rules, restricted maxima, coordinate systems

30.1. A list of possible parametrizations is given below: they are not unique.

(a) #2 + y? = 25. This is a circle which can be parametrized by z(t) = 5cost, y(t) = sint for

(¢) zy = 4. this is a rectangular hyperbola which can be described by xz(t) = 2¢, y(t) = 2/t for

0<t<ooand —oo<t<0.

d) 22 —y? = 1. This curve is a hyperbola which can be represented parametrically by x(t) = sect,
Y

y(t) = tant for —ir <t < im.

(e) +22—3y* = 1. This curve is a hyperbola which can be represented parametrically by z = 2sect,

y = 3tant for *%71’ <t< %w, for the branch in x > 0.

f) y?2 = 4az. This curve is a parabola which can be represented parametrically by « = at?, y = 2at
Yy y by Y
for —oo <t < 0.

(g) (x — 1)+ (y —2)% = 9. This curve is a circle centred at (1,2) which can be represented
parametrically by z = 1 + 3cost, y = 2 + 3sint for 0 <t < 27w

(h) 2z — 5y + 2 = 0. This is a straight line which can be represented in many ways parametrically
including x = ¢, y = 2(t + 1)/5 for —oco < t < 0.

30.2. Given f(z,y), x = x(t) and y = y(t) the chain rule (30.1) states that

g_afdw of dy

dt ~drdt oydt

(a) f(z,y) = 2% +y?, (t) = t, y(t) = 1/t. Then

of _,, 9 _, do_, dy_ 1
or oy Y w T W
Therefore df  ofd o1 d ) 5
€z Y
A R B Y N Ty Ve
& " ordt Toyar TV I
(b) f(z,y) = 2? — y?, x(t) = cost and y(t) = sint. Then
of of dz . dy
_— = 2 _— = —2 — —= — S —_— = S 1.
oz z, oy Y, I sint, ar cost
Therefore d
d—{ = 2x(—sint) — 2y.cost = —4sintcost = —2sin 2¢.

(¢) f(z,y) = zy, x(t) = 2cost and y(t) = sint. Then

gf ai—;p d—xf—Qsint dfy*COSt
ar L ay T T a oA T
Therefore d
d—{ =y(—2sint) + x.cost = —2sin?t + 2cos® t = 2 cos 2t.
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(d) f(z,y) = xsiny, x(t) = 2t and y(t) = 2. Then

6—f—sin g—xcos d—x—2 @—Qt
or oY gy T Yow Tt T
Therefore d
d—{ = 2siny 4 x cosy.(2t) = 2sin(t?) + 4t cos(t?).
(e) f(z,y) =4a? + 9y?, x(t) = § cost and y(t) = §sint. Then
af of dx 1, dy
=8, L=1 — = —Zsint, —= = - cost.
Ox “ Oy Yo g Sh g T 3”
Therefore df
T 8x(—3 sint) + 18y( cost) = 0.

30.3. Assume that R > r (for the sake of description although it is not a requirement in the
solution), that the origin is at the centre of the tracks, that the coordinates of the athlete on the
inner track are (x,y) and that of the athlete on the outer track are (X,Y). Assume also that the
athletes start with y =Y = 0 at time ¢ = 0. The athlete on the inner track makes one circuit in
time 277 /v, so that the athlete’s subsequent location is given parametrically by

x =rcos(vt/r) y=rsin(vt/r).
Similarly, the location of the other athlete is given by
X = Rcos(Vt/R), Y = Rsin(Vt/R).
The distance D between the runners is therefore

D = Jl@-XP+y-v)
VI{rcos(vt/r) — Reos(Vt/R)}? + {rsin(vt/r) — Rsin(Vt/R)}?].

The rate of change of the distance D with time is

% = %[(T cos(vt/r) — Rcos(Vt/R))(—vsin(vt/r) + Vsin(Vt/R))
+(rsin(vt/r) — Rsin(Vt/R))(vcos(vt/r) — V cos(Vt/R))]

= @[COS(Vt/R) sin(vt/r) — sin(Vt/R) cos(vt/r)]

= 7UR_TVSin B—K t
- D r R/}

The distance is stationary when dD/d¢ = 0, which occurs when

si vV t
n(-——=1t=
r R ’

assuming that vR # Vr. These stationary values occur when

rRnm

"TYR-ve

(n=0,1,2,...).

The minimum distances occur for n even and the maximum for n odd. The two athletes orbit at
different rates (just like two planets): they are at their closest when they lie on the same radius
and at their furthest when they lie on two directly opposite radii.
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30.4. (a) Let the edges of the rectangle have lengths z and y. Then the area A(x,y) = zy and
the perimeter P(x,y) = 2z + 2y. We wish to find the maximum area subject to the restriction
P(z,y) = 10. Using (30.4), we must solve

r+y=5, (i)
0A oP
o~ Ay =¥—22=0, (ii)
0A oP
@—Aa——x—w\—o. (iii)

25

2.

(b) Let the edges of the rectangle have lengths « and y. The perimeter P(z,y) = 2z + 2y and the
area A(z,y) = zy = 9. By (30.4), solve the equations

From (i) and (ii), z = y, so that from (i) # = y = 2. Hence the maximum area is

xy =9, (1)
oP 0A .
8x_>\8x_2_y)\_07 (1)
oP 0A
- _ —9_ —0.
ay A ay zA=0 (iii)

From (ii) and (iii), x = y, so that from (i) z = y = 3. The maximum value of the perimeter is 12.

(c) Let f(z,y) = 2% +2y? and g(x,y) = 22 + y* = 1. By the Lagrange-multiplier method z, y and
A satisfy

w2+t =1, (1)
of (0g _ _ .
Fr /\% =2x—2zA=2x(1-X) =0, (ii)
of 09 _ o
7 )\a—y =4y —2yXA =2y(2—)) = 0. (iii)

From (iii), either y =0 or A = 2. If y = 0, then A = 1 from (ii) (z = 0 is not a possibility since (i)
would not be satisfied) and from (i) y = £1. If A =1, then = 0 and y = £1 from (i). There are
four solutions:

A=1z==x1y=0;

A=2,2=0,y==+1.

(d) Let = and y be the lengths of the sides of the rectangle parallel to the x and y axes. Then the
area of the rectangle is A(z,y) = zy and the restriction is g(z,y) = 2¢ +y = 1. The Lagrange-
multiplier method (30.4) gives the equations

2r4+y=1, (i)
0A Oy
— AL =y —-2\ = ..
61‘ 8x y 07 (H)
0A 0
8—y—Aa—z:x—A=0. (i)
From (ii) and (iii), y = 2 so that, from (i), z = % and y = 3. There is one stationary value at

(z,y) = (,3), where A =2y = §, which a sketch shows to be a maximum.

(e) For any point (x,y) on the line = + 2y = 1, the square of the distance from this point to (1,1)
is f(z,y) = (r — 1)% + (y — 1)? with the restriction g(z,y) = x + 2y = 1. By (30.4) z, y and the
parameter \ satisfy

T4 2yh =1, )
of 99 _ o5 v\ _ N
i 2(r —1)— A =0, (ii)
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of 9
oy oy~
From (i) and (iii), y = 22 — 1, so that, from (i), = 2. Hence there is one stationary point at
(2,1). The minimum distance is therefore 2/v/5.
(f) The square of the distance from the origin of a point (x,y) given by f(x,y) = 22 + y?, and

(x,y) is restricted to the curve g(x,y) = x? + 8xy + Ty? = 225. Using the Lagrange-multiplier
method of (30.4), z, y and the parameter A satisfy

=2(y—1)—2A=0, (iii)

2% + 8xy + Ty* = 225, (1)
ST = A5 = 20— (20 +8y)A =0, (if)
8f 89 B B
a9, g, — - Brilir=o. (iif)

Eliminate A\ between (ii) and (iii):
x(4x + Ty) = y(z + 4y), or 22° — 3y — 2y*> =0, or (22 + y)(z — 2y) = 0.
Hence y = —2x or y = %x Substitute y = —2x into (i) so that

2% — 1622 + 2822 = 225, or 2% = % or r = i\}%.

Substitute y = 2 into (i) so that

2722 =4 x 225, or x = j:%.
There are two points on the curve, namely (10/v/3,5/4/3) and (—10v/3, —5/+/3) which give mini-
mum distances (the curve g(x,y) = 225 is a hyperbola with two branches). The minimum distance
is 5v/5/V/3.
(g) (Note: ‘minimum’ should be replaced by ‘maximum’ in the question.)
Referring to Example 30.8 and Fig. 30.4, the perimeter of the rectangle is P(z,y) = 4z + 4y
subject to the restriction g(x,y) = 22 + 4y? = 1. The Lagrange-multiplier equations are

a? 4y =1, (1)
oP dg ..
%—)\ax—ﬁl—zﬁ)\—o, (ll)
66—1; - )\g — 8yA =0. (iii)

From (i) and (iii), A = 2/ = 1/(2y). Therefore z = 4y, and from (i), y = 1/(2vV/5), = = 2/V5
(assuming positive values for z and y) . The maximum perimeter is 2v/5.

(h) In this problem f(x,y) = (¢ —y + 1)? and g(z,y) = y — 2% = 0. The Lagrange-multiplier
equations (30.4) become

Y- a? = 0, (1)
of 89 _ .
e 890 =2x—y+1)+2zA=0, (i)
of 89 -
ay ay —2x—-y+1)—A=0. (iii)

Eliminate A\ between (ii) and (iii) to obtain (x —y + 1)(1 4 2z) = 0. Hence either z —y+1 =0 or
1422 =0. If z —y + 1 = 0, then elimination of y in (i) leads to 2% — 2 — 1 = 0 with solutions

= %[1 + /5] with corresponding y = % + %\/5 Ifx= f%, then, from (i), y = %. Hence there
are three stationary points at:

A+ VE, 3+ 1vE), (A1-vE,2-1vE), (=11
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(i) Without loss we can choose the parabola to have the equation y?> = 2z. Let f(x,y) be the
square of the length of a straight line which joins the point (a,b) (¢ > 0 and —v/2a < b < V/2a),
which lies inside the parabola, and a point (z,y) on the parabola. At points on the parabola where
f(x,y) is stationary, the line will be normal to the parabola. Hence we require the points where

f(z,y) = (x —a)?® + (y — b)?is stationary subject to g(x,y) = y* — 2z = 0.

The Lagrange multiplier equations are

y? — 2z =0, (i)
of 99 _,, _ .
% f)\% =2(x—a)+2\=0, (i)
of by o
3 )\a—y =2(y—b) —2yA =0. (iii)

Eliminate A\ between (ii) and (iii) so that
y—b+ylr—a)=0, or y* +2y(1 —a) —2b = 0.

This cubic equation always has at least one real solution (consider how the left-hand side behaves
as — +00) and at most three real solutions. Let

h(y) = y* + 2y(1 — a) — 2b.

Then dh(y)
) 2
— =3 2(1 —a).
Qy y*+2(1-a)
The curve z = h(y) has distinct stationary values where y = £,/[2(a — 1)/3 provided a > 1. These
lie above and below the y axis (in the (y, z) plane) which implies that the curve z = h(y) cuts the

y axis three times. For 0 < a < 1 there is just one real solution.

30.5. (a) f(z,y) =22 +y? on g(z,y) =ay = 1.
(i) The curve zy = 1 can be parametrized by putting z = ¢, y = 1/t for —c0 < t < 0 and

0 <t < 0o. On this curve 1
f(xuy) = t2 + tig

Stationary points occur where

that is, where t* = 1 or t = 1. The corresponding coordinates of the stationary points are (1,1)
and (—1,-1).
(ii) The equations (30.4) in the Lagrange-multiplier method are

xy =1, (i)
R N §
% )\% =2z yA = O, (ll)
af dg
G\ oy _zr=o.
3y )\ay y—azA=0 (iil)

From (ii) and (iii), y? = 2% so that y = 4 but only the plus sign leads to real solutions. Hence

(i) gives 22 = 1 or x = 1. As in the parametric method the stationary points occur at (1,1) and
(—1,-1).
(b) f(z,y) =2 +y? on g(z,y) = (z —1)* +y* = L
(i) The circle (x — 1) +y? = 1 can be parametrized by 2 = 1 + cost, y = sint for 0 < ¢ < 27. On
this circle

f(z,y) = (1 +cost)* +sin®t = 2 4 2cost.
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Stationary points occur where

d
d—{ = —2sint =0,

that is, at t = 0 and ¢ = 7 for the given interval of ¢{. The corresponding stationary points are at
(2,0) and (0,0).

(ii) The equations using the Lagrange-multiplier method are

(=1 +y* =1, (i)
2z —2(x —1)A =0, (ii)
2 — 2y\ = 0. (ii)

From (ii) either y =0 or A = 1. If y = 0, then = 2 or 0 from (i). The case A = 1 is not consistent
with (ii). This confirms that f(z,y) is stationary at (2,0) and (0,0).

(¢) f(z,y) =2° +4y* on g(z,y) =2° +y> = 1.
(i) The circle 22 4+ y? = 1 can be parametrized by z = cost, y = sint for 0 < t < 2. On this circle
f(z,y) = cos®t + 4sin’ t.

Stationary points occur where

df
dt

= —2costsint + 8sintcost = 6sintcost = 3sin 2t = 0,

that is, at ¢ = 0, %7‘(,7‘(‘, %7‘(’. The corresponding stationary points are (1,0), (0,1), (—=1,0) and
(0, —1).
(ii) The equations using the Lagrange-multiplier method are

2 +y? =1, (i)
af [ 0g _ .
% — A% =2z 20\ = O, (ll)
of (09 _
- Aa—y =8y —2yA =0. (iii)

From (iii), either y = 0 or A = 4. If y = 0, then from (i) x = +1 and from (i) A = 1. If A\ = 4,
then from (ii) © = 0 and from (i) y = £1. The stationary points are therefore (1,0), (0,1), (—1,0)
and (0, —1) as above.

(d) f(z,y) =3z —2y on g(x,y) = 2% —y* = 4.
(i) The curve x2 — y? = 4 can be parametrized by x = 2sect, y = 2tant for —%w <t< %7‘( and

%w <t< %w. On this hyperbola

f(z,y) =6sect — 4tant.

Stationary points occur where

d—f = Gsecttant — 4dsec’t =0,

dt

that is, where sint = 2/3. For —1 <t < 1,2 =6/v5,y =4/v5and for 37 <t < 3w, 2 =—6/V5,
y = —4/V5.

(ii) The equations using the Lagrange-multiplier method are

2 —y? =4, (i)
of 909 _ _ 3
9z )\% =3-2zA =0, (i)



of 99 _
3 )\a—y =—-2+2yA=0. (iii)

Eliminating A between (ii) and (iii), 2z = 3y. Elimination of y in (i) leads to # = +6/v/5. The
stationary points are

(6 4) ( L 4)
(e) f(z,y) =2y on g(z,y) =2 +y* =1
(i) The circle 22 4+ y? = 1 can be parametrized by z = cost, y = sint for 0 < t < 2. On this circle

_ % — 1
f(x,y) = costsint = 3 sin 2t.

Stationary points occur where

d
d—{zcos?tzo,
3.5

that is, where t = iﬂ', T Zw. The stationary points are therefore

(ii) The equations using the Lagrange-multiplier method are

2ty =1, (i)
df dg _ N
@7>\a—y72$)\—0, (ll)
df dg
Lo —oyn=o.
dy /\dy z—2yA=0 (iii)

From (ii) and (iii), > = 22 so that y = 4z and from (i) * = +£1//2. Hence there are four
stationary points which agree with those listed above using the parametric method.

30.6. Figure 15 shows the curve g(x,y) = ¢ and the family of curves f(z,y) = constant. Assume,
for the sake of discussion, that the values of f(z,y) are greater above the curve f(x,y) = constant
which just touches the curve g(z,y) = ¢. Then if we track the values of f along g(x,y) = ¢, they
will pass through a minimum at the point of contact.

The normals at the point of contact P are

Figure 15: Problem 30.6

At the point of contact n; and ny are parallel so that n; = Ans, from which the Lagrange-multiplier
equations (30.4) follow.
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The non-tangential case can be illustrated by an example. Let f(z,y) = 22y subject to 22+y* =
1. The Lagrange equations (30.4) become

w2+t =1, (i)

af dg B - .

i A—am =2zy — 22X =2z(y — \) =0, (i)

of dg 9
N 2 gyn=o.

3y Aay x yA =10 (iil)

From (ii) either z = 0 or A = y. If z = 0, then A\ = 0 from (iii) (y cannot be zero) which means
that y = +£1. If A = y, then, from (iii), 2% = 2y?. Finally from (i) 3y?> = 1 so that y = +1//3.
We can now list the stationary points:

(0,1), (0,-1) v2 1 —v2 1 —v2 L v2 L

+

=const ant

f(x,y]

Figure 16: Problem 30.6: the dots show the stationary points.

The family of curves z2y = constant are shown in the figure together with the locations of the
stationary points on the circle 22 + y? = 1. Contours of f(z,y) are tangential to the circle at the
four stationary points which are not on the axes. However, at the points at (0,1) and (0,—1) the
contour is not tangential. At these points A = 0, which means that df/0x = 9f/0y = 0: they are
unrestricted stationary points of f(x,y). It is not possible to define a normal vector to the curve
f(x,y) = ¢ at points where 0f/0x = Jf /0y = 0: the method described in the first part of this
problem fails in this case.

30.7. The orthogonality conditions are given by (30.5).
(a) u=2x+ 3y, v =—3x + 2y. Then

Oudv = Ouldv
9z O + 87y87y =(2)(-3)+ (3)(2) = 0.
(b) u = xy, v = 2% — y?. Then
Oudv  Oudv
wor Dy oy (v)(2z) + (z)(—2y) = 0.
(c) u=a+2y% v =y/z2
Oudv  Oudv 2y 1Y)
Bros +oyay — 0 (SF) +n () o
(d) u = xy?, v = y* — 22%. Then

Oudv  Oudv 4 _
920 Dy oy (y°)(—4z) + (2zy)(2y) = 0.
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(e)u=x+1/x+y?/x,v=y—1/y+2?/y. Then

dudn owov (| 1\ () () (1 2
oxdx  Oyody 2 z? Y x y2  y2)

(f) x =2u—v, y =u+2v. Then

Oxr 0r Oy dy

Fe g T 5 ge = 2X (FD)F1x2=0.

(g) © = u? —v?, y = 2uv. Then

Ox Ox L dy Oy
Oudv  Oudv

(h) @ = u/(u? +v?), y = v/(u? + v?).

