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Chapter 28: Differentiation of functions of two variables

28.1 If z = f(x, y), then contours of the function are curves given by f(x, y) = c, a constant, for
selected values of c.
(a) The contours are given by the straight lines 2x− 3y + 4 = c.

-2 -1 1 2
x

-2

-1

1

2

y

c=
4

c=
-
2

c=
10

Figure 1: Problem 28.1(a)

(b) The contours are given by the straight lines −x + 2y − 1 = c.
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Figure 2: Problem 28.1(b)

(c) The contours are given by (x− 1)(y − 1) = c.
(d) The contours are given by x2 + 1

4y2 − 1 = c, for c > −1. They form a family of ellipses (see
Fig. 4).
(e) The contours are given by x2 + 2x + y2 = c or (x + 1)2 + y2 = c + 1, which is a family of
concentric circles.
(f) The contours are given by (y/x) = c or y = cx, which is a family of straight lines through the
origin.
(g) The contours are given by y2 − x2 = c which is a family of hyperbolas.
(h) The contours are given by y/x3 = c.
(i) The contours are given by x3 + 4y2 = c.
(j) The contours are given by y/(x + y) = c, or y = cx/(1 − c), or y = mx, for any constant m.
These are straight lines through the origin (not shown).
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Figure 3: Problem 28.1(c)

-2 -1 0 1 2
x-4

-2

0

2

4
y

-4 -2 0 2
x-4

-2

0

2

4
y

Figure 4: Problem 28.1(d); Problem 28.1(e): the contours are concentric circles centred at (−1, 0).

28.2. In Figure 7, P0 : (x, y) is a point on a contour C0, and C1 is any closely adjacent contour
associated with a slightly higher level than C0. P1 is the point on C1 that is at the minimum
distance from P0; therefore P0P1 is in the direction of steepest ascent from P0 on to the level on
C1. The angle between P0P1 and C0 clearly approaches a right angle as the interval between the
contours approaches zero. Therefore the path of steepest ascent crosses every intersecting contour
at a right angle.
(a) z = 2x − 3y + 4. The contours are given by the parallel straight lines 2x − 3y + 4 = c. The
slopes of these lines are all 2

3 . The slope of the steepest ascent through (1, 1) is therefore equal to
− 3

2 , since − 3
2 × 2

3 = −1 (see Figure 8).
(b) z = x− y. The contours are given by the parallel straight lines x− y = c, whose slope is equal
to 1. The slope of the path of steepest ascent through (1, 1) is therefore −1 (see Figure 8).
(c) z = x2y2. The contours are given by x2y2 = c shown, for the first quadrant, in Figure 9. These
are rectangular hyperbolas y =

√
c/x, x > 0, with an axis of symmetry y = x. This passes through
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Figure 5: Problem 28.1(f): Problem 28.1(g)
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Figure 6: Problem 28.1(h); Problem 28.1(i).
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Figure 7: Problem 28.2

(1, 1) and is perpendicular to all the contours
(d) z = (x− 1)2 + 1

4 (y − 1)2. The contours are given by (x− 1)2 + 1
4 (y − 1)2 = c > 0, which is a

family of ellipses centred on (1, 1) and axes parallel to the x and y axes. As we move away from
(1, 1), z increases in all directions, but its steepest ascent directions are clearly in the x directions
where the ellipses are closest (see Figure 9).
28.3 (a) f(x, y) = 3x + 7y − 2. Then

∂f

∂x
=

∂

∂x
(3x + 7y − 2) = 3

everywhere including the point (2, 1). Similarly

∂f

∂y
=

∂

∂y
(3x + 7y − 2) = 7
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Figure 8: Problem 28.2(a); Problem 28.2(b)
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Figure 9: Problem 28.2(c); Problem 28.2(d).

everywhere including the point (2, 1).
(b) f(x, y) = −2x + 3y + 4. Then

∂f

∂x
=

∂

∂x
(−2x + 3y + 4) = −2

everywhere including the point (2, 1). Also

∂

∂y
(−2x + 3y + 4) = 3

everywhere including the point (2, 1).
(c) f(x, y) = 2x2 − 3y2 − 2xy − x− y + 1. The partial derivatives are

∂f

∂x
= 4x− 2y − 1,

∂f

∂y
= −6y − 2x− 1.

At the point (2, 1), ∂f/∂x = 5 and ∂f/∂y = −11.
(d) f(x, y) = 1

8x3 + y3 − 2y − 1. The partial derivatives are

∂f

∂x
=

3
8
x2,

∂f

∂y
= 3y2 − 2.

At the point (2, 1), ∂f/∂x = 3
2 and ∂f/∂y = 1.

(e) f(x, y) = x4y2 − 1. The partial derivatives are

∂f

∂x
= 4x3y2,

∂f

∂y
= 2x4y.

At (2, 1), ∂f/∂x = 32 and ∂f/∂y = 48.
(f) f(x, y) = (x− 1)(y − 2). The partial derivatives are

∂f

∂x
= y − 2,

∂f

∂y
= x− 1.

At (2, 1), ∂f/∂x = −1 and ∂f/∂y = 1.
(g) f(x, y) = 1/(xy). The partial derivatives are

∂f

∂x
= − 1

x2y
,

∂f

∂y
= − 1

xy2
.

At (2, 1), ∂f/∂x = − 1
4 and ∂f/∂y = − 1

2 .
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(h) f(x, y) = x/y. The partial derivatives are

∂f

∂x
=

1
y
,

∂f

∂y
= − x

y2
.

At (2, 1), ∂f/∂x = 1 and ∂f/∂y = −2.
(i) f(x, y) = (x− y)/(x + y). The partial derivatives are

∂f

∂x
=

2y
(x + y)2

,
∂f

∂y
= − 2x

(x + y)2
.

At (2, 1), ∂f/∂x = 2/9 and ∂f/∂y = −4/9.
(j) f(x, y) = 3/(x2 + y2). The partial derivatives are

∂f

∂x
= − 2x

(x2 + y2)2
,

∂f

∂y
= − 2y

(x2 + y2)2
.

At (2, 1), ∂f/∂x = −4/25 and ∂f/∂y = −2/25.

(k) f(x, y) = (x2 + y2)
1
2 . The partial derivatives are

∂f

∂x
=

x

(x2 + y2)
1
2
,

∂f

∂y
=

y

(x2 + y2)
1
2
.

At (2, 1), ∂f/∂x = 2/
√

5 and ∂f/∂y = 1/
√

5.
(l) f(x, y) = (2x− 3y + 2)3. The chain rule (Section 3.3) is required. The partial derivatives are

∂f

∂x
= 6(2x− 3y + 2)2,

∂f

∂y
= −9(2x− 3y + 2)2.

At (2, 1), ∂f/∂x = 54 and ∂f/∂y = −81.

(m) f(x, y) = ex2+y2
. Let u = x2 + y2 so that f = eu. The chain rule then implies

∂f

∂x
=

df

du

∂u

∂x
= eu.2x = 2xex2+y2

,
∂f

∂y
=

df

du

∂u

∂y
= eu.2y = 2yex2+y2

.

At (2, 1), ∂f/∂x = 4e5 and ∂f/∂y = 2e5.
(n) f(x, y) = cos(x2 − y2). Use the chain rule. Let u = x2 − y2 so that f = cos u. The partial
derivatives are

∂f

∂x
=

df

du

∂u

∂x
= − sin u.2x = −2x sin(x2 − y2),

∂f

∂y
=

df

du

∂u

∂y
= − sin u.(−2y) = 2y sin(x2 − y2).

At (2, 1), ∂f/∂x = −4 sin 3 and ∂f/∂y = 2 sin 3.
(o) f(x, y) = sin(x/y). Use the chain rule. Let u = x/y so that f = sin u. The partial derivatives
are

∂f

∂x
=

df

du

∂u

∂x
= cos u.

1
y

=
1
y

cos
(

x

y

)
,

∂f

∂y
=

df

du

∂u

∂y
= cos u.− x

y2
= − x

y2
cos

(
x

y

)
.

At (2, 1), ∂f/∂x = cos 2 and ∂f/∂y = −2 cos 2.
(p) f(x, y) = arctan(y/x). Use the chain rule. Let u = y/x so that f = arctan u. The partial
derivatives are

∂f

∂x
=

df

du

∂u

∂x
=

1
1 + u2

.− y

x2
= − y

x2 + y2
,

5



∂f

∂y
=

df

du

∂u

∂y
=

1
1 + u2

.
1
x

=
x

x2 + y2
.

At (2, 1), ∂f/∂x = −1/5 and ∂f/∂y = 2/5.

28.4. (a) Given z = g(ax + by) and u = ax + b. Then, by the chain rule,

∂z

∂x
=

dg(u)
du

∂u

∂x
= g′(u)a = ag′(ax + by),

and
∂z

∂y
=

dg(u)
du

∂u

∂y
= g′(u)b = bg′(ax + b).

If z = g(u) = cos u and u = ax + by, then g′(u) = − sinu, and

∂z

∂x
= g′(u)a = −a sin u = −a sin(ax + by),

∂z

∂y
= g′(u)b = −b sin u = −b sin(ax + by).

To check these find ∂/∂x and ∂/∂y of eax+by and cos(ax + by) in the usual direct way.
If z = g(u) = eu and u = ax + by, then g′(u) = eu, and

∂z

∂x
= g′(u)a = aeu = aeax+by,

∂z

∂y
= g′(u)b = beu = beax+by.

(b) In this case z = g(u) where u = sin(xy), g(u) = eu and g′(u) = eu. By the chain rule

∂z

∂x
=

dg(u)
du

∂u

∂x
= g′(sinxy)y cos(xy) = esin(xy)y cos(xy),

∂z

∂y
=

dg(u)
du

∂u

∂y
= g′(sinxy)x cos(xy) = esin(xy)x cos(xy).

Directly
∂z

∂x
=

∂

∂x
[esin(xy)] = esin(xy) ∂

∂x
sin(xy) = esin(xy)y cos(xy).

∂z

∂y
=

∂

∂y
[esin(xy)] = esin(xy) ∂

∂y
sin(xy) = esin(xy)x cos(xy).

(c) V = g(r) where r = (x2 + y2)
1
2 . In polar coordinates x = r cos θ and y = r sin θ. By the chain

rule
∂V

∂x
= g′(r)

∂r

∂x
= g′[(x2 + y2)

1
2 ]

x

(x2 + y2)
1
2
,

∂V

∂y
= g′(r)

∂r

∂y
= g′[(x2 + y2)

1
2 ]

y

(x2 + y2)
1
2
.

In terms of r and θ,
∂V

∂x
= g′(r) cos θ,

∂V

∂y
= g′(r) sin θ.

28.5. Given r = (x2 + y2)
1
2 and x = r cos θ,

∂r

∂x
=

∂

∂x
[(x2 + y2)

1
2 ] =

x

(x2 + y2)
1
2
,

and
∂x

∂r
=

∂

∂r
(r cos θ) = cos θ.

6



In terms of r and θ,
∂r

∂x
=

r cos θ

r
= cos θ.

Hence, in terms of θ
∂r

∂x

∂x

∂r
= cos θ. cos θ = cos2 θ 6= 1,

in general.
Since r = (x2 + y2)

1
2 , the increment δr due to an increment δx when y is held constant is given

by

δr = ((x + δx)2 + y2)
1
2 − (x2 + y2)

1
2

= (x2 + y2)
1
2

(
1 +

2xδx

x2 + y2
+

(δx)2

x2 + y2

) 1
2

− (x2 + y2)
1
2 ≈ xδx

(x2 + y2)
1
2

= cos θδx

in terms of r and θ.
For x = r cos θ, let δr be the incremental change in the direction r when θ is held constant.

The corresponding change in x is

δx = (r + δr) cos θ − r cos θ = δr cos θ.

The incremental ratios δr/δx differ since the directions y = constant and θ = constant are different.

28.6. (a) For z = sin(x− y), let u = x− y. Then, by the chain rule, the partial derivatives are

∂z

∂x
=

d
du

sin u
∂

∂x
(x− y) = cosu.1 = cos(x− y),

and
∂z

∂y
=

d
du

sin u
∂

∂y
(x− y) = cosu.(−1) = − cos(x− y),

Therefore
∂z

∂x

/
∂z

∂y
=

cos(x− y)
− cos(x− y)

= −1.

(b) This result shows that (a) is generally true for z = g(x − y). As in (a), let u = x − y. Then,
by the chain rule

∂z

∂x
=

d
du

g(u)
∂

∂x
(x− y) = g′(u).1 = g′(u),

and
∂z

∂y
=

d
du

g(u)
∂

∂y
(x− y) = g′(u)(−1) = −g′(u),

Therefore
∂z

∂x

/
∂z

∂y
=

g′(u)
−g′(u)

= −1.