= (2u)(—2v) + (2v)(2u) = 0.

Oz dx  Oydy _ v? —u? " (—2uw) (—2uw) y w?—ov?
udv ' udv (W2 +02)? " (W2 +02)? T (W2 +02)? T (u2 +02)?
(i) x = u? —v?, y = —2un.
Oz dx Oy dy

Au Ov T ou Ou Ov = (2u)(—2v) + (—2v)(—2u) = 0.

30.8. In polar coordinates x = rcosf, y = rsiné.
(a) By the chain rule (30.1)

0 do dr de

0
- _ 2 0 - 0)— = 0— 0—.
i (rcos )dt + 89(rcos )dt cosf 4 rsin i
dy o9, . dr 0 dé dr dé
E—E(ru 9) +%(rs1n0) bln9—+rc050&.
(b) Differentiate dz/dt and dy/dt in (a) with respect to t:
d?z d d?>r d, . df . d?0
wm - dt(cos@)a —l—cos&dt2 - &(rsmﬂ)a - rsmﬁﬁ
dg dr > dfdr do\* . d%
= mn@aa—i— Hdt?_smedtdt_rcose<dt> —rsmeﬁ
0 dr d>r do\* %6
= -2 _ _ —_— — < — .
bln@d dt+0050dt2 rcos(dt> rbln@dt2
d?y d d?r d dé d2e
w® - dt( n@) +Sln9@+ T (rcos@)d +rc059@
d9d d?r dg\? %0
cos@dt i +5s 9dt2 rsind (dt) +7“COSt9dt2
(¢) The result
2z . d%y  d3r do\ >
cost 5 —ﬁ—smeﬁ =gz " (dt
can be verified using (b). The second result follows since, from (b),
d?y d?z  dfdr 20 1d [ ,df
00 gy ~ S0y = Gy T _rdt(T o'lt)'
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30.9. (a) f(z,y) = 22 —y, © = uwv, y = u? — v2. By the chain rule (30.6)

or _oror ofoy e
90~ 0rou T agou (D) =2v - 2u.

of _ 050z 0f oy

— =2 20.
v owov Toyow  uT

(b) f(z,y) =y/z, 2 = u+ v, y = u—v. By the chain rule
of ofox  Ofdy y 1 u—w 1 2v

Ou  dxdu  dydu 22 =z (u+v)2+u+v_(u+v)2'
af 3f8;1: +5fay y 1 uU— 1 —2u

v dxdv | Dy dv 22z (ut0v)? u+tov  (utv)?

(c) f(z,y) = y?, = u® +v2, y = v/u. By the chain rule

L (52
(d) f(z,y) =(x—y)/(x +y), x = v, y = u—v. By the chain rule
%:%%+%%: (ff-zi-yy)2 <0 (ac—ny)2 1= (ac—ny)2 :12712}'
TR T S

30.10 Use the chain rule (30.6) twice:
Of _ 0 (0f\_ 0 [0fox 00y
ou? 3u ou)  Ou |0xdu 3y ou

B of x+8f(')2 i of y+6f82
N 8u 0z ) ou ' Oz Ou? 8u Ay ) ou ' By ou?

Similarly
& B 2 8f8z+3f8y
o2 Ov \dxdv Oy v
0 (or\ou ofPe 0 (05\ 0y 050%
T v \ox) v dxovc v \dy) v Oy o2
and

Pf 0 (0f0x 0fdy
N au Oxr dv Oy Ov

Ooudv
o (o5 or of P 0 (of\oy  of &
N 8u Oxr) Ov Oz Oudv Ov \dy /) Ov Oy Oudv’

(a) f(z,y) =y/x, x =u+v, y =u—v. We require the following first and second derivatives

of _ y _  u—w of 1 1

or 22 (u+v)? dy =z u+v
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Oz 830_1 8y_1 dy

- T u B
0%z 0%x 0%z 0%y 0%y 0%y
2= " 32-% G =% =% =% Guaw =Y

Using the formulae above
0% f 0 U—v u—v
e = o Camr) 1 - [asee

o () )+ [

u— 3v 1 4ov

(wtoP  (uto)?  (utv)?

o= e - [

| () < 0]+ [ <)
Su— v 1 du

Wt wro?  (urop

e~ | () <) [

0 1 1
= —1
+8u(u+v)x( )—&—quva
u—3v n 1 _ 2u—2v
Wrop T wr?  wrop

2

(b) f(z,y) = 2% + y2, x = wv, y = u® — v2. We require the following first and second derivatives

of . of o o o 2
E—Qm—qu, ay—2y—2u 207,
%—v %—u @—QU @——20
ou  ov T du T v ’
0%z 0%z 0%z 0%y 0%y 0%y
Ou? 0, Ov? 0, Oudv T ou? T Ov? T Oudv 0,

Using the formulae above

ﬁ = 0 (2uv) x v — (2uv x 0) + 2(2u2 — 20%)(2u) + [(2u? — 20?) x 2
ou? ou ou
= 12u% —20°
*f 0 9 1o 2 2 2 2
707 = %(QU’U)U — (2uv x 0) + %(ZU — 20%))(—2v) + [(2u” — 20%) x (—=2)]
= —2u® + 1207
*f 0 9 o 2 2 2 2
i %(2uv)u + (2uv x 1) + %(QU — 207)(—2v) + [(2u” — 2v°) x 0]

= —4duw.
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(c) f(z,y) = y% = = uv, y = v. We require the following first and second derivatives

of of
— =0 —— =2y=2
oz 0 oy 4T
oo oe oy oy
ou ' dv 0 Ou | v
0%z 0%z 0%z 0%y 0%y 0%y
gr _ or _ -1 ZY_ oy _ _
Ou? 0, Ov? 0, Oudv T Ou? 0, ov? 0, Oudv 0,

Using the formulae above

0*f 90 0

2 = 5y 0+ (0)(0) + -(2v)(0) + (0)(0) = 0,
o*f 0 7]

302 = 5y (0u+(0)(0) + 2 (20)(1) + 20(0) = 2,
o f 0

0
= O)u+ (0)(1) + - (20)(1) + 20(0) = 0.

(Comment: whilst the second-order chain rule is important for theoretical reasons, it is generally
not the simplest method of obtaining the u and v derivatives. Direct differentiation is often much
quicker in explicit cases. For example in (b),

flay) =2" + 3% = u®0® + (u® = v?)%.

It can be shown easily that

af _, 2 2 oy OF o9 2 2
v 2uv® + du(u® — v7), 5 2uv — 4v(u® — v?),
*f 2 , O 2 2 D*f
w = 12u — 2U 5 w = —2U + 12’(} 5 8uav = —4UU)

30.11. f(z,y) = g(2®> —y?), v = u + v, y = u — v. Using the chain rule (30.6),
of of 0x  Of Oy

du " wou " dyou

= ¢'(2® —y*)(22)(1) + ¢'(2* - y*)(~2y)(1)
= ¢(4u)2(u +v) + ¢ (4uv)(—2u + 2v) = 4vg’ (4uv),

of  O0fox Of0oy

v T wov  ayov

= g2 = y*)(22)(1) + ¢'(2* — y*)(~2y)(~1) = dug' (4uv),
2 2
% = %[41}9’(4uv)] = 16v%¢" (4v), % = %[4ug’(4uv)] = 16u?g” (4uv),

o2 f

S0 = %[zmg’(zluv)] = 4¢' (4uv) + 16uvg” (uv).

30.12. Given
ou OJv Jdu v i)
_— = — _— = —— 1
ox Oy’ 0Oy ox’
differentiate the first equation in (i) with respect to « and the second equation with respect to y
so that
0u 0*v 0%u 0%v (i)
Z — = . ii
0x?  Oxzdy Oy Oyox
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Since the mixed derivatives
9%v

0%v

Oxdy and Oyox

are identical, elimination of them in (ii) leads to

0%u

Ox?
The other equation

0%v n

0x?

Pu _

ke 0.
2

v _,

oy?

(iii)

(iv)

can be obtained similarly by differentiating the first equation in (i) with respect to y and the second

equation with respect to x, and eliminating the
By (30.6),

mixed derivatives.

ow_owon | ouov
dr  Oudxr Ovox’
ow_dwon  owon
dy  Oudy vy
Differentiate (v) with respect to  and (vi) with respect to y:
Pu_ 0 (w\ou, it b (9o dwiy
022 Ox \Ou) Ox Oudx? Ox \Ov) dxr Ov dx?’
Pu_ 0 (ow\ou it 0 (ow\ v dwdt
oy2 oy \ou/) oy Ouody oy \ov/) oy vy

Add these equations noting the results (i), (iii) and (iv):

Pu dw [0 (ow) 0 (w\]|ou [0 (ow) 0 (ow)]ow
0x2  Oy? |0z \ Ou Oy \Ov /| oz Oy \ du Ox \ov )| Oy’

Apply the chain rule (30.6) to the terms in the square brackets in the previous equation:

g [ow a (ow B FPwou  O0%w v 0%w du 0w v
o (au) "oy (a) = 920z Dvoudr  oudwdy T 90 Oy
B Pwou 0w ou  0%w v
B 8u287z+8u8v87y+ o2 9y’
g (ow 0 [ ow B Pwou  Ow ov 0w Ou 0w v
oy (au) T or (a) = 920y Dvoudy udvor 00 ox
B Pwou 0w ou  O%w v
N 8u287y+8u8v87y_ o2 dz’

using (i). Hence
P Pu _ Pu (o) P (0w (o) | 0w (o0’
oz2  oy2  ou? \ oz ov? \ Oz Oy ou? \ Oy
Pu (0 (o0
ov? \ Ox oy
o, (o] [P o
Ox Oy ouz  Ow? |’

using (i) again. (Note that the right-hand side in the text is incorrect.)
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30.13. Given z = f(z,y), x =rcosf, y = rsinb.
(a) Using the chain rule (30.6)

%_%%_F%@—%COSG—F%SHI@
or  dxor Oyor Ox Jy ’

%:%%—i—%@:—%rsirﬂ—i—%rcos@.
00  0x 00 Oy ol Ox dy
Then
<82>2+1<8z>2 = (82(3089—1—azsin9>2—|—(—azsinﬂ—&—azcosﬂ>2
or r2 \ 06 ox Oy Ox Jy
- () +(5)
ox oy

as required.

(b) By using the chain rule:

0z g0e 10
ax = CO 8’[‘ S111 867
0z z 1 0z
87/ = n98 + - cos 0%,
Hence 52 P o ) P
z 1 . z 1 . z .
i <00808T - Sm989> (cos@ar — T51n989> ) (i)
and 52 P 9 9 9
z . 1 . z 1 z ..
92 = (smear + - cos 030) (sm 95 + -~ cos 959) . (i)
The result

0%z 0%z 9%z 10z 1 02z

52 "oy "o ror r2og

follows by evaluating the derivatives 9/0r and 9/06 on the right-hand sides of (i) and (ii) and
adding the results.

Chapter 31: Functions of any number of variables

31.1. The incremental formula for f(x,y,z,...) is (see (31.1))

5o 0 OF
of 6x5x+ 6y5y+ az&z.

(a) f(z,y,2) = 22 + 3y* + 422 — 3. The incremental approximation is
0f =~ 26z + 6ydy + 8z0z.
(b) f(z,y,t) = (2% + gf)*%e*t7 The incremental approximation is
5f = —a(z? +y2) 2 tox — y(a? + y2) 2ty — (2% + y2) " 2e Lot
(c) f(r,0,t) = e"trcosf. The incremental approximation is
5f ~ e tcosfor — e trsin 60 — e tr cos 6t.
(d) f(z,y,2,t) = 2% + y* + 22 — t2. The incremental approximation is

0f = 2xdx + 2ydy + 220z — 2tit.

54



(e) f(x1,vy1,%2,92) = (1 — 22)* + (y1 — y2)?. The incremental approximation is
Of = 2(x1 — w2)d21 + 2(y1 — y2)0y1 — (21 — 22)022 — 2(y1 — Y2)0Y2-

) f(z,y,t) = (l/r)e*("”2+y2)/t, r = (22 +1?2)2. The incremental approximation can be expressed
as

£+ 9272 4 992 2 2\1
Sf av e (@ Hu)/t L—F?:(_x(;x — yoy) + M(gt )
t(x? +y?)2 t2
If g(r,t) = (1/r)e~""/t, then
t+27‘2 2/ T2
5%{— = }e ftor + e /tot.

The increments ¢ f and dg can be compared noting that rdr = xdz + ydy.
31.2 The distance between any two points (x1,y1,21) and (x2,ys2, 22) is
(w1, 91,21, %2, Yo, 22) = V[(@1 = 22)* + (1 — 42)° + (21 — 22)7],

which is a function of six variables. The first derivatives of d are

ﬁiﬂflfﬂfz ﬁiylfyz %721*22

0x, d 7 oy d = 0n d '’
M mewm 9 pep 0 m-x
81'2 o d ’ 8y2 o d ’ 822 N d ’
From (31.1),
od od od od od od
dd ~ —9§ —4 —0 — — —0
8.131 1+ 6y1 n + 32:1 2t 61‘2 T2+ 6:1./2 Y2 * 622 =
1
= E[(fcl — x2)(0x1 — 02) + (Y1 — y2) (0y1 — dy2) + (21 — 22) (021 — 622)]

Using the data
(95179172’1) = (17 172)7 (5527@/27732) = (17271)7

((53?1, (5y1, 521) = (0.1, —0.1, —0.2), ((51‘2, (Syg, (52’2) = (—0.1, 0.17 0.1),
then d = v/2 and

6d~ —[0 % (0.1+0.1) + (=1) x (=0.1 = 0.1) + 1 x (0.2 — 0.1)] ~ —0.07.

1
V2
31.3. The resistance R is given by

l—i—k Ry + Rs
R Ry RiRs + RoR3 +R3R1.

By (31.1), the incremental change in R due to changes in Ry, Rs, Rs is given by

—iéR N 0R1 + 0R,
R2 ~ RiRy+ RoR3 + R3R,
(Rl + Rg)(R25R1 + R10R> + R30Ry + Ry0R3 + R10R3 + R35R1)

(R1R2 + RoR3 + R3R1)2

The given data are Ry = 3, R = 10, R3 = 5 and R4 = 10, and increments 0R; = 0.2,
0Rs = —0.2: R, does not change. We have to find the value of § R3 which causes 0R = 0. The
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formula simplifies since dR; + dR2 = 0. Hence 0Rj3 is given by (we need not write down the
denominator nor the factor (R; + Rs))

10 X 0.2 43 x (—0.2) + 5 x (—0.2) + 106Rs + 36Rs + 5 x 0.2 = 1.4 + 13R3 = 0

if R3 =—14/13 =~ —0.11.

31.4. Consider the general function
fla,b,c,x) = ax® — bx — c.

Then the incremental change in f due to changes in the coefficients is

o M50 sy O s O 5 350 wob— 2
5f~aa5a+ab5b+6céc+ax5x—x da — xdb — dc + (3az” — b)ox.

Now use the data: a =2,b=3, c =45, z =3, da = 0.1, 6b = —0.1, ¢ = 2. We put §f = 0 and
calculate dz. Hence

0=27%x01-3x(-01)—2+(3x2x9—3)dz.
Solving this equation dz = —1/51 = —0.0196.... The approximate solution is z = 2.98 to 2
decimal places.

31.5. The small-error formula (31.3) for w = f(x,y,2,...) is

In this question A stands for
(central value) -(exact value).

(a) w=yz+ zzx+ 2y, v = 2(£0.1), y = 3(£0.2), z = 1(£0.1). Then, at (2,3,1)
Aw = (z+y)Az+ (z+2)Ay + (y + ) Az = 4Az + 3Ay + 5Az.

The maximum value of the magnitude of Aw occurs if Ax = +0.1, Ay = £0.2, Az = +0.1. Hence
the maximum value of |Aw| is given by

|Aw| & (4x0.1) + (3 x0.2) + (5 x 0.1) = 1.5.

The central estimate value is w = 3 + 2 + 6 = 11 giving a maximum error in w of about 14%.

b)w=(zr—y)(y—2)(z—2z), z =1(£0.1), y = 2(£0.1), z = 3(£0.1). The first derivatives of w
are
ow ow
= =2 4yta), G = ()24,
ow
Y r— —22).
2 )ty -2
Then, at (1,2, 3),
Aw = (y—2)(—2z+y+2)Az+ (z—z)(x—2y+ 2)Ay
+x—y)(x+y—22)Az
= —3Az+0x Ay+3Az=-3Az+ 3Az.

(The contribution of Ay is of order (Ay)? in this case.) The maximum value of |Aw| occurs if
Az = F0.1, Ay = £0.1, Az = £0.1 so that

|Aw| ~ 0.3+ 0.3 =0.6.

The estimated value is w = 2 which means a maximum error in w of about 30%.
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(c)w= (z+y+z—t)"1, 2 =12,y =2.9, 2 = 1.9, t = 2.1 after rounding to 1 decimal place. In each
case the rounding implies that © = 1.2(£0.05), y = 2.9(£0.05), z = 1.9(£0.05), ¢t = 2.1(£0.05).
The first derivatives of w are

ow ow ow ow
— = —w?, —=-w? —=-u? = =u

ox Jy 0z

Hence
Aw = w?*(—Ar — Ay — Az + At) = (3.9) ?(—Ax — Ay — Az + At).

The maximum value of |[Aw| occurs where Az = Ay = Az = F0.05 and At = £+0.05, so that
|Aw| = 0.013 since w = 1/3.9 = 0.256. The percentage error is about 5%.

31.6. (a) The cosine rule for a triangle ABC is
¢ =a® +b* — 2abcos A
with @ = 2(£0.1), b = 4(+0.1), A = 135° or 37(+0.035) radians. The incremental formula (31.3)
: A(c?) ~ 2cAc ~ (2a — 2bcos A)Aa + (20 — 2a cos A)Ab 4 2absin AAA.
For the measured values ¢ = 2,/(5 + 2v/2) = 5.60. Hence

Ac = 1afbcosA )JAa + (b — acos A)Ab + (absin A)AA
c
_ 1+\f Mot | —AEV2 Yoy (22 ) au
5+2\f 24/ (5 +2v/2) (5+2)

~ 0.43Aa+ 0.48Ab+ 0.51AA.

The maximum error in |Ac| occurs where Aa = +0.1, Ab = +0.1 and AA = +0.035. Hence the
maximum value of |Ac| is 0.11. The maximum percentage error is about 2% .

(b) d? = (w1 —x2)2+ (y1 —y2)? + (21 — 22)%, (z1,y1,21) = (1,2,1), (z2,y2,22) = (2,1,1) rounded to
1 significant figure. Hence all coordinates have maximum errors (£0.5). The 1ncremental formula
is
A(dQ) =2dAd =~ 2(:L‘1 — .%‘Q)A.Tl + 2(y1 — yg)Ay1 + 2(21 — ZQ)AZl
—2(z1 — 22)Azz — 2(y1 — y2)Ayz — 2(21 — 22)Azs.

At the rounded values, d = v/2 = D, say. Hence

Ad = %[7AIL’1 + Ayl + AIL’Q — Ayl]

Ad takes its maximum/minimum values when Az; = F0.5, Ay; = £0.5, Azy = +0.5, Ay, = F0.5,
giving Ad = /2. The range of possible values for d is given approximately by D — /2 = 0 <
d<D+ \/57 or 0 < d < 2.83. (The exact range is 0 < d < 3, so approximate calculation is quite
good.) The greatest percentage error is £100%.

(c) Area A = [s(s—a)(s—b)(s—c)]2, where s = (a+b+c), a=2(+0.1), b =4(£0.1), ¢ = 3(+0.1).
For the central values

9513
A=A - = 2.
0= 99929 \/75 9.

The incremental formulae are
2AAA = [(s—a)(s=b)(s—c)+s(s=b)(s—c)+s(s—a)(s—c)
+s(s —a)(s — b)]As
—s(s=b)(s—c)Aa—s(s —a)(s — c)Ab—s(s —a)(s — b)Ac
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As~ $(Aa+ Ab+ Ac).
Hence

3 513 913 953 951
SVIBAA ~ |2224222 0722 L 990 DA L AL+ A
V1o 522 7222733227333 2( a+Ab+ Ac)

913 953 951

—ZSAa - 222Ab- 222 Ac
222 222 222

= %HA—HM+A@——A«—E2M——A

- SCBAafSAh+ﬂA@

Hence

1
AA~ ——(28Aa — 8Ab+ 22Ac).
s A 9

The maximum value of |AA| occurs where Aa = Ab = Ac = +0.1. Hence

max |AA| ~ x 0.1(28 + 8 + 22) = 0.374,

1
4v/15
with Ag = 2.9, giving the percentage error 13%.

31.7. Implicit differentiation: if f(z,y,z,...) = 0 then

0y of /of

or _ Or 8y

and similarly for any two other variables (see (31.6).
In this problem f(x,y,z,w) — ¢ =0 (the constant ¢ does not affect the results).

(a) By the result above
oy _ of Jof Ox _ Of JOf

ox dx/ dy’ oy  oy/ 0z
In the product of these two derivatives the derivatives of f cancel leaving

Or 0y
8y or

(b) Using the result above three times,

Oz Oy of /of of /of of /of Oz
8y8z_< Ay 83:)( 9z 8y) 0z

92/ 9x 0z
Ordy 0z dw _ ([ Ox)\ [ 0z _,
Oy 0z 0w Ox 0z or)
(i)z+2y+32+4w—-5=0.

(a) Treating x as a function of the remaining variables, and y as a function of the remaining
variables,

(c) Using (b) and (a)

or _ oy _ 1
dy " Oz 2’
confirming that
Oz 0y
dy o

(b) Similarly
@ _ o oy 3 Oz
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confirming the result.

(c) Tt follows that
or 9 dy 3 0z 4  Ow 1

oy 7 9z 2 ow 3 x4

which confirms (c¢) above.

(i) zy?23w —1=0.
(a) Differentiate the equation with respect to y treating z as a function of y, z and w, and then
with respect to z treating y as a function of z, z and w

g—;yQZ?’w +2(2y)2%w =0, 23w+ x(2y)%23w =0.

Hence
or_ 2 oy _ _y

oy oy ox

and result (a) follows.

(b) The partial derivatives are given by
ox 20 Oy 3y Oz _ 3w

dy  y' 0z 22 9z  z’
from which result (b) follows.

(c) The partial derivatives are given by

dr 2z Oy 3y 0z =z ow w

dy  y 0z 22 ow 3w Oz x

o~ () () ) ()

31.8. The required partial derivatives can be deduced from the incremental formula

Hence

(a) 2x — 3y + 4z = 1. This is a linear relation so that
20z — 30y + 402 =0, or dz = —%53: + %53/.

Therefore, putting dy = 0 and dz = 0 successively,
0z 1 0z 3

dxr 20 oy 4
(b) 22 +y? + 22 = 14 at (1,2, —3). The incremental formula gives
2zx + 2ydy + 226z = 0.

Therefore T
0z = ——dx — gdy.
z z

By putting éy = 0 and dx = 0 we obtain respectively:
0z x 1 0z y 2

dx 2z 3 oy z 3
at (1,2, -3).
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(c) 423 4+ y* + 923 — zy2? = 13 at (1,1,1). The incremental formula is
122262 + 4926y + 272202 — y220x — 2220y — 2xy262 = 0.

Solving for §z:

Sy — — (1222 — y2?)6x — (4y® — 222)dy

2722 — 2xyz
As above
6z_yz2—12x2 _ %_ 2% — 43 _ 3
Ox 2722 — 2xyz 257 Oy 2722 —2xyz 25
at (1,1,1).

(d) 22 — 22 =9 at x =5, y = Yo, 2 = 4. The incremental formula is
220z — 226z = 0.

Therefore 0z = (z/2)dx, and
Oz _x 0z
or z° oy
31.9. (a) Given f(z,y,2) =xy/z and x =t, y = 4t, 2 = 2t
Method 1: chain rule. Then, for x =t, y = 4t, z = 2t,

df ofde 9fdy 9Ofdz
at ordt Toydt T osdt
= (x)+(Gx9)-(2x2)
4t t 4¢2

= 44— —2-_=2
2 T T e

Method 2: direct substitution. With x = ¢, y = 4t, z = 2t, f(x,y,2) = xvy/z = 2t. Therefore

df _

=2
e 7
agreeing with Method 1.
(b) f(x,y,2) = sin(zy/z).
Method 1: chain rule. For x =t, y = 4t, z = 2t,
7 (y cos(xy/z) X 1) + (E cos(xy/z) x 4) - (ﬁ cos(zy/z) X 2)
de z z 22

2cos2t 4+ 2cos 2t — 2cos 2t = 2 cos 2t

Method 2: direct substitution. With x = t, y = 4t, z = 2t, f(x,y, z) = sin(zy/2z) = sin 2t. Therefore

d
d—{ = 2cos 2t,

which agrees with Method 1.
(¢) flz,y,2) = g(zy/z). With o = t, y = 4t, z = 2t, f(z,y,2z) = g(2t). Therefore, by direct
substitution,

— =24(2¢).
& g'(2t)

In case (b), on the path g(xy/z) = sin(zy/z) = sin 2t. Hence ¢'(t) = 2 cos 2¢, which is the answer
given in (b).

31.10. For cylindrical coordinates (1,0, z), x = rcosf, y =rsinf, z = z.
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(a) Using the chain rule (31.8),

8i Ofdx  Of 0y  0f0z 6f aof
dr  Ox Or oy dy Or * o 0z Or 833 0sf+ dy sinf,
of _0fox ofdy ofox __of . . Of
90 0z 00 ' oyos 9200 oz oy 7
of ofox Ofdy 0f0z g
0z 0z dz  Oydz 020z 0z
(b) The solution of (i) and (ii) by elimination leads to
af o g _ sinfof
or 8r r 00’
of . O0f cos@0f

oy et a0

(¢) Using the operators

2 ag_smﬁg g_,eﬁ_FCOSQQ
ox  Yor T Ty 00 oy T or v o0
twice, it follows that
827f B egismé)a ggian&a f
oz~ \““or v a0)\"or T+ o0
B sin298l+231n900s98f 20827f_QSin000s0 o*f SiHQQﬁ
N r  Or r2 o0 or? r 000r r2 062
0% f . 0 cosf 0 . .0 cosf 0
W (Sm"ar ; ae) (Sm"ar e ae) /
_ COSQG%_Qsm@cosG@f 082]‘ 2sinfcos O?f 00529827]”
N r or r2 89 or? r 000r r2 902"
The addition of these two equations gives the required answer:
op of _of 10f 10°f
0x2  oy2  or2  ror  r?2062

31.11. The vector function grad f is defined as (see (31.9))

_9f [ 9f  of
grad f 1a +j 8y+ 5

(a) f(x,y,2) = x +y+ 2. Then
grad f =i+j+k
(b) f(z,y,2) =22z — 3y + 52 — 6. Then
grad f = 2i — 3j + 5k.
(¢) f(x,y,2) = 2% +y* + 22. Then
grad f = 221 + 2yj + 2zk.
(d) f(z,y,2) = 2® 4+ 32% — 1. Then

grad f = 32%i + 92%k.
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(e) f(z,y,2) = 2 — §y* + §2°. Then

o 1 o 2
gradf:2xi—§y*j+§zk.

(f) f(z,y,2) = 1/r = (z® + y> + 2%)"2. Then

X 5 Y YA
df=—-——i—-=j— =k,
grad f r31 T3J 3

which is a multiple (1/72) of the position vector zi+ yj + zk.

31.12. Given a point P on the surface f(z,y,z) = k, then n = grad f evaluated at P is normal to
the surface at P (see Section 31.5). A unit vector normal to the surface at P isn = grad f/|grad f|.
(a)f(x,y,2) = x—2y+ 2 =0 at any point. A normal is n = grad f = (1,—2,1) and a unit normal
vector is
. grad f (1,-2,1) _ L(17—2»1)~
grad fl  V(1+4+1) 6

The surface in this case is a plane so that normals given by grad f at all points on the plane are
parallel.

(b) f(x,y,2) = y? + 22 = 2 at any point. A normal is
n = grad f = (0,2y, 22),

and a unit normal is ) )
n=—-+-(0,2y,22) = —(0,y,2),
5 (y2+z2)( Y,22) \/i( Y, 2)
since y? + 22 = 2 on the surface.
(¢) f(z,y,2) =22 +y?> + 22 =9 at (2,1,—2). A normal to the surface is

and a unit normal is 1 )
n= (2xa2ya 22) = 7(2717_2)
24/ (2 +y2 + 22) 3

at (2,1,-2).
(d) flz,y,2) = 2% + 9% + 2% = L at (2,3,4). A normal is
n = grad [ = (32, 5y, 52) = (1,3, 3),

and a unit normal vector is

at (2,3,4).
(e) f(x,y,2) =23y + 223 =5 at (1,2,3). A normal vector is

n = grad f = (32%y + 3222, 2%, 2®) = (15,1, 1),

and a unit normal is
(15,1,1)

N
n= Tor
at (2,3,4).

(f) flz,y,2) =(1/x)+ (1/y) + (1/2) =1 at (2,3,6). A normal vector is

1 1 1 1 1 1
n:gradf: (_Z‘Q’_yQ’_ZQ) = (_Zv_§7_%)
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and a unit normal vector is

fl:

1 1 1 1 2
1 1 1 (_7_’_) = _£<974’ 1)
Vi + 5 + o5l 49 36 14
at (2,3,6).

(8) f(z,y,2) = (#* + 4y* — 2*)7! = & at (4,1,2). A normal vector is

1 1
n=grad f = m(—% —8y,22) = 6*4(—27 -2,1),

ao (221
“\ 3 33

31.13. Given surfaces f(z,y,z) = o and g(z,y, z) = 3, and a common point P : (a, b, c), normals

to the surfaces at the point are n = grad f and p = grad g. The angle 6 between the surfaces at
P is the angle between the normal vectors. By (10.4),

and a unit normal vector is

at (4,1,2).

cosf = P

n|lp|"

=22 -2% =
normal vectors are therefore

(x —2)(x+2) =0at (2,1,2). The

n = grad f = (22,29,22) = (4,2,4),

p = grad (2% — 2%) = (4,0, —4).
at (2,1,2). Hence

4,2,4)-(4,0,—4
g (12940,

= 07
24v/2
which means that the surfaces meet at right angles.
(b) f(z,y,2) =2? —y?>+22 =1, and g(z,y,2) =22 —3y+2 = —1 at (2,2,1). The normal vectors
are

n= gradf = (2‘7’.’ _2y7 22) = (4a _47 2)7

p=gradg=(2,-3,1)
at (2,2,1). The angle 6 is given by

cos O = (47 —4, 2) ) (27 _33 1) 11

614 314

Hence 0 = 11.5°.

(c) f(w,y,2) =22 +y*— 2% =0 and g(z,y,2) = 3z +4y + 52z = 50 at (3,4,5). The normal vectors
are

n = grad f = (2z,2y, —2z) = (6,8,

—-10),
at (3,4,5). The angle 6 is given by

p=gradg = (3,4,5)

(6,8,10) - (3,4,5)
cosf = =1.
/20050

Hence 6 = 0°, which means that the surfaces touch at (3,4,5). The second surface is a plane and
is therefore a tangent plane to the surface z2 + y? — 22 = 0.

1
31.14. (a) f(z,y,z) = Ae®2*+4y*+2")7  Then

of of of Aaec(2e?+ay*+:4)F
= A _ ) 4 |
gradf <8m7 ay’ 0z (2%2 + 4y2 + 22)% ( Z, y,z)
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The common factor does not affect the direction of the vector, which means that (2x,4y, z) is in
the direction grad f.

(b) Let f(z,y,z) = glu(x,y, z)]. By the chain rule (28.4),

_(Oof Of Of\ _ (Oglu(x,y,2)] Oglu(z,y,2)] Oglu(z,y,2)]
gradf = ((')a:’@y’@z) < Ox ’ Oy ’ 0z >

- (vwihswg W)

e (20 00 0
- YN0z 0y 02
= ¢'(u)gradu

Hence gradu is in the same direction as grad f if ¢’(u) > 0, and in the opposite direction if
/
g'(u) <0.

31.15. The directional derivative of f(x,y, 2) in the direction § is

d

d—‘: =§-grad f
(a) f(z,y,2) = x4+ 2y + 3z. The directional derivative is

df

— =5-(1,2,3

U _s.1,2,3)

(c) f(x,y,2) = (x — 1)3 + 3> + 23. The directional derivative is

df . 2 5.2 9.2
s (3 -1 .
P §-(3(x )%, 3y%,327)

31.16. The directional derivative of f(x,y,2) in the direction § is

g =§-grad f.
ds

In all problems § = ($v/2,1v/2,1v/3) and the point is (2,3,2). (a) f(z,y,2) = © — y + 22. The
gradient of f is

gradf = (1> _]-a 2)

at all points. Hence

& s gradf = (32 1VE1VE)- (1,-12) = VA

(b) f(z,y,2) = 2y + yz + zx. The gradient of f is
grad f = (y + 2z, + z,y + x) = (5,4,5)

at (2,3,2). Hence
df

_ /1 1 1 _ 9v2 | 5V3
ds—(z\/iz 2,5V3)-(5,4,5) = 2= + .

(c) f(x,y,2) = (zy + yz + zz)?. The gradient of f is

o

grad f = 2(xy + yz + z2)(y + 2,2 + 2,y + ) = (160, 128, 160)
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at (2,3,2). Hence

af _
ds

(d) f(z,y,2) = 22 — y* + 5. The gradient of f is

(1v2,1v2,3V/3) - (160,128,160) = 72v/2 + 80/3.

gradf = (2:6’ —2% O) = (47 _67 O)

at (2,3,2). Hence

S vaiva v 6.0 = 5V
31.17. The normals to the two surfaces f(x,y, z) = a and g(x,y, z) = b are respectively n = grad f
and p = grad g. Consequently they are also respectively normal to any curves on the two surfaces.
Hence, at any point P on the curve of intersection C', n and p are each perpendicular to C. By
the property of the vector product (see Section 11.2), n X p is perpendicular to both n and p and
is therefore in the direction of the curve C'. A unit vector § in the direction of C' is

nxp
In x p|’

é:

(a) f(z,y,2) =2x+3y—2z =1, g(x,y,2) = x —y — 2z = 0; these represent two planes and the
intersection will be a straight line. The normal vectors are

n=grad f=(2,3,-1), p=gradg=(1,—-1,-1).

Hence 2,3—1 1,—-1,—-1 1
g nxp _ @3- Dx(LoLoh) Ly
mxp| [(2,3-1)x(1,-1,-1)] V42
(b) flz,y,2) =z +y =0, g(z,y,2) = © — z = 0; these represent two planes and the line of
intersection will be a straight line through the origin. The normal vectors are

n= (1a170)7 P = (1507_1)

Hence 1,1,0 1,0,—1 1
§ = nxp _ (7 ) )X(7 7_) :7(_171’_1).
|n><p\ ‘(17170) X (1707_1)| \/g

(c) f(z,y,2) =2® + 9>+ 22 =6, g(x,y,2) =x —y+ 2 =0 at (1,2,1). The normal vectors are

n = (2z,2y,2z) = (2,4,2), p=(1,-1,1)

at (1,2,1). Hence
2,4,2 1,-1,1 1
é: nxp — (’ b )X(7 ) ) :7(1’0’71).
‘l’lxp| ‘(27472) X (17_151)| \/é
(d) f(z,y,2) =22+ (y—1)2?=1,9(z,y,2) =22+ (y — 2)2 =4 at = 0, y = 0 and any value of
z. The normal vectors are

n=(2z,2(y —1),0) = (0,—2,0), p=(2z,2(y —2),0) =(0,—4,0)
at the given point. Hence

a nxp (0a7270) X (07 *430)
= = = (0,0,0).
S In xp| ](0,-2,0) x (0,—4,0)] 0,0,0)

This is a case in which the method fails. The two surfaces are circular cylinders parallel to the z
axis which touch along the line x = 0, y = 0. As we have seen the two normals are coincident along
this line which makes the vector product zero. A unit vector in the direction of C'is § = (0,0, 1).

65



(e) f(z,y,2) =xy+yz+ 22 =3, g(x,y,2) =x+y+2z=3at (1,1,1). The normal vectors are

at (1,1,1). These two vectors are parallel, so that we could have the case discussed in (d). We
still need to find the direction of the curve of intersection if it exists. Any point on the plane can
be represented by the two-parameter formula x =1+ o,y =143, z=1— a — 8. Obviously the
choice a = 3 = 0 gives the common point. Points on the plane lie on the first surface if

I+a)1+8)+ A+ ((1-a=0)+(1+a)(l-a-p)=3,

or
a?+32+aB=0, or (a+38)?+326%=0.

The only solution of this equation is & = 8 = 0, which means the surfaces meet only at one point.