28.7. Let u = x/y in z = g(x/y). Then, by the chain rule, the partial derivatives are

∂z

∂x
=

d
du

g(u)
∂

∂x

(
x

y

)
= g′(u)

1
y
,

and
∂z

∂y
=

d
du

g(u)
∂

∂y

(
x

y

)
= g′(u)

(−x

y2

)
.

Therefore

x
∂z

∂x
+ y

∂z

∂y
= x

g′(u)
y

− y
xg′(u)

y2
= 0.
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28.8. (a) f(x, y) = ax + by + c. The first and second partial derivatives are

∂f

∂x
= a,

∂f

∂y
= b,

∂2f

∂x2
= 0,

∂2f

∂y2
= 0,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 0.

(b) f(x, y) = x2 + 2y2 + 3xy − x + 1. The first and second partial derivatives are

∂f

∂x
= 2x + 3y − 1,

∂f

∂y
= 3x + 4y,

∂2f

∂x2
= 2,

∂2f

∂y2
= 4,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 3.

(c) f(x, y) = sin(x− y). The first and second partial derivatives are

∂f

∂x
= cos(x− y),

∂f

∂y
= − cos(x− y),

∂2f

∂x2
= − sin(x− y),

∂2f

∂y2
= − sin(x− y),

∂2f

∂x∂y
=

∂2f

∂y∂x
= sin(x− y).

(d) f(x, y) = y/x. The partial derivatives are

∂f

∂x
= − y

x2
,

∂f

∂y
=

1
x

,

∂2f

∂x2
=

2y

x3
,

∂2f

∂y2
= 0,

∂2f

∂x∂y
=

∂2f

∂y∂x
= − 1

x2
.

(e) f(x, y) = e2x+3y. The partial derivatives are

∂f

∂x
= 2e2x+3y,

∂f

∂y
= 3e2x+3y,

∂2f

∂x2
= 4e2x+3y,

∂2f

∂y2
= 9e2x+3y,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 6e2x+3y.

(f) f(x, y) = (1/x) + (1/y). The first and second partial derivatives are

∂f

∂x
= − 1

x2
,

∂f

∂y
= − 1

y2
,

∂2f

∂x2
=

2
x3

,
∂2f

∂y2
=

2
y3

,
∂2f

∂x∂y
=

∂2f

∂y∂x
= 0.

(g) f(x, y) = sin 3x + cos 2y. The first and second partial derivatives are

∂f

∂x
= 3 cos 3x,

∂f

∂y
= −2 sin 2y,

∂2f

∂x2
= −9 sin 3x,

∂2f

∂y2
= −4 cos 2y,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 0.

(h) f(x, y) = (3x− 4y)4. The partial derivatives are

∂f

∂x
= 12(3x− 4y)3,

∂f

∂y
= −16(3x− 4y)3,

∂2f

∂x2
= 108(3x− 4y)2,

∂2f

∂y2
= 192(3x− 4y)2,
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∂2f

∂x∂y
=

∂2f

∂y∂x
= −144(3x− 4y)2.

(i) f(x, y) = 1/(x + y). The first and second partial derivatives are

∂f

∂x
= − 1

(x + y)2
,

∂f

∂y
= − 1

(x + y)2
,

∂2f

∂x2
=

2
(x + y)2

,
∂2f

∂y2
=

2
(x + y)2

,
∂2f

∂x∂y
=

∂2f

∂y∂x
=

2
(x + y)2

.

(j) f(x, y) = ln(xy) = ln x + ln y. The first and second partial derivatives are

∂f

∂x
=

1
x

,
∂f

∂y
=

1
y
,

∂2f

∂x2
= − 1

x2
,

∂2f

∂y2
= − 1

y2
,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 0.

(k) f(x, y) = 1/(x2 + y2)
1
2 . The first and second partial derivatives are

∂f

∂x
= − x

(x2 + y2)
3
2
,

∂f

∂y
= − y

(x2 + y2)
3
2
,

∂2f

∂x2
=

2x2 − y2

(x2 + y2)
5
2
,

∂2f

∂y2
=
−x2 + 2y2

(x2 + y2)
5
2
,

∂2f

∂x∂y
=

∂2f

∂y∂x
=

3xy

(x2 + y2)
5
2
.

28.9. If r = (x2 + y2)
1
2 and z = ln r, then, using the chain rule,

∂z

∂x
=

dz

dr

∂r

∂x
=

1
r

x

(x2 + y2)
1
2

=
x

r2
,

and

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
=

dz

dr

∂

∂x

(
x

(x2 + y2)
1
2

)

=
1
r

(
− 2x2

(x2 + y2)2
+

1
x2 + y2

)

=
1
r2
− 2x2

r4
.

By symmetry in the variables x and y, we can write immediately

∂2z

∂y2
=

1
r2
− 2y2

r4
.

Therefore, putting x2 + y2 = r2,

∂2z

∂x2
+

∂2z

∂y2
=

1
r2
− 2x2

r4
+

1
r2
− 2y2

r4
= 0,

which is a partial differential equation called Laplace’s equation. It has been verified that
z = ln r = 1

2 ln(x2 + y2) is a solution of Laplace’s equation.

28.10. Given the surface z = f(x, y) and a point Q : (a, b, c = f(a, b)) on the surface, then the
tangent plane at Q is given by

z − c =
(

∂f

∂x

)

(a,b)

(x− a) +
(

∂f

∂y

)

(a,b)

(y − b).
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The direction of a normal to the surface at Q is given by the vector
((

∂f

∂x

)

(a,b)

,

(
∂f

∂y

)

(a,b)

,−1

)
.

(a) Surface z = x2 + y2 and point Q : (1, 1, 2). The first partial derivatives are

∂f

∂x
= 2x = 2 at Q,

∂f

∂y
= 2y = 2 at Q.

Hence the tangent plane is

z − 2 = 2(x− 1) + 2(y − 1) or 2x + 2y − z = 2.

A normal vector at Q is (2, 2,−1).
(b) Surface z = xy and point Q : (2, 2, 4). The first partial derivatives are

∂f

∂x
= y = 2 at Q,

∂f

∂y
= x = 2 at Q.

Hence the tangent plane is

z − 4 = 2(x− 2) + 2(y − 2) or 2x + 2y − z = 4.