31.18. The stationary values of f(x,y,z,...) occur at all simultaneous solutions of

of _o. 0f _, Of _
895_0’ ay_()’ Bz_o’

(a) f(z,y,2) = 2% +y? + 22. We require all solutions of

of
— =2z = — =2y = — =2z=0.
- r =0, » y =0, z=0

The only solution is * = y = z = 0, which is the location of the stationary point.
(b) f(z,y,2) = 23 — 3z + 3 — 3yz + 222. We require all solutions of

of _

R, 2 — — ]
oy =317 =3=0, (i)
?TJ; =3y* — 32 =0, (ii)
of _ _
5, = —3y+4z=0, (iii)

From (i) « = £1. From (iii) z = 2y so that eliminating z in (i),

2-3y=0, ory(ly—3)=0.

Hence y =0 or y = %. Finally we ensure that all combinations of x and y are included: each z
can be associated with each y, but z will be determined by the choice of y. Thus the stationary
points occur at
(_17()’0)7 (_15%5%)a (170a0)7 (15%71&)

(c¢) f(z,y,2) =2y +yz+ zx +y — z. We require all solutions of

of of of

Ox y+z=0 Oy THET "0z yte
Hence z = —y and

r—y+1=0, z4+y—1=0.

Solving these equations, the function has one stationary point at (0,1, —1).

(d) f(z,y,2) = /2 +y/x + z/y: note that the function is not defined on the axes including the
origin. Stationary points occur at the solutions of

or =z a2 7 Oy x y*

0z y 2
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Hence

2’ =vyz, yP=zx, 2*=uy,

from which it follows that 2® = > = 23. There are two solutions (excluding the zero solutions)

x=y=z=1and z =y = z = —1. Therefore there are two stationary points at (1,1,1) and
(-1,-1,-1).
(e) f(z,y,2,\) = (z +y+2) — AM(x? + y* + 22 — 1). Stationary points occur at the solutions of
of of .
—=1-2x=0, —=—=1-2\y=0,
5 x By Yy (i)
ﬁ:172>\z:0, %:x2+y2+2271:0. (i)

0z o\
From (i), z = y = z = 1/(2)\), and substitution in (ii) gives

1 1

1 3
T I | 2_ 2
o2 Tpe T »or AT =

422
Hence A\ = j:g. Therefore there are two stationary points, at

(\/5 V3 V3 @) and (_\/5 V3 3 3).

30373 2 30 307 30 2

(f) f(x,y,2) = 2 + y* + 2* — 2(x — y + 2)?. Stationary points occur at the solutions of

4a® —A(x —y+2) =0, (i)
4y’ + 4z —y+2) =0, (i)
428 —4(x —y+2) =0. (iii)
From (i) and (ii), > = —2®. Hence y = —x. Substitution back into (i) leads to z = 2° — 2z. Now

substitute y and z in terms of z into (iii):
(2% —22)> —2® =0, or 23(2? — 2)3 — 23 = 0.

Therefore either z = 0 or (22 — 2)3 = 1. The solutions of the latter are x = 4+/3. Working
backwards we are now in a position to list the stationary points: they are

(0,0,0), (V3,—v3,V3), (—v3,V3,—V3).

31.19. We require the stationary points of f(z,vy,2) = ¥?+y?+ 22 on the path = cost, y = sint,
z =sin £t where 0 < t < 4w. Using the chain rule (see (31.22))
ofde | 0fdy , 01 dz

df

a = —2xsint + 2ycost + 2z1 cos 3t

dt Oz dt+8y dt+az dt rsint + 2y cost + 2z3 cos 5
= —QCostsint+25intcost+sin%tcos%t:%sint

Stationary points occur where df/dt = %sint = 0, that is, at ¢ = 7, 27,37 in the interval. On
fx,y,2) = 22 +y*+22 these values of t correspond to the points (—1,0,1), (1,0,0) and (—1,0, —1).
Alternatively, substitute z = cost, y = sint, z = sin %t, and find the stationary points of
f(z(t),y(t), 2(t)) = cos® t + sin® ¢ + sin® 3¢ = 1 +sin” 1¢
treated as a function of one variable.

31.20. The concentration s at (z,y, z) is given by

s = Cexp{—al2(x — 1)® + 4y* + 2?]}.
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(a) The gradient of s is
grad s = aCexp{—a[2(z — 1)* + 4y* + 2%} (—4(x — 1), -8y, —22).

This gives the direction of steepest ascent so that steepest descent is minus this, namely, (2(z —

1),4y, 2).

(b) Suppose that the insect moves from its current point (z,y, 2) to (x+dzx, y+dy, z+0z) along the
steepest descent. The direction is (dx,dy, 0z) which must be the same as (2(x — 1),4y, z). Hence
all the components must be in the same ratio, which can be expressed as

oy
20r—1) 4y z°

(c) Dividing by &t, we can write the equations as

1 dr 10z 1oy 16z
2w —1) 6t 26t 4ydt 26t
Let 0t — 0 so that
1 dr 1dz 1dy 1dz
20r —1)dt  zdt’ dydt zdt
Since t does not appear explicitly in the equations, we can eliminate it from the equations and

write them as
dz z dz z

dr 2@ -1 dy 4y
(d) Both equations are of first-order separable type (see Section 22.3). Hence

[y

so that
In|z| = %ln|x—1|+C, or 22 = M(x —1).
Also
dz dy
BT
so that

1
In|z| = Zln|y|7 or z* = Ny or z = Ay7.

Here M and N are arbitrary constants.
(e) The insect starts at (0,1,1). From (a), the direction taken by the insect is (—2,4,1). The path
is given by the intersection of the surfaces

2> = M(z —1) and 2* = Ny.

From the initial condition, M = —1 and N = 1. Hence the path is given by = 1 — 22, y = 2%.

31.21. From (31.25), the stationary points of f(z,y, z) subject to g(x,y, z) = ¢ are the solutions
for x, y, z, A of

of 99 _

_ or 09, 0f 09 _
o ox or A 0 A

Oy oy ' 0z 8270'

0,

solutions of
1 1

bt =1, (i)

(a) f(z,y,2) = x + y + z subject to g(z,y,2) = 1/ + 1/y + 1/z = 1. The stationary points are
1
Ty =z
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A
1+2 =0, 1+5=0, 1+=< =0 (i)
T y

From (ii), —\ = 22 = y? = 22. Hence, independently, y = £z and z = 2. Substituting y and 2
into (i), the four cases give:

y=z,z=r=>cr=3,y=3, 2=3,

y=z,z=—c=>zc=1y=12z=—1,
y=—-z,z2=c=>c=1y=-1,2z=1,
y=-zx,z=—-cr=>x=—-1,y=1,2=1.

Hence there are stationary points at (3,3,3), (1,1,—1), (1,—1,1) and (-1,1,1).

(b) f(z,y, z) = zyz subject to g(z,y,z) =1/ 4+ 1/y+ 1/z = 1. The coordinates of the stationary
points are solutions of

1 1 1
—+t-+-=1, (i)
Ty oz
A A A "
yz—&—ﬁ:Q za?—&—E:O, J:y—l—;:O. (ii)
From (ii), 2?yz = 23?2 = 2yz? = —\. By elimination of ), it follows that x = y = 2. Hence from

(i), z = y = z = 3. The function has one stationary value at (3,3, 3).
(c) f(x,y,2) = 2% + y? + 22 subject to g(z,y,2) = ax + by + cz = 1. The coordinates of the
stationary points are solutions of
ax +by+cz=1, (i)
20 —Aa=0, 2y—Ab=0, 2z—Ac=0. (ii)

Substitute z, y and z from (ii) into (i):
%)\az + %)\bQ + %)\62 =1.
Therefore 5
T2+
and the coordinates of the only stationary value are
1 a 1 b 1 c
T T e e YT 21t T T e et

(d) f(z,y,2) = zy + yz + zx subject to g(z,y,z) = zyz = 1. The coordinates of the stationary
points are solutions of

xyz =1, (i)

y+z—Ayz=0, z4+z—Azx=0, z+4+y— Iy=0.

Hence, from (ii),
_y+z . zZ+y _rty

Yz 2T Ty

A

Therefore © = y = z which means by (i) that = y = z = 1. The stationary point is at (1,1, 1).
This means that the block of given volume of smallest surface area is a cube.

(e) f(x,y,2) = wyz subject to g(x,y,2) = x2/a® + y*/b* + 22/c®> = 1. The coordinates of the
stationary points are solutions of

2 /a® + 2 )b+ 22 ) =1, (i)
2w 2y 22Xz
yZ—?, Z.T—bT, .’,Uy—?
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From (ii)

>\ = = =
2z 2y 2z
Hence
x? B a? 22 B 2
PR 2

so that from (i), 322 = a? or = +a/v/3. Further y = +b/v/3 and z = +¢/+/3. There are eight
stationary points, at all sign combinations in

a b c
+ 2 47+ 0.
( V33 \/3)
(f) f(x,y,2) = 22 + 4y* + 2% subject to g(v,y,2) =z —y — 22 = 0 and h(z,y,z) = z = 1. This

is a Lagrange-multiplier problem with two constraints and uses (31.26). The coordinates of the
stationary points are solutions of

r—y—22z=0, z=1, (i)

20— A, 8y+A=0, 2z24+2X2=0, 2z2+2\A—pu=0. (i)

From (ii), X ) X

Substituting into (i)
1 1 11
5)\4—7)\—&—2)\—;1:0, or —g)\—u:(),

8
and
A+ lu =1
2
The solution of these equations is A = —%, w= % There is, therefore, one stationary point, at

)\:—2%, y:—%)\:f—(j, z:—)\+%y:1.

(g) f(z,y,2) = 22 — y? — 22 subject to (z —1)/2 = (y — 2)/(—1) = (2 — 2)/3. The straight line
defines two constraints

which can be expressed in the forms
g(z,y,2) =x+2y =5 and h(z,y,2) =3y + 2 = 8.

The coordinates of any stationary points are solutions of

r+2y=5 3y+z=38, (i)
20— A=0, —2y—2\-3u=0, —2z—pu=0. (ii)
From (ii)
r=3A y=-A—3u 2= —5u

Substsituting these into (i), we have
-3\ —6p =10, —3X—-5u=38.
Hence \ = % and p = —2. Therefore there is one stationary point, with coordinates

1 _ T —
Jf—g, y—g, z=1.



(h) f(z,y,2) = zyz subject to xy +yz + zx = 1. The coordinates of stationary ponts are solutions
of

Ty +yz+ 2z =1, (1)
yz—AMy+2) =0, zx—XANz+4+2)=0, zy—Az+y)=0. (ii)
From (ii),
yz zx zy

A

- y+z Z+x x + y7

from which it follows that = y = z. Finally from (i), 2 = y = z = 1/4/3 which are the coordinates
of the only stationary point.

(i) f(x,y,2) = x —y — 2z, subject to g(x,y,2) = z = 1 and h(x,y,2) = 2? + 4y? + 22 = 6. The
coordinates of any stationary points are solutions of

z=1, 2%+ 4y*+2* =6, (1)
1—2xp=0, —1—-8yu=0, —2-—Az—2zpu. (ii)
From (ii),
1 1 1
= y=—— 2= (24N
T YTy 2u( +A)
The restrictions in (i) imply
1 4 1
A+2u=-2, —+—+—(A+2)?=6.
+2u ; 4M2+16N2+4/~L2( +2)
The elimination of A between these equations leads to = 2, A= —2 or p = —1, A = —3. Hence

the function has two stationary values at

(27 7%? 1) and (725 %7 %)

31.22. (a) The following Mathematica program reproduces the table in Example 31.6, and can be
adapted to other two- and three-dimensional steepest ascent problems.

<< Calculus‘Vector Analysis*

Clear[f, x, y, h]

fx, yo, 2] =4-x"2- (1/2)y°2 - (1/2)2°2;

h = 0.05; a[0] = 1; b[0] = 1; ¢[0] = 1;
SetCoordinates[Cartesian[x, y, z]];

ulx., y, z_] = Gradl[f[x, y, z]]/Sart[Grad]f[x, vy, z]].Grad[{[x, ¥, 7]]]

an.] := a[n] = a[n - 1] + h*Part[ufa[n - 1], b[n - 1], c[n - 1]], 1]
b[n_] := b[n] = b[n - 1] + h*Part[ufa[n - 1], b[n - 1], c[n - 1]], 2]
c[n] := ¢[n] = ¢[n - 1] + h*Part[ufa[n - 1], b[n - 1], ¢[n - 1]], 3]

steepest = Table[i, a[i], b[i], c[i], i, 0, 5] // N
MatrixForm[%]

(b),(c) The following Mathematica program solves the problem of the steepest ascent up the hill
with altitude H = 0.5 — 22 — 4y2.

<< Calculus‘VectorAnalysis*

Clear[f, x, y, u, a, b, h]

flx,, y ] =05-x"2-4%y"2; h = 0.2;

a[0] = 2; b[0] = 2;

ufx, y] = {DIffx, y), ), DIffx, y), y]}/Sart[(DIff, y1, x))°2 + (D, y1, y1°2);
a[n] := a[n] = a[n - 1] + h*Part[ufan - 1], b[n - 1]}, 1]

b[n_] := b[n] = b[n - 1] + h*Part[u[a[n - 1], b[n - 1]], 2]
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Figure 17: Problem 31.22(d)
steepest = Table[{i, a[i], b[i]}, {i, 0, 15}] // N;
MatrixForm[%]

(d) In this case the altitude is given by H = 0.5+ 2% —y?. The figure shows contours of the surface
which has a saddle point at the origin. The steepest descent is shown starting at the point (3,2).
(e) Streamlines derived from the potential

¢(x,y)—x<1+ ! >

152 + y2
are given by

1
Yy (1 — 2_’_2> = constant.
€z Y

Some streamlines outside the circle 22 + y? = 1 are shown in the figure.

y

Figure 18: Problem 31.22(e)

31.23. This problem is concerned with functions of the form

f(@,y,2) = g(u(z,y, 2))-
(a) Examples of functions of a function:

w=(xy —2)e V¥ orw=wue ", u=1ay — 2;

w = (2% +y? + 2%) cos[\/(z? + y* + 2%)], or w = r?cosr, r = /(2 +y* + 22).

(b) In the first derivative y and z are effectively constant so that we can use the chain rule (3.3)
for a function of one variable. Hence

OF _ B 08 o of
&C—g(u)ax, and similarly ay—g(u)ay, P —g(u)az.

72



(c) (i) w = e” ~¥"+2* In this case u(z,y,z) = 22 — y® + 22 and w = g(u) = e*. Hence

g’(u)—e“,:’;md%—Q7 Z—Z— Y, %:22
By b ow ou 2 2, 2
= g’(u)% = e“2x = 2xe® TV T,
Similarly
% = —2yez2_y2+z2, aa—z) = 2ze" VI

(ii) w = sin(zy/z). In this case choose u = zy/z so that w = g(u) = sinu. Hence ¢'(u) = cosu
and

ow y_y
By = COSUX =7 cos(zy/z),
ow ow  xy
T ;cos(my/z), - 2 cos(zy/z).

(d) Assuming that z = z(t), y = y(t), z = z(t), then
f(@,y,2) = glu(z(t), y(t), 2(t)],
and the chain rule can be expressed in the form

af _ . \0udz 0 JOudy o Oudz
i =Wy, RV R A T

(e) Using the chain rule given in (b)

(
d tsint
—f = 4 costeme sin —ysmt—kfcost—ﬁ)
dt z z 22

=9 T I

2t\ 1
= 4 (su;t ) ﬁ(% cos 2t — sin 2t)

costsmt)( sint  cos?t sintcost)

31.24. Given f(u,v,w) where v = u(x,y,z), v = v(z,y, 2) and w = w(z,y,z). Then by (31.8)
(this is simply a notational change)

0f _0fou_ 0f0v  0f ow
dx  Oudr  Ovdr  Ow ox’

o5 _0fou ofow s ow
Oy Oudy Ovdy Owidy’
af 8f6u+8f8v+87f87w.
0z Oudz 0Ovdz Ow 0z
(a) p=fr—y,y—2,2—x). Hereu =2 —y, v =y — z, w = z — x. Using the chain rule above,

06 _ 96 96 99 _ 96 90 99 _ 9, 9%

dr  ou Ow Oy (‘3u+8v’ 9z ov  ow

Adding these results
0 0 0
¢ 00 0

dr | By 8220'
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In this example f(u,v,w) = uvw. Hence

99
or

%
=W — U, — = —VW+UW, -~ = —UW + uv,

dy 0z
and the result follows by adding these equations.
(b) ¢ = f(y/z,z/x). Let u = y/x and v = z/x. Then, using the chain rule (31.8),

a¢_a¢< y>+%( 2)7 8(;5_8(;51 8(;5_%1

dr  Ou\ a2 ov \ 22 dy  Ouz’ 9z Ovaz
Therefore 96 96 06

The function ¢ = z/y + y/z + z/x can be expressed as

qS:f(u,v):%—i—%—i—v.

Hence

It can be verified that

31.25. Given f(z,v, z,t) = el(F1zthaythsz—wl) “thep

O2f 82f 02f 1 0%f

ox?  0y? 022 2 ot?
_ _k%ei(klx-ﬁ—kgy—i-kgz—wt) _ kgei(k1w+k2y+k3z—wt)

2
_k,%ei(klx—&-kgy—&-kgz—wt) + w ei(k1x+k2y+k3z—wt)
2
C

2
_ 2 2 2 ¥ i(k1z+kay+ksz—wt
= (_kl_kQ_k3_|_02>e( ztkay+kszz—wt)
if c =w//(k? + k3 +k3). Let f(x,y,2,t) = g(k1x + koy + k3z — wt). Then

PP P 1P (e
pre ay2+azz‘czat2:(k1+k2+k3—Cz>9”<k1x+k2y+k3z—wt>=0

using the the value of ¢ defined above. Hence g(ki1z + koy + k3z — wt) satisfies the wave equation.

31.26. By (31.29) the envelope of f(z,y,«a) = 0, is obtained by eliminating the parameter «
between this equation and 0f/da = 0.

(a) Let f(z,y,a) =y — a — a?z. Then

0
% =—-1-—2ax.
Eliminate o between
y—a—a’r =0, (i)
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and
—1—2az =0. (ii)

From (ii), « = —1/(2z), so that (i) becomes

1 z
y-'—%—@:(), 01'4372/:—1.
The envelope is given by 4xy = —1, which is a rectangular hyperbola.

(b) Let f(x,y,a) =y + a?r — . Then

0
% =2az —1
Eliminate o between
y+ o’z —a=0, (1)
and
2 — 1 =0.
From (ii) a = 1/(2z), so that (i( becomes
x 1
e
vt 422 2

The envelope is given by 4xy = 1, which is a rectangular hyperbola.

(c) Express the function f in the form f(z,y,a) = (1 — a)z + ay — a(l — a). Then

0
of =-—x+y—1+42a.
Oa
Eliminate o« between
l-a)z+ay—a(l—a)=0, (i)
and
—z+y—14+2a=0. (i)

From (i), @ = 3(z — y 4+ 1) so that (i) becomes

1
r(—z+y+1)+yle—y+1)— i(x—y—i-l)(—w—i-y—kl) =0,
which, after expansion, is the envelope
2?4 9% —2xy — 22 —2y+1=0.

(d) Let f(z,y,0) = xzcosf + ysinf — 1. Then

% = —xsinf + ycosh.
Eliminate 6 between
xcosf +ysingd —1 =0, (1)
and
—zsinf +ycosf = 0. (i)

From (ii), tan § = y/x. Hence, cos = x/+/(2? 4+ y?) and sin§ = y/ /(2% + y?), so that (i) becomes
22 y?
+
V@2 +y?) V(@ +y?)

which is the equation of the circle 22 + 3% = 1.

:]_,

(0]



Figure 19: Problem 31.27

31.27. (a) The semicircular mirror is shown in Figure 19 with a ray AP falling on the mirror at
P, and reflected along PB. Since P has coordinates (cos ), sin ), the radius to P makes an angle
f with the z axis. The ray is reflected at the same angle 6 to the radius at P, and therefore makes
an angle 260 with the x axis. Hence the slope of PB is tan, and its equation is

y — sin @ = tan 20(x — cos §)

or
y cos 20 — sin 0 cos 20 = x sin 260 — cos 0 sin 26.

Since sin 26 cos @ — cos 20 sin = sin §, the equation of the reflected ray is
xsin 20 — y cos 20 = sin 6.

(b) Let
f(z,y,0) = £sin20 — ycos 260 — sin .

By (31.29), the caustic is given by eliminating 6 between f(z,y,0) = 0 and 9f(z,y,0)/90.
Hence 0 has to be eliminated between

xsin26 — ycos26 =sin#, (1)

and
2z cos 20 — 2y sin 20 = cos 6. (ii)

Divide (ii) through by 2, and then square and add (i) and (ii):

1
zsin 20 — y cos 20)? + (z cos 20 — ysin 20)? = sin? 0 + = cos> 0,
4
or

22 +y? = 1 + 3sin® 0.(iid)

Eliminate = between (i) and (ii), so that

1
—y = sinfcos26 — écosesin% = sinf — 2sin® 0 — cos? O sin §

= sinf —2sin® 0 — sin @ + sin® 0

= —sin®0
Hence sin @ = y3. Finally eliminating sin @ in (iii) we obtain the equation of the caustic.

2 _ 1

2?4y 4(3y% +1).

The grey curve in Figure 20 shows the caustic.
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Figure 20: Problem 31.27(b)

31.28. The length cut of by the line between the axes is L. Let the line make angle 6 with the x
axis: in other words its slope is tan . The line cuts the x axis at (—Lcos#,0) and the y axis at
(0, Lsin 6) (note that, if the intercept is in the first quadrant, then %77 < 6 < 7). the equation of

the straight line is
y— Lsinf = xtand.

Differentiate this equation with respect to 6 so that

Figure 21: Problem 31.28

—Lcosf = xsec? 0.

The envelope is given by the elimination of 6 between (i) and (ii). From (ii)

1
cos® 0 = —%, or cosf = (—%) L
From (i)
y=Lsinf+ ztanf = Lsin# — Lcos® @ tand = Lsin® 6.
Therefore

Wl

sinf = (%)

Squaring and adding (iii) and (iv),

which is the envelope of the straight lines. The envelope is shown in Figure 21.

Chapter 32: Double integration

(i)

(i)

(iii)

32.1. The integration is in two stages: with respect to the inner variable first and then with
respect to the outer variable. However, with constant limits of integration the order of integration

7



can be changed with out affecting the limits. Thus, by (32.1)

-/ ' / " flay)ddady = / ' ( / bf(ay)dx) ay,

and, changing the order of integration,

1= /ab /cdf(%y)dyd:c - /ab </cdf(m,y)dy> da

also.
(a)

[ ot [ ] [ oo o] -3
(b)

/01 /01 ye™dady = /Ol[e””’]i_ody = /Ol(ey —Ddy = [e¥ —y]} =e—2.
(c)

/Cd /abdxdy = /Cd[:c]z_ady = /cd(b— a) dy = (b—a)[y]¢ = (b— a)(d — ¢).

(d)

/;/jdwdy:/ab[x]‘i_cdy:/ab(d—c)dy:(d_c)[ P =(b—a)(d—c):

the answer is the same as that for (c).

(e) Note that in this problem the integration is with respect to y first. Hence

/Cd/abdydx:/Cd[y]g_adx:/cd(b—a) dz = (b—a)[z]e = (b— a)(d — ¢),

which is the same answer as in (¢) and (d).
(f)

1

/ /E ysin(zy)dedy = /§ [— cos(xy)]fzo dy = /E {—cos (3my) + 1} dy
0 0

e (m) ],
——sin| -7y | +y
T 2 0

2 1
V2
™

1*
T 4 2 2

11 1 1t 9 r1 4
r2dady = / [ms} dy = 7/ dy = -.
/_1 /—1 113 Jem 3J_1 3

(h) Integrate with respect ot y first:

= ——sin-m+

(2)

2

2 1 2 2 1 1 7
/ / r?dydz = / 22 [ylide = / ride = {x‘?’] =-8-1)=-.
1 Jo 1 1 3 1 3 3
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(j) Integrate with respect to y first:

/1/1( 2 22y)dyd /1{1 3 12}1 d /1<1 12>d
zy” — x°y)dydx = —zy’ — =Y T = —r— - T
—1 0 —1 3 2 y:0 —1 3 2

1
1, 1, 1
5

Alternatively, change the order of integration and the limits, and use the answer to the previous

problem:
11 1 1 1
/ /(a:yQ—mQy)dydxz/ / (xyz—a:Qy)dxdy:—g.
-1J0 0 J-1
(k)
1 1 1y 1
//(x+y2+1)2dxdy = /{(w+y2+1)3] dy
0o Jo o L3 2=0
ol
= [ gl -y
0
1 1
— /3[3y4+9y2+7]dy—[y5+3y3+7y]
0 0
5
15

(1) Integrate with respect to y first:

37T opgT 3 1
/ / cos(z + y)dyde = / [sin(x + y)]élo dz
0 0 0 !
bk 1
/ {Sin (x + 7r> — sin x] dx
0 2

1 3
= —cos|x+ =m | +cosx
oo () o],
0

2,1 2 271 2
T x 1 1 5 1
—dxd :/ [} d z/ —dy = - [lny]; = - 1In2.
/l/oy V= L), YT T e =g

32.2. The signed volume V between the surface z = f(z,y) and the plane z = 0 over the rectangle

a<z<b c<y<disgiven by

Y / ’ / ' fle.y)drdy, or / b / " fay)dyaa.
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(a) z=2y,0 <2 <1,0<y <1 The signed volume is
1

11 Iry 1 [ 1
V:/ / xydmdy:/ {x ] ydy = f/ ydy = —.
o Jo o L2 o 2 Jo 4

(b)y z=2y, -1 <2 <1,0<y <1 Then

1,1 1ry 1!
V= / / zydxdy = / [xﬂ ydy = 0.
0o J-1 o L2 1.4

If (x0,y0,20) is any point on the surface, then the point (—zg,yo, —20) also lies on the surface.
Elements of volume about these points cancel out so that the total signed volume is zero.

(c)z=x+y, -1 <x<2 —2<y < 1. The signed volume is

vV

I I
‘\H ‘\H
[\v} [\
ored T

o=

+
o <
<

=

Il 3
wlw S

(S Il

T~

(V%) [‘0 —
N |

< —

o |
—_ [Q.)

- [\
"’ +
8
<
—_ 1
| [V
AR
o,
Ny

= S+

(d) z=-1,a <z <b, ¢ <y <d. The signed volume is

y— /Cd/ab(—l)dxdy _ /Cd[x]gdy _ —/Cd(b —a)dy = —(b—a)(d—c).

() z=2x—y+3,0<2<1,0<y<1. The signed volume is

1 41 1 13 7
Vz/ / (2x—y+3)dxdy:/ (4—y)dy = 4y — =y ==,
o Jo 0 2 2

() z=1/(z+y), 1 <x<2,0<y<1. The signed volume is

12y 1 ,
dedy = /lnery _1dy
]+ e+,

— /0 (2 +y) — In(1 + y)]dy.

3 2
= /lnsds—/lntdt (s=y+2,t=y+1)
2 1

= [slns—s]3 — [tInt —#]] (see Appendix E)
= 3ln3—-4In2

(g) z=(x+2y—1)2%, —2<x <1, -1<y<1. The signed volume is given by

11 1
y = /(x+2y—1)2dxdy:/ %(x+2y—1)3]1,2dy

-1

[8y° — (2y — 3)%] dy

Il
—
Wl

1 1
{2y4 - g(2y - 3)4] =26
-1

32.3. The region of integration is shown in each case. The values of the repeated integrals are
also stated.

1 py 1 1 1
(2) [ sy = [ ialtody= [y =3,
0 0 0 0
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1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.20.40.60.8 1 0.2040608 1

Figure 22: Problem 32.3(a), (b)

(b) -/Ol/yldxdy:;

y y
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
X X
0.20.40.60.8 1 0.20.40.60.8 1

Figure 23: Problem 32.3(c), (d)

Loy S N 1t 1
(c) / / z?ydyde = / z? {yQ} dx = 7/ zlder = —.
o Jo o 127 ], 2 /s 10

(d) /01 /Ox(a“ +y%)2dady = %

-1 ‘ 1 -1 1

Figure 24: Problem 32.3(e), (f)

1 Y 2
(e) / / ydady = =.
0 —y 3
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Figure 25: Problem 32.3(g), (h)

2 17%:12 2 17l 2 1 2
(g) / / r?dydz = / zz[y]yzggcdx = / 2?(1 — —x)dr = =.
0o Jo 0 0 2 3
1 V-9 .
(h) / / zdzdy = =
o Jo 3

(i) The region of integration is the same as that shown for (h) but with the strip parallel to the x

axis. The value of the integral is
1 pv/(1-z?) 1
/ / zdydz = -,
o Jo 3

which, as expected, is the same as that in (h).

32.4. The base of the wedge is the semi-circle 22 +y? = 1, y > 0, and its height at any point
(z,y) on the base is z = 2y. Take a strip in the (x,y) plane of width dy which is parallel to the
x axis. Its length will be 2,/(1 — y?), and the semi-circle will be covered if 0 < y < 1. Hence the
volume V is given by

V(1—-y? V(i-y?
V = // zdxdy—// 2ydxdy
-v?) (1-y?)

= 2/ [ ]\/E/l(1yy)2)dy:4/ y\/(l—y2)dy
0 0
4 31l 4
3la- =3

32.5. The region of integration should be sketched as shown in each case together with the new
strip.

(a) / 1 / " fla y)dady = / 1 /  flay)dyda.
(b) / 1 / ' fla, gy = / 1 | sy

(¢) Tt can be seen from the shape of the region that the integration with respect to y will be the
sum of two integrals over regions separated by the line z = 2. Thus

/12 /Oy+1 f(z,y)dady = /12 /02 f(z,y)dydz + /23 /;1 f(z,y)dydz.
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Figure 26: Problem 32.5(a), (b)

Figure 27: Problem 32.5(c), (d)

1 /(192 1 V(1—2?)
(@) / / f(,y)dedy = / / f(,y)dyda.
0 J-y-y2) ~1Jo

(e) Two integrals are required for the change of the order of integration. Thus

/24/0511 f(x,y)dzdy = /01 /24 f(z,y)dydz + /12 2:: F(z, y)dyda.

(f) The curves y = 22 and y = 23 intersect at the points (0,0) and (1, 1), so the limits of integration

/ |
3 1
1 1X

X

1 2

Figure 28: Problem 32.5(e), (f)

for x are 0 and 1. Thus

2

/01 /g: f(z,y)dydx = /01 /yy; f(z,y)dzdy.

(g) In the reversed order, the integral becomes the sum of two integrals separated at y = 0. Thus

/01 /11; f(m,y)dydx/ol /01+yf(:v,y)dxdy+/ol /Olyf(x,y)d:vdy.
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(h) The region of integration is the circle shown which has centre at (0,1) and radius 1. In

Figure 29: Problem 32.5(g), (h)

the reversed order of integration the strip parallel to the x axis lies between —/(2y — y?) and

Vv (2y — y?). Thus
14+v/(1—z2 (2y—y?
/ / (z,y)dydx —/ / Sz, y)dzdy.
1-v/(1-22) V(2y—y?)

32.6. (a) The limits of integration are all constants, which means that the region of integration is
a rectangle with two sides along the axes. To reverse the order of integration simply transpose the

integrals with their limits. Hence
b (1
/ / zsin(zy)dy | dz
0 0

1
27
/ / z sin(zy)dzdy

= 7 eostanly o

Nl=

K

= / (—cos iz +1)dx
0

1
= [—QSin%Q?—FCC]Sﬂ =—V2+1im

Nl

(b) The straight boundaries of the region are + = 0, y = 2 and « = 2(y — 1). Hence when the

y y

2

Figure 30: Problem 32.6(b), (c)

order of integration is reversed the limits on y are y = %x + 1 and y = 2 as shown. Therefore

2 2y 2 2 2 12
/1/0 vidady = //&4—1 dydx—/ [m y}y:%fﬂrl

2
1 1 2
_ 2 73d— 3 4| _ 2
= /O[x 296]95— 32"~ g 73

84



(c) From Figure 30

1y 11
//zzezydxdy = //xQGmydydx
o Jo 0 Ja
1 1
/ [mezy];:/ [xe’”—xexZ]dx
0 0

The first integral can be evaluated by integration by parts:

1 1
/ xe®dr = [ace””](l)—/ edr=e—e+1=1,
0 0

and, using the substitution u = 22, the second becomes

Hence
1 ry
2 1 1_3_1
/ / rie®drdy =1— e+ 35 =5 — ge.
o Jo
(d) This is an infinite integral in y. The region of integration lies between the two curves shown

y

2

Figure 31: Problem 32.6(d)

in Figure 31. Hence, reversing the order of integration

1
o0 y72 2,2 o0 x 2 2,2
2, —z°y _ 2, —xy
/ / Toye dedy = / Rt dydx
0 i?fz 0 y:%z 2

1 [~ ®
= = {—e*ﬁyg] , dz
2 Jo 3w 2
1 oo
= 7/ [—e*m+e*i“]dx
2 Jo
1 " 1.1 3
= —_ - —4 - xi| = —
o et =3

(f) The limits are all constants so that we need only transpose the integrals. Hence

21y Ly
dedy = dydz
/1/oz2+y2 ! /o/1x2+y2y
IR
= = / / ———dudz (substituting u = y?)
2 )0 J1 x°+u

= % /0 [In(z* + u)];l dz = % /o [n(z? +4) — In(2? 4 1)dz
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Figure 32: Problem 32.6(f), (g)

A typical integral on the right is

2z2d
/1n(x2+a2)dx = xln(xZ—l—aQ)—/x;i_i_; x

2
_ 2 2 a
= xln(z? + a?) — 22 + 2a arctan(z/a).
after integrating by parts. Now put a successively equal to 2 and 1. Then

2 1 y
— 7 _dad
/1 /o 2

1lz{Iln(2? +4) — In(2? + 1)} + 4 arctan(z/2) — 2 arctan z]}

— 1,5 _1 1
= 211[12 77 +4arctan 3

(g) (Note: this repeated integral does not converge, that is, its value is not finite.) Replace by

Then
— _dady = / / 7dydx:—7/ [] dz
/1 /o (z +y)? o i (z+y)? 2Jo L+y)?],oy
1/°° 1 1 1 1%
= -/ ——dz=-=
2 )y (z+1)2 2 [z +1],
_ 1
2
(h)

1 1 1 x
/ / y(a® —y?)idady = / / y(2? — )2 dydz
0o Jy o Jo

1 1 m2
B / / (x? — u)? dudz (using the substitution u = y?)
o Jo

1t 572 1t 1
_5/0 [(x —u) ]uzodx—g/oxdx—ﬁ

(i) The integral must be split into two parts. Thus

Nl
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Figure 33: Problem 32.6(h), (i)

2 y—1 2 -1 2 py-1
// 22dedy = // :c2d:z:dy+// 22dzdy
0 —y—1 y—1
= / / 2dydx+/ / z?dydx
—x—1
= [ [
-3 —1

- /_1(3x2 + 2%)dx + /1 (2% — 2%)da

-3 -1

5], 55
= €T _— S —
1), 3 1]
1 81 1 1 1 1 20
= 1 97 - = Syt o) =2
< VR 4>+<3 4+3+4> 3
(j) The region of integration is the same as that shown for Problem 32.6(h). Thus
/ / ydady B / / ydydx / / dudz
(22 — y2) % % N u)?
2 1 1
- [(:c —u)?]o dz = xdx— =
0 0 2
32.7. (a) Integrate with respect to x first. Then, using the figure,
4 g2 41 2
// f(P)dA = / / (2% + y*)dady = / [x?’ + xyz} dy
R 1 J1 113 a=1
4 4
T, 7 1,
f (G an= o],

(b) To avoid having to split the integral integrate with respect to y first. The upper and lower
limits for y lie on the lines y = —(z — v/3)/v/3 and y = (z — \/3)/\/§ respectively. Therefore

//Rf(P)dA = / / s :z:dydx

_ [ b (z— f)/fd
, Ya-va)va
9 V3
= ~7 (2% — 2v/3)dx
0
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4
y
3 1
2
— X
V3
1 -1
X
1 2
Figure 34: Problem 32.7(a), (b)
V3
2 1, 1, }
= ——|=2%— 2223
A,
_ 2 |
V3 3 2 ’
(c) Integrating with respect to x first,
y

Figure 35: Problem 32.7(c)

2 V(4—y?) 2
/ / f(P)dA = / / yAdady = 2 / V24— )y
R —2J—/(a—y?) —2

271'
= 32/ sin? ¢ cos? tdt (substituting y = 2sint)

™

A o

=

in
= 8 / sin? 2tdt = 4 / (1 — cos4t)dt = 4
_in _

1
57\'

32.8. If the sector R is the region a < r < b, a < 0 < 3, and P is a representative point in R,
then, in polar coordinates, the double integral of f(P) over R is

/ /72 F(P)dA = /a ’ / " (. B)yrdrdo,

(see (32.4) and Figure 32.9).
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(a) Ris 22 +y* <1, and f(P) = 2? + y?> = r2. In this problem a =0, b= 1, a = 0 and 8 = 2.