A normal vector at Q is (2, 2,−1).
(c) Surface z = x/y and point Q : (2, 1, 2). The first partial derivatives are

∂f

∂x
=

1
y

= 1 at Q,
∂f

∂y
= − x

y2
= −2 at Q.

Hence the tangent plane is

z − 2 = (x− 2)− 2(y − 1) or x− 2y − z = −2.

A normal vector at Q is (1,−2,−1).

(d) Surface z = (29− x2 − y2)
1
2 and point Q : (3, 4, 2). The first partial derivatives are

∂f

∂x
= − x

(29− x2 − y2)
1
2

= −3
2

at Q,
∂f

∂y
= − y

(29− x2 − y2)
1
2

= −2 at Q.

Hence the tangent plane is

z − 2 = − 3
2 (x− 3)− 2(y − 4) or 3x + 4y + 2z = 20.

A normal vector at Q is (− 3
2 ,−2,−1).

(e) Surface z = x2 + y2 − 2x− 2y and the point Q : (1, 2,−2). The first partial derivatives are

∂f

∂x
= 2x− 2 = 0 at Q,

∂f

∂y
= 2y − 2 = 0 at Q.

Hence the tangent plane is
z + 2 = 0, or z = −2.

A normal vector is (0, 0,−1).
(f) Surface z = exy and point Q : (0, 0, 1). The first partial deritives are

∂f

∂x
= yexy = 0 at Q,

∂f

∂y
= xexy = 0 at Q.
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Hence the tangent plane is
z − 1 = 0, or z = 1.

A normal vector is (0, 0,−1).

28.11. The surfaces are z = x2 + y2 and the plane z = x − y + 2. The point Q : (1, 1, 2) lies on
both surfaces. By (28.7), two normals are

n1 =

[(
∂(x2 + y2)

∂x

)

Q

,

(
∂(x2 + y2)

∂y

)

Q

,−1

]
= [(2x)Q, (2y)Q,−1] = (2, 2,−1),

n2 =

[(
∂(x− y + 2)

∂x

)

Q

,

(
∂(x− y + 2)

∂y

)

Q

,−1

]
= (1,−1,−1).

The scalar product
n1 · n2 = (2, 2,−1) · (1,−1,−1) = 2− 2 + 1 = 1.

If θ is the angle between the normals, then, by (10.4),

n1 · n2 = |n1||n2| cos θ.

Therefore
cos θ =

n1 · n2

|n1||n2| =
1√

(4 + 4 + 1)
√

(1 + 1 + 1)
=

1
3
√

3
.

The angle between the normals is equal to the angle between the surfaces at Q, which is 1.37 . . .
radians or 78.9 . . .◦.

28.12. The stationary points of f(x, y) occur at all simultaneous solutions of ∂f/∂x = 0, ∂f/∂y =
0. Let

∆(x, y) =
∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

, A(x, y) =
∂2f

∂x2
.

Let P : (a, b) is a stationary point. Then, from (28.9),
(i) P is a saddle if ∆(a, b) < 0;
(ii) P is a maximum if ∆(a, b) > 0 and A(a, b) < 0;
(iii) P is a minimum if ∆(a, b) > 0 and A(a, b) > 0.

(a) f(x, y) = (x− 1)(y + 2). The stationary point occurs where

∂f

∂x
= y + 2 = 0,

∂f

∂y
= x− 1 = 0,

that is, at (1,−2). The second derivatives are

∂2f

∂x2
= 0,

∂2f

∂y2
= 0,

∂2f

∂x∂y
= 1.

Hence ∆(1,−2) = −1 < 0, so that (1,−2) is a saddle.
(b) f(x, y) = x2 + y2 − 2x + 2y. The stationary point occurs where

∂f

∂x
= 2x− 2 = 0,

∂f

∂y
= 2y + 2 = 0,

that is, at (1,−1). The second derivatives are

∂2f

∂x2
= 2,

∂2f

∂y2
= 2,

∂2f

∂x∂y
= 0.

Hence ∆(1,−1) = 4 > 0 and A(1,−1) = 2 > 0, so that (1,−2) is a minimum.
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(c) f(x, y) = 1
3x3 − 1

3y3 − x + y + 3. Stationary points occur where

∂f

∂x
= x2 − 1 = 0,

∂f

∂y
= −y2 + 1 = 0,

that is, where (x− 1)(x + 1) = 0 and (y− 1)(y + 1) = 0. There are four stationary points at (1, 1),
(1,−1), (−1, 1) and (−1,−1). The second derivatives are

∂2f

∂x2
= 2x,

∂2f

∂y2
= −2y,

∂2f

∂x∂y
= 0.

(1, 1). At this point ∆(1, 1) = −4 < 0; hence (1, 1) is a saddle.
(1,−1). At this point ∆(1,−1) = 4 > 0 and A(1,−1) = 2 > 0; hence (1,−1) is a minimum.
(−1, 1). At this point ∆(−1, 1) = 4 > 0 and A(−1, 1) = −2 < 0; hence (−1, 1) is a maximum.
(−1,−1). At this point ∆(−1,−1) = −4 < 0; hence (−1,−1) is a saddle.
(d) f(x, y) = cos x + cos y. Stationary points occur where

∂f

∂x
= − sin x = 0,

∂f

∂y
= − sin y = 0,

The solutions of sin x = 0 are x = nπ (n = 0,±1,±2, . . .), and the solutions of sin y = 0 are y = mπ
(m = 0,±1,±2, . . .). Therefore stationary points occur at (nπ, mπ) for all the values of n and m
given. The second derivatives are

∂2f

∂x2
= − cosx,

∂2f

∂y2
= − cos y,

∂2f

∂x∂y
= 0.

Hence ∆(nπ,mπ) = cos nπ cosmπ = (−1)n(−1)m = (−1)n+m and A(nπ, mπ) = − cos nπ. If
n + m is an odd integer, then the stationary point is a saddle. If n + m is an even number then
the stationary point is a maximum if, additionally, n is even (which is equivalent to m even), and
a minimum if n is odd (which is equivalent to m odd).
(e) f(x, y) = ln(x2 + x) + ln(y2 + y) (assume that x > 0 and y > 0, or that x < −1 and y < −1:
otherwise the logarithms are not real). Stationary points occur where

∂f

∂x
=

2x + 1
x2 + x

= 0,
∂f

∂y
=

2y + 1
y2 + y

= 0.

The solution is x = − 1
2 , y = − 1

2 , but f(x, y) is not real at this point. Hence f(x, y) has no
stationary points.
(f) f(x, y) = ex2+y2−2x+2y. Stationary points occur where

∂f

∂x
= ex2+y2−2x+2y(2x− 2) = 0,

∂f

∂y
= ex2+y2−2x+2y(2y + 2) = 0,

that is, at (1,−1). The second derivatives are

∂2f

∂x2
= −2ex2+y2−2x+2y(2x2 − 4x + 3),

∂2f

∂y2
= 2ex2+y2−2x+2y(2y2 + 4y + 3),

∂2f

∂x∂y
= 4ex2+y2−2x+2y(x− 1)(y + 1).

Hence ∆(1,−1) = 4e−4 − 0 = 4e−4 > 0 and 2e−2 > 0. Therefore (1,−1) is a minimum.
(g) f(x, y) = xy + (1/x) + (1/y). Stationary points occur where

∂f

∂x
= − 1

x2
+ y = 0,

∂f

∂y
= x− 1

y2
= 0,
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Eliminate y between these equations giving x = x4, which has the solutions x = 0 and x = 1. We
discard x = 0 since f(x, y) is infinite there. The only stationary point is at (1, 1). The second
derivatives are

∂2f

∂x2
=

2
x3

,
∂2f

∂y2
=

2
y3

,
∂2f

∂x∂y
= 1.

Hence ∆(1, 1) = 4− 1 = 3 > 0 and A(1, 1) = 2 > 0. Therefore (1, 1) is a minimum.
(h) f(x, y) = x3 + y3 − 3xy = 1. Stationary points occur where

∂f

∂x
= 3x2 − 3y = 0,

∂f

∂y
= 3y2 − 3x = 0,

Eliminate y between these equations so that x4 = x, which has the solutions x = 0 and x = 1.
There are two stationary points at (0, 0) and (1, 1). The second derivatives are

∂2f

∂x2
= 6x,

∂2f

∂y2
= 6y,

∂2f

∂x∂y
= −3.

(0, 0). ∆(0, 0) = −(−3)2 = −9 < 0. Therefore (0, 0) is a saddle.
(1, 1). ∆(1, 1) = 6× 6− (−3)2 = 27 > 0 and A(1, 1) = 6 > 0. Therefore (1, 1) is a minimum.
(i) f(x, y) = sin x + sin y. Stationary points occur where

∂f

∂x
= cos x = 0,

∂f

∂y
= cos y = 0,

The solutions of cos x = 0 are x = 1
2 (2n + 1)π, (n = 0,±1,±2, . . .), and of cos y = 0 are y =

1
2 (2m + 1)π, (m = 0,±1,±2, . . .). Hence f(x, y) is stationary at ( 1

2 (2n + 1)π, 1
2 (2m + 1)π) for the

values of n and m stated. The second derivatives are

∂2f

∂x2
= − sin x,

∂2f

∂y2
= − sin y,

∂2f

∂x∂y
= 0.

Then

∆(1
2 (2n + 1)π, 1

2 (2m + 1)π) = sin[ 12 (2n + 1)π] sin[ 12 (2m + 1)π]
= (−1)n(−1)m = (−1)n+m,

and
A( 1

2 (2n + 1)π, 1
2 (2m + 1)π) = (−1)n+1

Therefore the stationary point is a saddle if n + m is odd, a maximum if n + m is even and n is
even, and a minimum if n + m is even and n is odd.
(j) f(x, y) = xy2 − x2y + x− y + 1. Stationary points occur where

∂f

∂x
= y2 − 2xy + 1 = 0,

∂f

∂y
= 2xy − x2 − 1 = 0,

Adding the two equations we obtain y2 = x2, which implies y = ±x. Substituting back into the
first equation for y = x:

x2 − 2x2 + 1 = 0, or x2 = 1.

This leads to two stationary points (1, 1) and (−1,−1). Substituting back for y = −x leads to

x2 + 2x2 + 1 = 0, or 3x2 + 1 = 0,

which has no real solutions.
The second derivatives are

∂2f

∂x2
= −2y,

∂2f

∂y2
= 2x,

∂2f

∂x∂y
= −2x + 2y.
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(1, 1). ∆(1, 1) = −4− 0 = −4 < 0. Hence (1, 1) is a saddle.
(−1,−1). ∆(−1,−1) = −4 < 0. Hence (−1,−1) is a saddle also.
(k) f(x, y) = x2 − y2 + 2xy. The stationary points occur where

∂f

∂x
= 2x + 2y = 0,

∂f

∂y
= 2x− 2y = 0,

The only stationary point is at (0, 0). The second derivatives are

∂2f

∂x2
= 2,

∂2f

∂y2
= −2,

∂2f

∂x∂y
= 2.

Hence ∆(0, 0) = −4− 22 = −8 < 0. Therefore (0, 0) is a saddle.
(l) f(x, y) = (2− x2 − y2)2. Stationary points occur where

∂f

∂x
= −4x(2− x2 − y2) = 0,

∂f

∂y
= −4y(2− x2 − y2) = 0,

This example is different in that all points on the circle x2+y2 = 2 have zero first partial derivatives,
but they cannot be classified using the second derivatives test since ∆ = 0 on the circle. There is
also an isolated stationary point at (0, 0). The second derivatives are

∂2f

∂x2
= 8x2 − 4(2− x2 − y2),

∂2f

∂y2
= 8y2 − 4(2− x2 − y2),

∂2f

∂x∂y
= 8xy.

Hence ∆(0, 0) = 64− 0 = 64 > 0 and A(x, y) = −8 < 0 which means that (0, 0) is a maximum.
(m) f(x, y) = x4 + y4 + y − x. Stationary points occur where

∂f

∂x
= 4x3 − 1 = 0,

∂f

∂y
= 4y3 + 1 = 0,

at (1/4
1
3 ,−1/4

1
3 ). The second derivatives are

∂2f

∂x2
= 12x2,

∂2f

∂y2
= 12y2,

∂2f

∂x∂y
= 0.

Hence ∆(1/4
1
3 ,−1/4

1
3 ) = 36 > 0 and A(1/4

1
3 ,−1/4

1
3 ) = 6 > 0. Therefore the stationary point is

a minimum.
(n) f(x, y) = x4 + y4. Stationary points occur where

∂f

∂x
= 4x3 = 0,

∂f

∂y
= 4y3 = 0,

Hence there is one stationary point at (0, 0). The second derivatives are

∂2f

∂x2
= 12x2,

∂2f

∂y2
= 12y2,

∂2f

∂x∂y
= 0.