Hence
21 2m 1 27 1
//f )dA = / / rddrdf = - / rYido == [ do==n.
14/ 2

(b) Ris 22 + 4% < 1, and f(P) = y? = r?sin® . In this problem a =0, b= 1, a = 0 and 3 = 27.

Hence
27 27 1
// f(pP)dA / / r3sin? 0drdd = 7/ [r4]osin29d9
R

1
= 1/0 2(1fcos20)d9:47r

(c) R is the region r <2, > 0, y > 0, and f(P) = 2y = r?sinf cosf. In the this problem a = 0,
b=2,0=0and 0 = %77. Therefore

1

// f(P)dA / / r blnﬁcosﬁdrd0—7/2 1] sin 0 cos 040
R
= /2 lsm29d9
0

in
= [—cos20)g" =2

[\

(d) R is the sector 1 <7 <2,0<60 < ir, and f(P)=axy =r*sinfcosd. This is like (c) but with
a change of lower limit for . Thus

// f(P)ydA = /2 /r sin 0 cos 0drdé
R

= 1/0 [ ]1smt9(:ost9d9

1
5 b
- 45 7 5sm29d¢9
0
15 15
= 16[ c0529] 5

(e) R is the disc 22 + 4% < 4, and f(z,y) = arctan(y/z) = . Therefore

//R f(P)dA /QW/ rédrdd
= /0 9{;7"2} dé

27

2 6do = 4x>
0

(f) R is the first quadrant » > 0, 0 < 0L <7, and f(z,y) = e=4@"+v") = ¢=4r" Then

/ flw,y)dd = / ’ / re=4r* drdg
R 0 0
1

(o)
e *dudf (substituting u = r?)

I
ﬁ
3
S~

1

2

1 /27 1 o 1 (27
7/ ——e™| A9 = 7/ do
2 J; 1 o 8 Jo
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(g) Assuming that the equation of the sphere is 2% + y? + 22 = a2, consider the section z = 0

(that is, the (z,y) plane) of the sphere. The volume V of the sphere is twice the volume of the

hemisphere z = (a® — 2% — yQ)% which can be expressed as the integral of f(z) over the circle

2% 4+ y? = a?. Therefore
27 a . 27 1 3 a
2/ r(a® —r?)2drdf = 2/ [(a2 - 7“2)2} de
0 0 0 3

V

4
do = §Fa3

Il
Wl Do
S
w
S—

y

(h) R is the half-plane y > 0 and f(P) = ye~@*+¥") = rsinfe~"". Hence, since the integral is

separable,
/ flz,y)dA = /7T /C>O r2sinfe" drdf = /7r sin 6d0 /00 r2e " dr
R 0o Jo N 0 0
= [~ cos@]g/o r <;> % (e*ﬁ) dr
— <[rer2]8° — /OTr er2dr) (integrating by parts)

> 1
/ e dr = —\/7,
0 2

using the special formula given in Example 32.11.

32 9. A cyhndrlcal hole of equation (z — 7a) +9% = a is drilled through a sphere of equation
22 4+y? + 22 = a® as shown in Figure 32.20 in the book Con51der the polar coordinates (r,6) in the
(z,y) plane. The polar equation of the cylindrical hole is r = a cos § (since the angle subtended by
a diameter at a point on the circle is a right angle). At the location (r,8) the length drilled from
the sphere within the hole is 2y/(a? — r?) perpendicular to the (z,y) plane. Hence the element of
volume removed at (r,0) is 2rv/(a® — r?)rdréf. The total volume removed from the sphere is (note
that sin @ is missing from one of the upper limits in the problem)

im  pacos® ir
2 2 2 acos 6
V., = / / ry/(a? — r?)drdd = g/ [—(a2 — rz)%} de
—im Sy 0
1
) 37
= i/ (1 — cos®6)do
3 J_ 1,
2
2 [ 1x 3 dsin@
- ([9]51 7/ (1 - sin?9) 2 d0>
3 —a7 0 0
243 1 ir 2 8
= 27— |sing— Zsin®6 gt (Z 2
3 - 3 9
Hence the volume of the remaining part of the sphere is
V= %wa?’ -V, = %7‘(@3 = —%wa?’ + %ag = %77(13 + %a?’
32.10. The Jacobian determinant is given by
a(z, y) [ 0 Oz . 0 0s
J(u,v) = =det| 9» 9gv |, or, alternatively, | gv g
O(u,v) = 5 5u  ov
(a) r = u? —v?, y = uv. Then
J(u,v) = ’ 21; T2 9?4 0?) >0,
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(b) x =u—wv, y =2v. Then
1 -1

J(u,v)z‘ 0 9 ‘:2.

(u=2r—y,v=x+2y,orz=2u+iv,y=—Ltu+ Zv. Then

2 1 4 1 1

J(u,v) = _4 _1

(u:0) ‘—Z é‘ 5% %5 b

(d)z=u—e"", y=u—e". Then

J(u,v) = boe = —e”" —e ¥ = —2cosh
wu) =\ e | T = shv.

32.11. Given z = u/v, y = uv, then (see introduction to the previous problem)

/v —u/v?
v u

u u u
=—4-=2-
v v v

o) = |

The region of integration in the (z,y) plane bounded by the lines y = 2z, y = x and the rectangular

y v

N Wk~ O
=

1 2 3 1 2 3

Figure 36: Problem 32.11

hyperbolas xy = 1 and xy = 8 is shown in the figure. In the (u,v) plane this region becomes a
rectangle bounded by the straight lines u = 1, u = 2v/2, v = 1 and v = /2. Using (32.12),

V2 o2v2
// ryidady = / / —(uw)?]J (u, v)|dudv
R 1 1 v
V2 2v2
= / / u3v2—ududv
2v2 W12V2
= / / utdudv = 2 { } [1}]1/5

= 2577 129v/2]

32.12. The intersection of the parabolas y = 22, y = 222, * = y?, * = 2y? occurs in the first
quadrant as shown in the first figure. The transformation u = y/z2, v = /y? maps the region in
the (z,y) plane into the square with edges u =1, u = 2, v = 1, v = 2. If R denotes the region
between the parabolas in the (z,y) plane, then the area A of R is given by

2 2
A:// dxdy:/ / |J(u, v)|dudv,
R 1 J1

J(u,v)det{ gu g ], or
du v

where the Jacobian

ox O
ou ov
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Figure 37: Problem 32.12

12
In terms of v and v, xt = u " 3v"3

yY=1u
9 _5 _1 1. -2 _ 4
—Zu73073 —zu 3y73 1 5, _
J(u,v) = P4 2 37 1 5 | =3Zu 272 >0.
—3UT3VTE  —ZuT3UTs 3

Therefore
1 (2 2 1 /2 2 1
= f/ / w2 2dude = f/ u72du/ v 3dy = —.

32.13. The region R is shown in the figure. If integration with respect to x is taken first, then
the integral has to be split into two integrals, for y > 0 and y < 0. The edge AB is x +y = 1, edge
ADis —z+y =1, edge BC isx —y =1, and edge CD is —x — y = 1. Hence

y
IAA

X[+]y|=1

X

Figure 38: Problem 32.13

1 —y+1 0 y+1
// xe””+ydA:/ / xem+ydxdy+/ / ze®dzdy.
R 0 Jy-1 —-1J—-y-1

Using integration by parts
/xemdx = ze® — /ezdz = xe® —e”.

Therefore

0

(@~ 1e H“dw/ e [(z — e dy
—1

//Rxe“:ﬂ’dA = /
_ / —ye — (y — 2)eX~ 1dy+/0 [ye® ™ + (y + 2)e” 'y
-

-1

I I Y
44 de 4| e



32.14. The equations of the edges of the rhombus R are for AB, y =1— %x, for AD,y =1+ %x,
for BC,y = -1+ %a: and for CD, y = —-1— %a: As in the previous problem, the volume is the sum
of two repeated integrals. In this case integrate with respect to y first and then z so that separate
integrals are required for x > 0 and x < 0. However, the integrand is even in 2 and independent
of y so we need only double the value of the integral over z > 0. Hence the volume is given by

y
A

|
N,
|
[
[
N

Figure 39: Problem 32.14

V:Q//R(szrQ)dA = //:ixwdydx
_ 4A(x+an]1+I¢V_A?ﬁ+ax2—@m:

2
= 4/(—x3+2x2—2x—|—4)dx
0
2
1 2
= 4|2t - a3 4 2% —4da
4 3 0
64
3

32.15. For x = rcosf, y = rsin@, the Jacobian of the transformation is

Oayy) | 22 92| | cosf —rsingd
J(r,0) a(r,0) % % " | sinf  rcosf

= r(cos?d +sin?6) =r.
Elimination of # and r gives the inverse of the transformation:

r=y(@ +y?), tanf =2,
X

Hence o o
Ty = 2000 _ | o oy z/V/(a? y2) y/V@+y?) | 1
T 0y | 2 LT w/E@ D) /@) |
Therefore
o0n6) 1 J0y)
oz,y) r a(r,0)"
If u = y/2? and v = /92, then
o(u,v) | —2y/ax3 /22| 3 30202
Ar,y) Uy* —2x/y® | a2y '
Hence, using inverse rule above,
A(z,y) 1




32.16. The Jacobian of the transformation © = x2 — y?, v = 2xy is, using the general inverse
result in Example 30.16,

son =1 5=/ |5 o

The first figure shows the intersection of the hyperbolas 2 — 9% =1, 22 —y? = 4, 2y = 2, zy = 4.

1
4(z2? +y?)’

y v
2
1 6
4
- 3X
2

Figure 40: Problem 32.16

The region R is in two pieces, in the first and third quadrants, which are symmetric about the
origin. With u = 22 — 2, v = 2zxy, both regions map on to the same rectangle bounded by the
straight lines u = 1, uw = 4, v = 4, v = 8. Since the integrand is z? + y2, by symmetry, the values
of the double integral over the two regions of R are the same. Hence

)’dudv

//R(xQ—&-yQ)dwdy / / z* +y°) )
// z? +y )dudv
//dudvf [V =3 x4=12

32.17. Move the origin to the corner P as shown in the figure. The coordinates of () becomes
(xg —zp,yg —yp) and of S becomes (x5 — xp,ys —yp). We define a transformation which maps
the parallelogram on to a rectangle. The equations of PQ and PS can be expressed respectively

as

Figure 41: Problem 32.17
(zQ —xp)y = (yo —yr)z, (xs—zp)y=(ys —yp)z.

Let
U= (xQ - J?P)y - (yQ - yP)ﬂ% v = —(335 - xP)y + (ys - yP)33~
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Hence on PQ, u =0 and on PS, v = 0.
Since SR is parallel to PQ, its equation can be written as

(g —zp)(y —ys +yr) = (Yo —yp)(* — x5 + xp),
from which it follows that, on SR,
u = (vg—xp)(ys —ypr) — (Yo —yr)(rs — xp)

rQ —Ip Ts—XTp
Yo —yp Ys —Yp

)

say. Similarly, the equation of QR can be expressed as

(xs —2p)(y —yq +yp) = (ys —yp)(x —2Q + yp).

Hence on QR, v = A also.
The Jacobian of the transformation is

Ouw,v) _| —(yo—yp)  zQ—wp
d(x,y) ys —yp —(vs—xp)

Using (32.12) and Example 30.16, the area W of the parallelogram is given by
A A 2
1 A
Wz//dxdyz/ / —du dv = — = |A],
R o Jo |4 A

32.18. (a) Integrate both sides of the given identity with respect to :

© —ar _ ,—bx 0o b
/ €7 4 = / /efxydyda:
0 € 0 Ja
b poo
/ / e~ "™dady (changing the order of integration)
a JO
b _azy @
AR
a ) 0
b
dy
= [ L=y
a Y
= In(b/a)

= —A.

as required.

(b) Consider the following integral: for any a and b,

b . b

sin zy cos(zy) cos ax — cos bz

dy = |— 2 = 5 .
« X x “ x

Since cos ax = cos(—ax) and cos bz = cos(—b), all signs of a and b are covered by

cos ar — cos bx /bl sin xy
|

2
x al X

y is always positive in this integral, which is required in the substitution below. Now integrate
both sides with respect to x and interchange the order of integration in the repeated integral so

that
oo — b oo [b] o] S
J e L i P
—00 x —oo Jal T la] J—o0 z

bl 1o siny
/ dudy (putting z = u/y: y is positive)
la| J—oco U

[B]
/ VY = V(- )
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Chapter 33: Line integrals

33.1. The path AOB consists of two straight lines AO along which dz < 0, and OB along which
dx > 0. In each case note where dx or dy changes sign and split the integral into separate segments
on which §z and dy have constant sign.

(a) dxzchanges sign at O, so we split the integral there:

0 1
/ rdx / a:da:+/ xdm:/ a:dx—!—/ rdx
(AOB) (AO) (OB) 1 0
1 1
= 7/ xder/ xzdz = 0.
0 0

(Notice that the integral is independent of the path connecting A and B.)
(b) On A0, y = —z and on OB, y = x and dx changes sign at O. Therefore

0 1
/ ydx / ydx —l—/ ydx :/ (—z)dz —|—/ ydx
(AOB) (AO) (OB) 1 0

(c) Asin (a),

0 1
/ 22dr = / dex—i—/ xzdxz/ dex—i—/ z2dz
(AOB) (AO) (OB) 1 0
1 1
= f/ x2dx+/ z?dz =0
0 0

33.2. On the parabola y? = x, 6z > 0 for y > 0, dx < 0 for y < 0, and dy has constant sign.

(a)
0 1
/xdx:/ xdx—i—/ xdazz/ xdx—i—/ xdx = 0.
P (AO) (OB) 1 0

(b) Since y = x? on the parabola
by 'y 4
)dm—i—/ z2dx = 2/ z2dx = —.
0 0 3

0
/ydm:/ (—z
P 1
0 1
/dex:/ xQd:z:+/ 22dz = 0.
P 1 0

(d) The element dy > 0 on AOB. Hence

1 3 21
2
dy = 2 dy = y_ ¥y =2
/P(vary)y /_1(y+y)y [3+2L1 3

1 571
2 4 ) 2
J;ydy:/ ydyz[] =—.
/P -1 5 —1 5

(f) 0z changes sign at o and dy > 0 throughout, so

0 1 1
/(a:derydy) = /IdI+/ der/ ydy
P 1 0 —1
1

2
- o+[y] —0
21,

[SIE

()

(e) Asin (d)
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(g) As in (f)
Jp(hde —ydy) =1 [Pda+ 1 flde—[1y?]. =0-0=0.
(h) On A0, y = —z2 and on OB, y = 2. Therefore

0 1 1
/ (ydz — zdy) = / (—2?)dx + / z3da — / y2dy
P 1 0 -1

33.3. (a) P is given parametrically by z =2, y = ¢, 0 <t < 1. Then

1 1 1
d 1
/ zydz :/ myQ—xdt = / t*.2tdt = 2/ todt = =.
P 0 dt 0 0 3

(b) P is given parametrically by x = cost, y = sint, 0 < ¢ < w. Then

T/ dy dx
dy —ydz) = — —y— | dt
/P(:vy ydz) /O(Idt ydt>
= /[cost.costfsint(fsint)]dt:/ dt=m
0 0

(c) P is given parametrically by « = t+ 1, y = ¢, z = 2¢t, 0 < ¢t < 1: this is a path in three
dimensions. Then
L/ ode dy dz
/0 (Zdt xdtJ’ydt)dt
1 1
/ (2 — (t+ 1) + 2¢dt :/ (3t — 1)dt
0 0

1
3
{tQ — t} =
2 0

(d) P is given parametrically by = cost, y = sint, z =t, 0 < ¢ < 2. Then

2m
dx dy dz
2 2 2 . 2 2 2
/P(a:dx+ydy+zdz) = /0 <x dt+ydt+zdt)dt

/ (zdx — zdy + ydz)
P

DN =

27
= / [cos® t(—sint) + sin? t cos t 4 t2]dt
0

1 1 1.1
[3 cos®t + 3 sin® ¢ + Stﬂ .

1 83
= 0+0+-(2m)° = —
+ +3(7T) 3

(e) P is given parametrically by =t + 1,y =2t — 2, 2 = 2¢2, 0 <t < 1. Then

1
dx dy dz

dz — ady + ydz) = ey ) a

/P(zm xdy + ydz) /0<Zdt xdt—l—ydt)

/ "92(2t) — (22 + 1)(2 — 20) + (2 — £2)(41)]dt
0

1

1
1
[2¢% 4 6% + 2t — 2]dt = [2154 + 2t 442 -2
0

I
w\ooo\
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33.4. On AO, y = —z%, and on OB, y = 2. Hence, with flzyy) =2+,
dk
[ k(x))—dy
/(AB) dx

dy dy
= ac—i—y—dx—i—/ r+y)—dx
~A?O)( )dx (OB} )dx

I Il
| S—
o\_, —~ e
= 8
~—~
8 |
| 8
8 =
[N
NI
o |
| |
N | HI
&l wle
o S —
N— o
a 8
S +
+ C\H
O\ —~
= 8
—~
3 +
—+ 8
8 =
[N
~ VRS
| —
HI
[N
'
(oW
8

which agrees with the answer to Problem 33.2(d).

33.5. On AB, z =1 and éz =0, on BC, y = 2 and dy = 0, on AO, y = 0 and dy = 0, and on
OC, xz=0and éz = 0.

0
(a) / dxz/ da:—|—/ de =0+ [ dz=[2]} =—-1.
(ABC) (AB) (BC) 1

2
(b) / dy:/ dy+/ dy:/dy+0:[y]3:2.
(40C) (40) (0C) 0
(c)
/ (zdy — ydz) = / (xdy — ydz) + / (zdy,dx)
(ABC) (AB) (BC)
2 0
_ / dy+ [ (=2)de = [y2 = 2[)0 =2+ 2 — 4
0 1
(d) / (zdy — ydzx) = / (xdy — ydz) + / (zdy —ydz) =040 =0.
(AOC) (A0) 0C)
2 1
(e) / ydy:/ ydy+/ ydy:/ ydy +0 = S[y’]5 = 2.
(ABC) (AB) (BC) 0
? 1 212
(f) / ydy:/ ydy+/ ydy:(H/ ydy = S ly’lo = 2.
(AOC) (AO) (00) 0

2 0
(g) / (ydx—kxdy)z/ xdy+/ ydx:/ dy+/ 2de =2-2=0.
(ABC) (AB) (BC) 0 1

(h) / (ydz + zdy) = / ydz + / zdy=04+0=0,
(A0C) (AO) (0C)

since y = 0 on AO, and x = 0 on OC.

98



33.6. The integrand f(z,y, z)dz + g(z,y, 2)dy + h(z,y, 2)dz a perfect differential if there exists a
function S(z,y, 2) such that

a5

oS aS
f(xayvz)_%7 g(IvyaZ)_Fy7 h(l',yyz)— 82

If S is single-valued in a region R and P in R is any path joining the points A and B, then
/ [f(xa:% Z)d.fL‘ + Zg(xv:% Z)dy + h(l‘,y7 Z)]dZ = SB - SA-
P
(a) P is a path joining (—1,1,—1) to (1,—1,1). In this example S(z,y, 2) = (22 +y?+22). Hence
1 2 2 2 Lo 2 21(1,—1,1)
(wde +ydy + 2dz) = 5 | d(@"+y~ +27) = S[z"+y" + 27|11, =3—-3=0.
P 2J)p 2 (=1.1,-1)

(b) P is a path joining (0,0,0) to (1,1,1). In this case S(z,y,z) = xyz. Hence

/P(yzdx + zady + zydz) = /Pd(xyz) = [xyz]g(l)éég =1

(c) P is a path joining (0,0,0) to (1,1,1). In this case S(z,y,z) = %ez2+y2+22. Hence

1
/ o Y+ (xdz + ydy + 2dz) 3 / d(e£2+y2+22)
P P

12 2 22 17171 1
= e ]E0,0,0; = 5( P -1).

(d) P is a path joining (1,1,1) to (0,1,0). In this case, S(z,y, z) is given by

25 _

05 .
oz B Y.

oS 0
y+Z, 7:Z+I,
0z

dy
Integrating these partial derivatives in turn, we obtain
Sy, 2) =wy+ze+ fy,2) Sx,y,2) =yz+ay+9(z,2),

S(x,y,2) = zx +yz + h(z,y).

These equations are consistent if we choose

fly,2) =yz, g(x,2) =22, h(x,y)==zy.

Hence S(z,y,z) = yz + zax + xy, and

[+ 2o+ oy + @l = [ diys+zo+a)
P P
= [yz—l—zx—&—xy](ll:l):()— =-3

(e) P is a path joining (1,0, 7) to (0,7,1). In this case S(z,y, 2) is given by

S Jd .

e (y + 2) cos(zy + yz + zx) = %(Sln(asy + yz + zx)),

S d .

o (z + ) cos(axy + yz + zx) = a—y(sm(azy + yz + z1)),
= 2+ y) coslay + 2 + 22) = -(sin(ey +yz + 20))

5, = (@ T y)cos(zy +yz +zx) = o (sin(ay +yz + zz)).
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Hence S(x,y,z) = sin(zy + yz + zx), and
/[cos(xy +yz+ z2)][(y + 2)dz + (z + 2)dy + (z + y)dz]

= / d[sin(xy + yz + zx)]
P

= [sin(zy +yz+ zw)]gégq; =0

(f) P is a path joining (1,1) to (2,2). Thisis a path in the (z,y) plane. In this case S(z,y) = $22y>.

Hence 22
Jp(ay?de + 2?ydy) = § [ d(2y?) = 3[2%y°] 1) =8 — 5 = -

33.7. (a) The circle C : 2% + y? = 4 can be parametrized in an anticlockwise sense by z = 2 cost,

y = 2sint, (0 <t < 2m). Then
s \Car Y

2m
/ [4cos? t.2 cost — 4sin® t(—2sint)]dt
0

/ (z*dy — y*da)
C

27
8/ (cos®t +sin® t)dt = 0,
0

since both cos® ¢ and sin® ¢ have mean value of zero over their period 27.
(b) Given the parametrization z = 2cosf, y = 3sinf, (0 < 6 < 27),

27 .

T Y 2cos 6 ) 3sinf ,_ .

—d =d = —2sin6 3sinf) ) db
/C(y x+$€ y) /0 (381n9( St )+2cos6‘( sin 6)

27
4 9

/0 (—30059+4sin9)d9:0
33.8. (a) The path C is given by x = sint, y = cost, z = sint. Then

™ de dy dz
/C(yda: +2dy +2dz) = /0 (ydt + S + xdt) dt

27
= / [cost(cost) + sint(— sint) + sint(cost)]dt
0

2
= / [cos? t — sin? t + sint cos t]dt
0
2
= / [cos2t + L sin2t]dt =0
0

(b) ABC is the triangle A : (1,0,0), B : (0,1,0), C : (0,0,1). On AB, x+y =1and z =0, on
BC,y+z=1and x =0, on CA, z+ z = and y = 0. Hence

/ (ydx + 2dy + xdz) = / (yda + 2dy + zdz)
(ABC) (AB)

+int(pey (yde 4 zdy + xdz) + / (ydx + 2dy + xdz)
(ca)

- /10(1—m)dx—f—/lo(l—y)dy-i-/lo(l—z)dz

(using z, y, z as parameters on AB, BC, CA)
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(c) In differentials dS(x,y,z) = d(zyz) = yzdz + zedy + zydz. Hence for any path between any
two points, say, A and B,
B B
/ (yzda + zady + zydz) = / d(zyz) = S — Sa.
A A

In other words the integral is independent of the path joining A and B. If A and B coincide than
the path is a closed path C and Sg = S 4. Hence

/(yzdx + zady 4+ zydz) = 0.
C
33.9. In terms of differentials dS(z,y,z) = d(32%y) = ya’*dz + $23dy. Hence

1 B
/ (yz2dx + gajgdy) = / d(%xBy) =SB — S4,
(AB) A

which depends only on the values of S at A and B.

Given the polar equation 7 = /2™ for 0 < # < =, the point A occurs where 6 = 0, r = 1,
and B is located at § = 2w, r = y/e. Hence A has coordinates (1,0), B has coordinates (—+/e, 0).
Therefore, since the integral is path-independent,

—e,0
f(AB)(y;v2dx + sa’dy) = f(AB) d(32%y) = [%x?’y]gl’(‘))[ ) =0.

33.10. Let C be any closed curve, and A and B any two points on C. Consider the paths
C1 = (APB) and |2 = (BQA). Then

/C (Fdo+ gdy) = [ (Fdo+gdy)+ [ (ot gy

Cy Ca
But
[ arsgan =~ [ (ar g =~ [ (sar+ gy
Cs AQB

C1

(by hypothesis). Therefore

/C(fdergdy):/ (fda:+gdy)—/ (fdz + gdy) = 0.

Cy C1

33.11. We shall consider the two-dimensional case (in higher dimensions the procedure is the
same). A differential form fdx + gdy is ‘perfect’ if (and only it) there exists a function S(z,y)
such that f = 0S5/0x and g = 85/dy. Given a perfect differential in the form

change the variables from x, y to u, v, where

r=p(u,v), y=qu,v), (i)

and put
S(z,y) = S(p(u,v),q(u,v)) = E(u,v). (ii)
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From the incremental formula and eqn (i),

0S ., S, _ 0S(op.  0p 98 (0q . g
8xdgc—i—aydy = 22 (8ud adv)—i—ay(ad +8d>
_ [8Sap S dq 0Sap 95 g
- (6m3u+8 8u)du (8338 +ay6u>d”
OE  OF
= %d u+ 3vd (iii)

by the chain rule (30..6), using the notations in (i) and (ii). This is a perfect differential form in
u and v.
In polar coordinates put u = r, v = 6, with the change of variable

x=p(r,0) =rcosf, y=q(r,0)=rsind. (iv)

We have to verify independently that for the given case d(zy) = ydx + zdy takes the form (iii) in
polar coordinates. In the above notation S(x,y) = zy, so from (ii),

E E
E(r,0) = r*cosfsin#, 687 = 2rcosfsind, %—9 = r%(cos? § — sin” f) (v)

From (iv) and the incremental formula

ydx +xzdy = rsinf(cosfdr — rsin 0d0) + r cos O(sin Odr + r cos 6dH)
= 2rcosfsin® + r?(cos? § — sin? §)df
OF OF _
= Ed?" 89 (Vl)

by comparison with (v), confirming that under the change of coordinates to polars, the differential
form remains ‘perfect’.

33.12. Green’s theorem in a plane states that (see 33.12)), if P and @ are smooth on C and its

interior A, then
oQ oP
/(de—i—Qdy // <8x 6y>dA

where A is the region enclosed by a simple closed curve C.

(a) As an example, let C be the circle 2 +y? = 1, and let P(z,y) = x, Q(x,y) = x. The curve C can
be represented parametrically in an counterclockwise sense by x = cost, y = sint, (0 <t < 27).
Then

27
/(de +Qdy) = /(xda: + zdy = / [cost(—sint) + costcost]dt
c c 0

2 1 1
/ {—sin?t—i— —(1+ cos 2t)} dt
, L2 2

_ | 2t+1t+1 in 2t -
= |08 5 7 Sin .
=7

The double integral becomes

M5 %) - //dA

= (area of a circle of unit radius)

- .

Hence Green’s theorem is verified.
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Figure 42: Problem 33.12(b)

(b) Let C be the closed curve bounded by y = 2%, y = 0 and = = 1, and let P(x,y) = 2y — 32,
Q(z,y) = 2. On y = 22. The boundary C must be traversed in the counterclockwise sense. Hence

/(Pdw +Qdy) = / [(zy — y*)dz + 2*dy] +/ [(zy — y?)dz + 2*dy]
c (0A) (AB)
2 T IE2
+/(BO)[(I1/ y°)dz + z°dy]
1 0
= (ES — IE4 X IEQ X )ax
—0+/Ody+/1[( )da + x*(2x)dx]

0
= [yhl) +/1 (323 — z*)dx

The double integral gives

//A (?922 a (?9];) dA = //A(w+2y)dmdy
/01 /;2 (x + 2y)dydz

/0 [zy + y2]::0 dx

1
/ [23 + 2)dz
0

which agrees with the line integral above.
33.13. By Green’s theorem, the area A enclosed by the curve C taken counterclockwise is given
by

A= 1 [.(zdy — ydz).
(a) The circle 22 + y? = 4 can be described parametrically by = 2cost, y = sint for 0 < t < 27,
Therefore

1 27 1 2m
f/ az:g - yd—gU dt = f/ [2cost(2cost) — (2sint)(—2sint)]dt
A AT T ;

A 2 2

21
2/ dt =4nr
0

which is the area of a circle of radius 2.
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(b) The ellipse %xQ + éyz = 1 can be described parametrically by = = 2cost, y = 3sint for
0 <t < 2m. Therefore

27 27
A= 7/ [2cost(3cost) — 3sint(—2sint)|dt = 3/ dt = 6,
0 0

which is the area of an ellispe with semi-axes 2 and 3.

(c) The path C is the triangle with vertices A : (—1,0), B : (2,0), C : (0,4). By the usual formula
the area of the triangle is
3 (base)x (height) = (3 x 4) = 6.

On AB, y =0and éy =0, on BC, y =4 — 2z, and on CA, y = 4 4 4x. Therefore

4,C

A
-1 1 2

Figure 43: Problem 33.13(c)

A = % /( AB)(xdy — ydz) + % /( o) (zdy — ydz) + % /( o (zdy — ydz)
= 0+ % /20[m(2) —(4-2z)|dz + % /0_1[93(4) — (4 —dx)]dz
_ ;/20(_4)@ +z /01(—4)dx
_ %[_495}3 + %[—495}(;1 —442=6,

which agrees with the result above.

33.14. The curve z3 + y% = 1 (shown in the figure) can be parametrized by putting # = cos®t,
y =sin®t for 0 <t < 2m. As in Example 33.9, the area A enclosed by the curve C is given by

y

Figure 44: Problem 33.14: graph of the curve z3 + y% =1

1 1 (7 dy dx
= = [ (edy - yda) = = )
A 2/6,(5”1 ydz) 2/0 <xdt ydt>
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¥
3

[cos® t(3sin? t cos t) — sin® t(—3 cos? tsin t)]d¢

sin? t cos® t(cos? t + sin? t)dt

¥
B

S—, o~

3 2m
sin? 2tdt = — / (1 — cos4t)dt
16 J,

A

| W 0|l w N|lWw N =

33.15. From (33.14), the work done is

W:/E@
C

where C is a path from infinity to A, a point with position vector R, and F = —yMmr/r>.
Therefore
W —me/%.dr: —fme/ xdx+yciy+zdz
c’ c r
R R
d
= —’me/ % :'me/ d(r=h
o0 r o0
_ yMm
= 5

It is simply a notational change to replace R by r to obtain the work done to the point r.

33.16. (a) Let f = (22 — y2,22y). Then, for any closed curve C enclosing the region A,

/cf -dr = /C[(glc2 — y*)dz + 2xydy]

_ / /A [;U(Qxy) _ 8%(9;2 —y2)] dady

_ / /A 2y + 2y)dzdy = / /A dydzdy # 0

in general. We conclude that f is not conservative.
(b) Let f = (3 In(z? + y?), arctan(y/xz)) for > 0. Then, using (33.12), for any closed curve C,

1
//c f-dr = /C {2 In(z? + y?)dz + arctan (%) dy]
0 Y 0 (1 9 o
//A [03: {arctan (;)} ~ 9 {2 In(z* 4+ y*) ¢ | dady
Y Y
= — — dad
[A[wHWQ ﬂ+ﬁ]xy

_ // 2ydxdy

; AT+
which is not zero in general. Hence f is not conservative.

33.17. We first decide whether f = yi +j + zk has a potential. If OV/0x = —y, then V =
—zy+9(y, z). Hence OV/8y = —x+8g(y, z)/dy. This can never be consistent with the j component
of f for any choice of ¢g(y,z). Hence f is not conservative. As a consequence work done will be
path-dependent.
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The path between (0,0,0) and (1,1,1) can be given parametrically by © = ¢, y = ¢, z = t for
0 <t < 1. Hence the work done on the path against f given by

t=1 1 1
W:f/ f-dr:f/ (t,l,t)~(1,1,1)dt:f/ (2t + 1)dt = —[t* +t]§ = —2.
t 0 0

=0

33.18. Given f(z,y,2) = yzi + z2j + zyl;, it is obvious that V(z,y,2z) = —zyz is the potential of

f. The potential is single-valued, so that f is conservative.

The path C, z = cost, y = sint, z = sintcost for —%77 <t< %’N joins the points A : (0,—1,0)

and B : (0,1,0). Since f is conservative, the work done is independent of the path. Hence the
work done against f is given by

W:—/f-dr:/ gradV -dr =Vg — V4 = 0.
c (AB)

33.19. The vector field f can be written as
f=r%=r""lr = (22 + 9% + 2@ D2 (20 + yj + zk).

Consider the potential V (z,y,2) = k(2% +y*+2%)? where k and 3 are constants to be determined.
The first components match if

oV
T 28kx(a? + y? + 2%)° 7 = w(2? + y? + 27 V/2

They are the same if 26k =1 and 3—1 = (a—1). Hence 8 = $(a+1) and k = 1/(a+1). Hence

(x2+y2+22)(a+1)/2.

V(z,y,z) = ot

It can be seen by symmetry that 0V/0y and 0V/9z give the other components of f. Hence f has
a potential, and is single-valued.

33.20. With f = ££(r), r = (22 + 42 + 22)3,

L0 IOy

Suppose that V(z,y,2) = —g(r). Then the first component of f is given by
/
-1 —xg (r) _ xf(r)

87‘/ . 2 2 2 _
o = =g (et +y? 427 = =t = L

(and similarly for the other components of f). Therefore ¢'(r) = —f(r) so that

o) =~ [ s(ryar:

any indefinite integral will do.

33.21. We transform the annular region into a simple closed path by bridging the points (1,0)
and (2,0) by two paths in opposite directions AB and BA, whose contributions to the integral
cancel. The closed path C consists of the circle 2% 4+ 32 = 1 taken clockwise, the line AB, the circle
22 4 y? = 4 taken counterclockwise and the line BA. In the integral

/[(% —y®)dz — zydy],
C
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Figure 45: Problem 33.21

P(z,y) = 22 —y® and Q(x,y) = —xy. The circle C; : 22+ = 4 can be represented parametrically
by x = 2cost, y = 2sint, for 0 < ¢t < 27, and the circle Cy : 2 + y2 = 1 can be represented by
x =cost, y = —sint for 0 < ¢t < 27. Hence

/C[(Zx — ) dr — xydy] = /C2 + /(BA) + /C1 + /(AB) [(2z — y*)dx — zydy]

2m
= / [~8costsint + 16sin* t — 4sint cos® t]dt
0

2m
+/ [~2sintcost — sin* t — sint cos? t]dt
0

= 127 — %’/T = %’/T,

since the integrals along AB and BA cancel.
The double integral becomes

0Q 5‘P> // 9
— - —]dA = —y + 3y“)dzd
//A(ax a9 A(y y*)dady
27 2
/ / (—7sin @ + 3r%sin? 0)rdrdd
o J1

(in polar coordinates)

which agrees with the line integral.
33.22. In the integral
/(5:C4ydx + 2°dy),
c

P(x,y) = 52y, and Q(z,y) = 2°. In Green’s theorem the integrand of the double integral is

oQ 8P_ 4 4
9 By—5a: 5x% = 0.

Hence the line integral is zero.

33.23. The closed curve generated by (cost — %sin 2t,sint) is shown in the figure. The area is
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1
X
-1 1
Figure 46: Problem 33.23
given by the formula in Example 33.9. Then
1 2m
A = 3 /(a:dy —ydzx) = / [(cost — L sin2t)cost — sint(—sint — cos 2t)]dt
c 0

2
/ (1 — 4 sin2tcost + sint cos 2t)dt
0

2
/ [1 — sintcos®t 4 sint(cos? t — sin? t)]dt
0

21
/ (1 — sin® ¢)dt
0

= 2m,

Chapter 34: Vector fields: divergence and curl

34.1. Let R be the projection of the surface
S:z=y(a*—2>—y*)—a+h, (0<h<a).

on to the (z,y) plane. From Section 34.3, the surface area S is given by

[
® |-k

where 11 is a unit normal to S. By (28.7),

h = (—ZC, -y, 1)
V@@ == )
Therefore
V@ = =)

Also, R is a circle of radius y/[a® — (a — h)?]. Therefore

2 pyla®—(a—h)?]
S = // V(a? — 2% —y*)dady = / / V(a? = r¥)rdrdd
R o Jo

in polar coordinates. Hence, since the integrand is separable,

27 V]a®—=(a—h)?]
/ d9/ V(a® = rHrdr
0 0

1 3. /[a2—(a—
e Gty

S

2
= gw[a?’ —(a—h)3].