Obviously ∆(0, 0) = 0, which means that the second derivatives test fails. However, f(0, 0) = 0
and f(x, y) > 0 for all (x, y) 6= (0, 0). Therefore the origin is a minimum.

28.13. Let f(x, y) = ax2 + 2hxy + by2. Stationary points occur where

∂f

∂x
= 2ax + 2hy = 0,

∂f

∂y
= 2hx + 2by = 0,

The linear equations equations ax+hy = 0, hx+by = 0 only have the solution x = 0, y = 0, unless
ab− h2 = 0, in which case x = hλ, y = −aλ where λ is an arbitrary constant (we can assume that
a 6= 0 and b 6= 0).
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The second derivatives are

∂2f

∂x2
= 2a,

∂2f

∂y2
= 2b,

∂2f

∂x∂y
= 2h.

• Case ab− h2 6= 0. ∆(0, 0) = 4ab− 4h2 = 4(ab− h2) 6= 0 and A(0, 0) = 2a. If ab− h2 < 0, then
the origin is a saddle. If ab−h2 > 0 and a > 0, then the origin is a minimum, whilst if ab−h2 > 0
and a < 0, the origin is a maximum.
• Case ab− h2 = 0. As we have seen, the stationary points occur at x = hλ, y = −aλ, which are
parametric equations of a straight line through the origin. At all points along the line f(x, y) = 0.

28.14. ∆ and A are defined in Problem 28.12.
(a) Put c = 21− a− b into abc, and let f(a, b) = ab(21− a− b). Then

∂f

∂a
= −b(2a + b− 21) = 0,

∂f

∂b
= −a(a + 2b− 21) = 0,

where a = 0, b = 0; a = 0, b = 21; a = 21, b = 0; and a = 7, b = 7. Therefore the stationary points
occur at (0, 0), (0, 21), (21, 0) and (7, 7). The second derivatives are

∂2f

∂a2
= −2b,

∂2f

∂b2
= −2a,

∂2f

∂a∂b
= 21− 2a− 2b.

•(0, 0). ∆(0, 0) = −212 = −441 < 0 which means that (0, 0) is a saddle.
•(0, 21). ∆(0, 21) = −212 = −441 < 0 which means that (0, 21) is a saddle.
•(21, 0). ∆(21, 0) = −212 = −441 < 0 which means that (21, 0) is also a saddle.
• (7, 7). ∆(7, 7) = 14× 14− 72 = 147 > 0 and A(7, 7) = −14 < 0. Hence (7, 7) is maximum.

Therefore abc is a maximum at a = 7, b = 7, c = 7.
(b) Put c = 64/(ab) into a+ b+ c, and let f(a, b) = a+ b+64/(ab). Stationary points occur where

∂f

∂a
= 1− 64

a2b
= 0,

∂f

∂b
= 1− 64

ab2
= 0,

The difference of these equations leads to

64
(

1
ab2

− 1
a2b

)
=

64
a2b2

(a− b) = 0

Hence a = b is the only solution. Substitute back to obtain a = b = 4. The second derivatives are

∂2f

∂a2
=

128
a3b

,
∂2f

∂b2
=

128
ab3

,
∂2f

∂a∂b
=

64
a2b2

.

Hence

∆(4, 4) =
128
434

128
4.43

− 642

4444
=

3× 642

48
> 0,

and A(4, 4) = 128/44 = 1/512 > 0 which means that (4, 4) is a minimum. Hence a + b + c is a
minimum where a = 4, b = 4, c = 4.

28.15. Let f(x, y) = (2− x2 − y2)2. The function is stationary where (see also Problem 28.12(l))

∂f

∂x
= −4x(2− x2 − y2),

∂f

∂y
= −4y(2− x2 − y2).

The function is stationary at all points on the circle x2 + y2 = 2, but these cannot be classified by
using (28.9): on this circle f(x, y) = 0. The function is also stationary at (0, 0), where it is a (local)
maximum as shown in Problem 28.12(l). Its value there is f(0, 0) = 4. However, it is possible
that the function has a greater value at some point on the boundary of the rectangle −1 ≤ x ≤ 2,
−1 ≤ y ≤ 1 where f(x, y) is not stationary. We can only check by calculating f(x, y) on each edge
of the rectangle. Thus
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• f(−1, y) = (1− y2)2. For −1 ≤ y ≤ 1, its maximum value is 1 at y = 0.

• f(x, 1) = (1− x2)2. For −1 ≤ x ≤ 2, its maximum value is 9 at x = 2.

• f(2, y) = (−2− y2)2. For −1 ≤ y ≤ 1, its maximum value is 9 at y = ±1.

• f(x,−1) = (1− x2)2. For −1 ≤ x ≤ 1, its maximum value is 1 at x = 0.

Therefore the maximum value of f(x, y) = (2 − x2 − y2)2 is 9, which occurs at the points (2, 1)
and (2,−1).

28.16. The lines can be represented parametrically by

x = y = z = λ,

and
2x = y = z + 2 = µ, or x = 1

2µ, y = µ, z = µ + 2.

For any value of λ and µ these represent points on the lines. The distance p(λ, µ) between these
general points is given by

p(λ, µ) = [(λ− 1
2µ)2 + (λ− µ)2 + (λ− µ− 2)2]

1
2 .

At the stationary points of p(λ, µ)

∂p

∂λ
=

1
2p(λ, µ)

[2(λ− 1
2
µ) + 2(λ− µ) + 2(λ− µ− 2)] = 0,

or
6λ− 5µ− 4 = 0 (i)

and
∂p

∂µ
=

1
2p(λ, µ)

[−(λ− 1
2
µ)− 2(λ− µ)− 2(λ− µ− 2)] = 0,

or
−10λ + 9µ + 8 = 0. (ii)

The solution of the linear equations (i) and (ii) is λ = −1, and µ = −2.
The second derivative test, which is lengthy in this case, is summarized. The second partial

derivatives are

∂2p

∂λ2
=

1
2p(λ, µ)3

(µ2 + 4µ + 16),
∂2p

∂µ2
=

1
2p(λ, µ)3

(λ2 + 2λ + 10),

∂2p

∂λ, µ
=

1
2p(λ, µ)3

(λµ + 2λ + µ + 12).

Then, using the notation of Problem 28.12,

∆(−1,−2) =
3√
2
· 9
4
√

2
−

(
− 5

2
√

2

)2

=
1
4

> 0,

and A(−1,−2) = 3/
√

2 > 0. Hence a minimum occurs at λ = −1, µ = −2. The shortest distance
joins the points (−1,−1,−1) on the first line and (−1,−2, 0) on the second line. This line is
perpendicular to both lines.

28.17. Let p(x, y) sum of the squares of the distances of P : (x, y) from the N points (x1, y1), (x2, y2), . . . , (xN , yN ).
Then

p(x, y) =
N∑

r=1

[(x− xr)2 + (y − yr)2].

16



The function is stationary where

∂p(x, y)
∂x

= 2
N∑

r=1

(x− xr) = 2Nx− 2
N∑

r=1

xr = 0,

and where
∂p(x, y)

∂y
= 2

N∑
r=1

(y − yr) = 2Ny − 2
N∑

r=1

yr = 0.

Hence the stationary point is at

x =
1
N

N∑
r=1

xr, y =
1
N

N∑
r=1

yr.

The second derivatives are

∂2p(x, y)
∂x2

= 2N,
∂2p(x, y)

∂y2
= 2N,

∂2p(x, y)
∂x∂y

= 0.

Hence, in the notation of Problem 28.12,

∆

(
N∑

r=1

xr/N,

N∑
r=1

yr/N

)
= 4N2 > 0 and A

(
N∑

r=1

xr/N,

N∑
r=1

yr/N

)
= 2N > 0.

Therefore the point (
∑N

r=1 xr/N,
∑N

r=1 yr/N) minimizes the sum of the squares.

28.18. (a) Let the edges of the box be of lengths x, y, z. Then the surface area α is given by

α = 2yz + 2zx + 2xy,

whilst the volume V = xyz and V is fixed. Hence z = V/(xy), and, eliminating z,

α = 2(y + x)
V

xy
+ 2xy.

This area is stationary where

∂α

∂x
= 2y − 2V

x2
= 0,

∂α

∂y
= 2x− 2V

y2
= 0.

From these equations, V = x2y and V = xy2. Hence x = y = V
1
3 , and also z = V/(xy) = V

1
3 : all

the edges have the same lengths, which means that the box is a cube. The second derivatives are

∂2α

∂x2
=

4V

x3
,

∂2α

∂y2
=

4V

y3
,

∂2α

∂x∂y
= 2.

Therefore
∆(V

1
3 , V

1
3 ) = 4× 4− 22 = 12 > 0, and A(V

1
3 , V

1
3 ) = 4 > 0,

which means that the area is a minimum.
(b) Let x and y be the lengths of the edges of the base of the box, and z its height. Then the
surface area α is given by

α = 2yz + 2zx + xy,

whilst the volume is V = xyz. Eliminating z:

α = 2(y + x)
V

xy
+ xy.
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This area is stationary where

∂α

∂x
= y − 2V

x2
= 0,

∂α

∂y
= x− 2V

y2
= 0.

From these two equations it follows that x = y = (2V )
1
3 , and that z = (V/4)

1
3 . The base is square

and the height of the box is half the edge-length of the base. The second derivatives are

∂2α

∂x2
=

4V

x3
,

∂2α

∂x2
=

4V

y3
,

∂2α

∂x∂y
= 1.

Therefore
∆(V

1
3 , V

1
3 ) = 2× 2− 1 = 3 > 0, and A(V

1
3 , V

1
3 ) = 2 > 0,

which means that the area is a minimum.
(c) Let r be the radius of the cylinder and h its height. The volume V of the cylinder is given by
V = πr2h.

(i) With a lid, its surface area is α = 2πr2 + 2πrh. Eliminating h:

α = 2πr2 +
2V

r
.

This is a function of a single variable r so that ordinary differentiation will do. Hence

dα

dr
= 4πr − 2V

r2
= 0

where r = [V/(2π)]
1
3 . The corresponding height is h = (4V/π)

1
3 . The second derivative is

d2α

dr2
= 4π +

4V

r3
= 12π > 0

for r = [(V/(2π)]
1
3 . Hence the surface area is a minimum.

(ii) Without a lid, its surface area is α = πr2 + 2πrh. Eliminating h:

α = πr2 +
V

r
.

Its derivative is
dα

dr
= 2πr − 2V

r2
= 0

where r = (V/π)
1
3 . The corresponding height is h = (V/π)

1
3 which equals the radius of the cylinder.

The area is a minimum since
d2α

dr2
= 2π +

4V

r3
= 6π > 0

for r = (V/π)
1
3 .

(d) Let x, y, z be the lengths of the edges. In this case α is fixed and V = xyz.
(i) As in (a), α = 2yz + 2zx + 2xy. Therefore

z =
α− 2xy

2(y + x)
. (i)

Eliminate z in the formula for V , so that

V =
xy(α− 2xy)

2(y + x)
.

The volume V will be stationary where

∂V

∂x
=

y2(α− 2x2 − 4xy)
2(x + y)2

= 0,
∂V

∂y
=

x2(α− 2y2 − 4xy)
2(x + y)2

= 0.
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Since neither x nor y will be zero for a maximum volume, we conclude that

α− 2x2 − 4xy = 0, and α− 2y2 − 4xy = 0,

which means that x = y restricted to positive solutions. Hence x = y =
√

(α/6), and from (i),
z =

√
(α/6) also. The rectangular container of maximum volume is a cube.

The second derivatives are

∂2V

∂x2
= −y2(α + 2y2)

(x + y)3
,

∂2V

∂y2
= −x2(a + 2x2)

(x + y)3
,

∂2V

∂x∂y
=

xy(α− 2x2 − 6xy − 2y2)
(x + y)3

.

Hence
∆[
√

(α/6),
√

(α/6)] =
a

8
> 0, A[

√
(α/6),

√
(α/6)] = −α

6
< 0,

showing that the cube is a maximum.
(ii) As in (b), the area α = 2yz + 2zx + xy where the base edges are x and y. Then

z =
α− xy

2(y + x)
,

and

V =
xy(α− xy)
2(y + x)

.

The volume will be stationary where

∂V

∂x
=

y2(α− x2 − 2xy)
2(x + y)2

= 0,
∂V

∂y
=

x2(α− y2 − 2xy)
2(x + y)2

= 0.