34.2. (a)

1 z 2y 1 z 1 2y
/// rdxdydz = // {xz] dydz
o Jo Jy o Jo L2 ],
1

1z p/(1—=9?) 1 pz
/ / / rdxdydz = / /
0 0 0 0 0

()

1 z \/(1—y2—22) 1 11 \/(1*y2*22)
/ / / 23dedydz = / / [x‘l} dydz
0 Jo Jolya—yr-z2) o Jo 4 J_ 1 0-yp2-22)

Il
S~
S

64 /o Jo
15 ! 15 4 232 23 22
= = - = — Sy =2 d
61 J, {y—i—Sy +yz +3yz 3y Yz Oz
5 [t 8 , 28 .
= = - = =25 \d
640<Z 37 T )P
1571 2+14_13
Too6402 3 45| 384

34.3. The figure shows that part of the sphere which lies in the first octant, and a box element of
side-lengths dx, dy and §z. Imagine that the box slides parallel to the = axis between the sphere
and the (y, z) plane. For a general point the limits on z are z = 0 and x = \/(a? — y? — 22). The
resulting column is now moved in a plane parallel to the (x,y) between y = 0 and y = /(a® — 2?2).
Finally this slab is moved in the z direction between z = 0 and z = a so that the whole octant has

now been covered. The complete repeated integral reads

a p/(a®=2%) r(a®—y®=2?)
0 0 0
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W

Figure 47: Problem 34.3

34.4. The tetrahedron is shown in the figure together with a box element with side-lengths dx,
oy and dz. Slide the element in the x, then y and finally z directions to cover the interior of the

Figure 48: Problem 34.4

tetrahedron. Thus the volume V' is given by

¢ pb(1-2) ra(l-%-2%)
/ / / dzdydz
0 0 0
o £ 2

Vv

I
ﬁ
[e=]

[=al
-
|
o
S
/N
—
|
SalNS
|
|
N———
[N
<
(oW
Y

34.5. A unit normal to the surface z = 22 + y is (see (28.7))
(22,1, 1) (22,1, 1)

A= -

V2 +141) /(42?2 +2)

s I
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where R is the projection of S on to the (z,y) plane. In this case R is the square |z| <1, |y| <1

and
1

M= ey

Therefore
1 1 1 1
S = / / V(4x? + 2)dady = / V(42? + 2)dz / dy
—-1J-1 -1 -1
4f_11 Vi(x? + %)dm

Using the substitution x = (sinht)/v/2,

sinh = (v/2) sinh~!(v/2)
S 2 / /(1 4 sinh?t) cosh tdt = 2 / cosh? tdt
— sinh—1(+/2) — sinh—1(1/2)

sinh = (v/2)
= / (1 + cosh 2t)dt
— sinh~1(v/2)
1 sinh ™1 (v/2)
= [t + —sinh 2t]
2 —sinh—1(v/2)

. inh™'(v/2
= [t+sinhtcosht]” sinh—(l (}5)

= 2sinh™'(v2) +2v2V3 = 2sinh " (v2) + 2V6

34.6. The vector field F is irrotational if curl F = 0. For the given vector field F, using (34.8),

i j k
curl ' = % 6% a%
yzeV* —ysinxy + 2z xz2e™* —rsinzy zye™VF 4+ x

;[0 0
_ Yz . TYz :
i {83; (xye™* + x) e (zze x sin xy)}

! 0
i TYyz __ + _ TYz
+j Li)z (yze ysinzy + z) p (xye®™* + x)}

+k [i(wzezw —xsinzy) — gy(yzewz — ysinzy + z)}

= 0.
Since curl F = 0, there exists a function ¢ such that F = grad ¢. Therefore
o¢

— = yze™* —ysinzy + z,

ox
99

— = xze™* — rsinxy,

dy
ooy

— = zye™* 4+ x.

0z

Integrate the partial derivatives with respect to x, y and z respectively:

¢= /(yzexyz —ysinzy + z)dz + f(y, 2) = "* + 22 + cosxy + f(y, 2),

o= /(xzeryz —zsinzy)dy + g(z,z) = ™% + cosxy + g(z, x),
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o= / xye™? + x)dz + h(z,y) = e"Y* + 2z + h(x,y).
These expressions for ¢ are consistent if
fy,2)=C, g(za) =22+ C,  h(z,y) = coszy + C,

in which case
¢ =e"* + xz+ cosxy + C.

34.7. If r = zi + yj + zk, and

. 1
r=uvcosp, y=uvsing, z=—(u®—v?),

2
the scale factors of this paraboloidal transformation are (see (34.18))
or A s ~
hi = |=—|=|vcos¢i+ vsindj+ uk|,
ou
= /[v?cos? ¢ +v?sin® ¢ + u?] = /(u? + v?),
0 : PO
hy = ar = |ucos @i + usin ¢j — vk|,
v

= [u?cos® ¢ +u?sin? ¢ + v?] = /(u? + v?)
@
o¢
V(v sin? ¢ + u®v? cos? ¢) = uv,

= | — ww sin i + uw cos ¢j|,

since v > 0, v > 0.
By (34.20), for any vector field F = F,&, + F,&, + Fyé,,
1 0 0 0
ivF = F, —_ F, — F.
div h ol |:6 (hghg ) EN (hghl v) + 8¢ (hghg ¢)
| D e 4 )R+ oy 4 o))
ou “ o v

wv(u? + v?)

5
+glt +

34.8. In the identities assume that F = Fyi+ Fbj + F3k and G = Gi + Gaj + Gsk.
(a)
ouv), 9UV), oUV)-

grad (UV) = o i+ oy j+ % k
ov ou ov oUu ov oUu\ -
= (U6‘ +Va> +(Ua +Va> +<Uaz+vaz)k
3V 5V oV -~ 3U 8U ouU -
= Ugrad V+ Vgrad U.
(b)
. 0 0 0
B 8U 8F1 oUu 0F, 0oU OF;
= 890F1 U(3 Jrasz U@y + 9 Fs + Uaz
_[oU ou ou 0Fy O0F, OF;3
- (a Bt g2ty F3)+U<ax Ty T 82)

= (gradU) -F +UdivF
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(¢) The vector product is given by
F x G = (FG3 — F3G2)i+ (F3G1 — FiG3)j + (F1G2 — F>Gh)k.

Hence
dv(ExG) = D (BGs— FsGo) + 2 (FsGh — FiGa) + 2 (FiGa — FGy)
= g2t b 4 (Fetn 1G3) + 57 (F1Ge = ol
B 0F3; OF, OF, OF; 0F, O0F
N Gl(@y 8z)+G2(3z 6$)+Gd<8x 8y)
0Gs  0G» 0G1  0Gs 0Gy 0G4
- [Fl (a;,a) + 1 (aax> + 1 <axay>}
= (curlF) -G —F: (curlG).
(d) Using (34.8),
i j k
curlcurlF = 5% 6% %
OF; _ OF, OF1 _ 0F3 OF, _ O
Jy 0z 0z ox ox oy
_ (PR PR PR PF :
N Oyox  Oy? 022  0x0z
N 0% Fy B O*F, B 0*Fy 7 0?Fy \ ;
020y 022 0zx2  Oxdy J
(PR PR PR PR\
O0xdz  Ox2 oy?  Oyoz

Consider the first component of curlcurl F. Then, by adding and subtracting a term 9?Fy /dz?
to the i component, we obtain,

02F, O°F, O°F, 0°Fy) .
(8y3x 0y 922 8:1:8,2) '
O2F, O°F, O°Fy O°F, O°F, O%F%\:
- (3:172 dydxr ' drdz  dx  By? 022 )1

[<8div F) + divgrad Fl] i.
or

Similar expansions occur can be found for thej and k components. Therefore addition of these

terms leads to
curlcurl F = grad (divF) — divgrad F.

(e) Consider the i component of each term of
(F xcurlG) + (G x curlF) + (F - grad )G + G - grad )F.

The expansions of the individual terms are as follows:

F x curl G

G x curlF

Gy

dy

=

OF,
dy

o
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i j k
i) j2} £
9Gy  9Gy  9G3  98Gy _ 9Gy
0z 0z ox oz oy
0Gy, 0G, 0G,  0Gs\|:
_ _F _ 28
Oz 8y> 3(82 83:)}1—’_ ’
i j k
G Go Gs
OF, OF, OF1 _ 0F3 0F,  OF
Oz Oz ox ox oy
oFy, O0F; oFy,  0Fs\|:
r ay> Cs (a axﬂ* :



0 0 s P -
(F~grad)G Fy— +F2 +F36 ) (G1i+G2j+G3k)

( ox
oG 0G4 0G1\ ;
= (F1 1+F2 +F3 1)i+---,

0z

b . . .
(G~grad)F = G1 Oz +G2 +G3> (F1i+F2j+F3k)

0

o0F oF OF
(G18+G28y G3az) 1+ ---,

Adding these i components on the right-hand side:

i component of grad (F - G) =
0G4 oF 0Gy oF 0G3 O0F3 )

B 8(F1G1) 8(F2G2) 8(F3G3) s
N ( Ox + Ox + Ox '

0
oz

The other components can be verified in a similar manner.

34.9. Since

(F-G)i,

grad ¢ = j+ —k

0p: 0p: 00
o T o e

then, from the definition (34.4),

- _ 9 (09, 0 (09), 0 (0%
divgradg = Ox <8x>+3y <3y>+3z (82)
0% 0% 0%
T e tar
If ¢ =1//(z% + y* + 2?2), then

oo} x
9 _ _ 5

or (22 4 y2 + 22):

”2 1 32

= +
0z? (2 +y2 +22)F (22 +y2 +22)3
202 — y? — 22
(22 + 42 + 22)%

Similarly
026 2y — 22 — a2 0% 222 — a2 — 2
o2 (22 +12 42235 022 (a2 42 +22)5
The sum of these second derivatives is zero, confirming that ¢ = 1/\/(2% +y? + 22) satisfies
Laplace’s equation.
34.10. (a) Let F = Fyi + Fyj + Fsk and G = G1i+ Gj 4 Gsk. Then, from the definition (34.4),

. 0 0 0
div(F+G) = %(Pﬁ+G1)+afy(F2+G2)+£(F3+G3)
B o, 0F, O0Fj3 0G1 0Go 0G5
= (az+ay+az) (ax Ty T az)

= divF+divG
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(b) From (34.8)

i j k
curl(F+ G) = a% 0% %
Fi+Gi B+ Gy F3+Gs
i j k i j kK
- |2 2 o |4la b2 o
ox Oy 0z ox oy Oz
F1 F2 F3 Gl G2 G3

= curlF + curl G.

The last step uses a property of determinants illustrated in Problem 8.10.

34.11. (a) Using definition (34.4),
s s . 0 0 0
div (€7 + ¥’ % + *7k) = () + 8—y(ey2Z) +5-¢%)
2
yze™? + 2yze¥ * 4 xe®?

(b) Using definition (3.4)
0 0 0
= %(W -y + a*y(l/"«“) + %(%y)

= z=2z=2z.

div ((zz — y)i+ yzj + 2z)

(c) Using definition (34.4),
0 0
(y2) + 5 (22%y)

div[(wz — y*)i+ y2j + 227yk] = a%(m —v)+ g, oz
= z4+2z=2z.
Hence
divF = 2z.

None of the vector fields is solenoidal.

34.12. Use the definition (34.8).
(a) F = e + ¢¥"%j + ¢"k. Then

i j k

_ a2 a2 9

curlF = 3z oy 32
eTyYz ¥z gz

(b) F = (zz — y)i + yzj + 2zyk. Then
curlF = 5 3
= (z-y)i+(@-2)j+k

(c) F = (2zy + y2)i + (22 4 x2)j + xyk. Then

i j k
_ 9 9 o _

2ey +yz 22422 TY
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Hence the F is irrotational.
34.13. Since the vector field is irrotational, curlv = 0, which implies that there exists a scalar
) = .

potential such that v = grad ®. If the vector field v is also solenoidal, then divv = 0. Therefore

divgrad ® = 0, or V2® = 0.

34.14. We are given r = zi + yj + zk and r = (22 + y% + 22)2

(a)
0 0 0
.9 _ 2 2 2
div (r°r) = P (xre) + —ay (yr®) + —az(zr )
= (PP +22%) + (P +2°) + (¥ +22°) = 5"

(b)
i j k
curl (r’r) = % a% %
Py iz
_ jz, 3 A,Ez, 3 0 jz, 3 A,jz, 3 .
= (5= ) i+ (tar’) = )
o n
+ (o) - o) )
= 0,
since 5 5 o 3) a 3)
- 3y — 7”’. — 77‘ = — =
(yr°) =z 9 Yy o 3zyr — 3zyr = 0,

il 3\ _
ay(”) 02

and similarly for the other two components. The function r°r is therefore irrotational

grad (r*) = grad (2 4+ y* + zQ)% = 3rr.

o) = 5 (5) 5 (3 5 (5)
- %) ER) ()
0.

The function r/r? is therefore solenoidal.
()
i i k
curl (r/r?) = % a% gz
x/rt y/r? z/r?
2zy  2yz )\ 2zx  2xz\ 4 2ur  2xy
( T3+T3)1+<_T3+’F3>J+<_T3+T3 k
=0

Therefore the function r/r? is irrotational
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grad (r®) = (,%(IZ +y?+ 22+ (%(12 +yt 42235+ %(IZ +12 +2%)%k

= 3ari+ 3y7’j + 3zrk = 3rr.

Secondly

0 0 0
divgradr® = div(3rr)=3 {83: (ra) + o (ry) + 52 (rz)}

2 2

Y +r+z] =12r
r

22
= 3 {r + —+r+ =

r r
34.15. Compare the components on both sides of

(v-grad)v = jgradv? — (v x curlv).

Let v = v1i + vaj + v3k. The i component of (v-grad)v is

Oun 000 10 ey Do O
U1 U28y "o, T 20s U28y R

On the right, the i component of %grad v? —v x curlv is

0 0 0 0
ot bod) - (G2 - 5 ) o (G- 52)

Or oy 0z ox
10 10 10 ov ov
= 5&(U%+U§+U§)*§%U§7§%U§+ 2671 03872;1
_ 1 (9 2 6’01 8’01
= 3t g, Ty,

which agrees with the i component of (v - grad)v. A similar argument applies to the other
components.

34.16. Refer to Section 34.6. Laplace’s equation is given by divgrad U = 0. In cylindrical polar
coordinates (p, ¢, z) (see p. 689),

gradU = a—Ué 19U, ou

op " T 9% T 9.0
Let F = F,é, + Fyéy + F.é, = gradU. Then

0 0
%(Fd:) + g(PFz)

Lo (U, 100U
pop\"op) " Pog? T 022

111
divF =divgradU = - [(pr)—i—
pLp

from which Laplace’s equation follows.
If U = f(p), then the partial derivatives OU/J¢ = 0 and 0U/Jz = 0. Hence f(p) satisfies the
ordinary differential equation
d dU
“ “loo " ! —0.
(o) =0 or s+ 10

This is a separable equation which for f/(p):

df’ /dp
4 = _ 7_1'_14’
I p
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with solution (since p > 0)

B
Inf'=-Inp+C, or f' = —.
p
This is a further separable equation with solution given by

B
/dfz dp—i—A or F=A+ Blnp.
p

34.17. Refer to Section 34.6. Laplace’s equation is given by divgrad U = 0. In spherical polar
coordinates (1,0, ¢) (see Example 34.7),

ou
or
Let F = F,.é, + Fyég + Fyéy = grad U. Then

. 10U, 1 0U,
e, + —

dU = — — ——8&y.
gradU/ r69e9+rsin9 8¢e¢

divF = divgradU
19 1 9 1 9
2o T E) + g g (InfF) + g 55 ()

— ig r2a£ _;’_#g Slnea—U +;827U
T r29r or r2sin 0 90 00 r2sin® 0 0¢?

from which Laplace’s equation follows.
If U = f(r), then Laplace’s equation reduces to

(2 (r)) =0
By integration 72 f’(r) = constant = — B, say. Hence
B
/ —_— s —
iy =-2.

—- [ZE 424

Integrating

where A is a constant.

34.18. The divergence theorem (34.7) states that

/// divFdVy = //F nds,

where nis the unit outward normal to the surface S of the region V.
In this problem V is the cube bounded by the planes x = +1, y = £1, z = £+1. For

F = xy2i + zzj + zyzj,

the divergence of F is

0 0 0
i F = 2 —_— —_— = 2 .
P = 2 @)+ o) L) = 4y

Applying the divergence theorem,

1 1 pl
//F~f1d8 /// dideV:/ / / (v + zy)dazdydz
s % —1J-1J-1
1,1 1 1 1 g1
/ / [nyJr:z:zy} dydz:/ / ydydz
—1J-1 2 r=—1 —1J-1
1 1
1 2}
= - dz=0
INEGH
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34.19. The divergence theorem is quoted in Problem 34.18. Put the vector field in the theorem

equal to curl F. Then
// n-curl FdS = /// div curl FdY = 0,
s v

since div curl F = 0 (see 34.10). Hence

// n-curl FdS = 0.
S

34.20. The divergence theorem is quoted in Problem 34.18. The vector field F = i1 on the surface

S. Hence
//ﬁ-FdS://ﬁ-ﬁdS://dS:A
S S S

which is the surface area of S. By the divergence theorem

A:///VdideV.

34.21. In the divergence theorem let F =r = zi+ yj + zk. Then, since divr = 3,

//Sr-ﬁdS = ///divrdV

3 / / / av =3V,
where V' is the volume enclosed by S. Hence

V:%//Srhﬁd&

(a) For the sphere, n = r/r = r/a, where r is the position vector of a point on S. By the result in
Problem 34.20, the volume of the sphere is given by

1 r
= = . 2d
14 3//Sra8

= ¢ // as =2 « (surface area of the sphere)
3/ /s 3

a 3

4
= 3(477a2) = g7a

(b) On the curved surface the position vector is perpendicular to the normal to the surface. On
the base of the cone n = k. Hence the volume is given by

1 . 1
V—3//Srnd5—3/51hd8,

where S is the base of the cone and r - n = h. The integral

1
3//51ds

is the surface area A of the base. Therefore the volume of the cone is %Ah.

34.22. Apply the divergence theorem with divF = 1. Then

//SF.ﬁdS///VdideV///vde

the volume of the region enclosed by S.
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