The required non-zero solutions are x = y =
√

(α/3). It follows that z = 1
2

√
(α/3).

The second derivatives are

∂2V

∂x2
= −y2(α + y2)

(x + y)3)
,

∂2V

∂y2
= −x2(α + x2)

(x + y)3
,

∂2V

∂x∂y
= −xy(−α + x2 + 3xy + y2)

(x + y)3
.

Hence
∆(
√

(α/3),
√

(α/3)) =
α

16
, and A(

√
(α/3),

√
(α/3)) = −1

2
√(α

3

)
.

Hence the box with dimensions

x = y =
√

(α/3), z =
1
2
√(α

3

)

has the maximum volume.

28.19. The table of data is

x 1 2 3 4 5
y 3.1 2.1 2.0 1.8 1.2

By (28.10), the least squares straight line fit to the points (xn, yn), (n = 1, 2, . . . , N) is y = ax + b,
where a and b satisfy the linear equations

a

N∑
n=1

x2
n + b

N∑
n=1

xn =
N∑

n=1

xnyn,
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a

N∑
n=1

xn + bN =
N∑

n=1

yn.

In this problem N = 5, and

5∑
n=1

x2
n = 55,

5∑
n=1

xn = 15,

5∑
n=1

xnyn = 26.5,

5∑
n=1

yn = 10.2.

Therefore a and b satisfy
55a + 15b = 26.5, 15a + 5b = 10.2,

which have the solution a = −0.41, b = 3.27. The required straight line is

y = −0.41x + 3.27.

28.20. The table of data is (to 2 decimal places in the third row)

t 0 2 3 5 8 10 12
P 12 23 26 60 170 300 690
y = ln P 2.48 3.13 3.26 4.09 5.14 5.70 6.54

We assume that the growth takes the form P = Aebt. Take the logarithm of the relation, so
that

ln P = ln A + bt = a + bt,

where ln A = a. We estimate a least squares fit using data in the first and third rows in the table.
Thus N = 7, and

7∑
n=1

t2n = 346,

7∑
n=1

tn = 40,

7∑
n=1

tnyn = 216.35,

7∑
n=1

yn = 30.34.

Therefore a and b satisfy

346a + 40b = 216.35, 40a + 7b = 30.34,

which have the solution a = 0.37, b = 2.24 to 2 decimal places. Since A = ea = 1.45, the
exponential fit to the data is P = 1.45e2.24t.

28.21. By (28.10), the stationary values of the function f(a, b), where

f(a, b) =
N∑

n=1

e2
n =

N∑
n=1

(yn − axn − b)2 (i)

(which is the sum of the squares of the errors in fitting the given points (xn, yn) by the straight
line y = ax + b) are obtained by solving for a, b in the equations

a

N∑
n=1

x2
n + b

N∑
n=1

xn =
N∑

n=1

xnyn, (ii)

,

a
N∑

n=1

xn + bN =
N∑

n=1

yn. (iii)

We shall show that f(a, b) is a global minimum by showing that if we take any different pair of
constants then the sum of the squares of errors is increased. Suppose that the new values are given
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by a + α and b + β, where α or β is different from zero. Then the new
∑N

n=1 e2
n is given by

N∑
n=1

e2
n =

N∑
n=1

[yn − (a + α)xn − (b + β)]2

=
N∑

n=1

[(yn − axn − b)− (αxn + β)]2

=
N∑

n=1

(yn − axn − b)2 − 2
N∑

n=1

(αxn + β)(yn − axn − b)

+
N∑

n=1

(αxn + β)2

= f(a, b)− 2α

N∑
n=1

(xnyn − ax2
n − bxn)

+2β

N∑
n=1

(yn − axn − b) +
N∑

n=1

(αxn + β)2.

The first term represents the value of f at the stationary point. The second is zero by eqn (ii). The
third is zero from eqn (iii). The final term is the sum of squares, and is therefore always positive.
Finally we have

N∑
n=1

e2
n = f(a, b) +

N∑
n=1

(αxn + β2
) => f(a, b),

for all α and β, which proves that f(a, b) is the smallest value attainable by f .

28.22. Let Lt{z(x, t)} = Z(x, s). The Laplace transform with respect to t of the partial differential
equation

∂z

∂t
+ x

∂z

∂x
+ z = 2x

is, using the derivative rule (24.12),

sZ(x, s)− sz(x, 0) + x
∂Z(x, s)

∂x
+ Z(x, s) = xL{1} =

2x

s
,

or
∂Z(x, s)

∂x
+

(1 + s)
x

Z(x, s) =
1
s
.

The Laplace transform of the boundary condition becomes Z(0, s) = 0. The differential equation is
a first-order equation with variable x of integrating-factor type (see Section 19.5). The integrating
factor is

exp
[∫

(1 + s)dx

x

]
= exp[(1 + s) ln x] = xs+1.

Therefore
d
dx

(xs+1Z(x, s)) =
2
s
xs+1.

Integrating

xs+1Z(x, s) =
2xs+2

s(s + 2)
+ C(s), or Z(x, s) =

2x

s(s + 2)
+

C(s)
xs+1

.

Since Z((0, s) = 0, we conclude that C(s) = 0, so that

Z(x, s) =
2x

s(s + 2)
= 2x

(
1
2s
− 1

2(s + 2)

)
.
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Inverting the Laplace transform, using (24.6),

z(x, t) = x− xe−2t,

which is the solution.

28.23. The height z of the grain in the silo is given by

z = f(x, y) = {2a2 − (x− 1
2a)2 − y2}/a = ( 7

4a2 − x2 + ax− y2)/a

on the square region OPQR defined by

0 ≤ x ≤ a, 0 ≤ y ≤ a

(see Fig 10).

x

y

a

a

O P

QR S

T

a�2

Figure 10: Problem 28.23

As in problem 23.15, the overall maximum or minimum might occur either:
(a) at points in the interior of the square where ∂z/∂x and ∂z/∂y are zero, and a local maximum
or minimum occurs, or
(b) on certain points on the edges, excluding the corners, or
(c) at one or more corners.
In cases (b) and (c), ∂z/∂x and ∂z/∂y will not necessarily be zero, so we must examine the edges
and corners separately from the interior o OPQR.
(a) Points interior to OPQR: 0 < x < a, 0 < y < a.
From (i),

∂z

∂x
=
−2x + a

a
,

∂z

∂y
= −2y

a
.

These are both zero only at the point T : ( 1
2a, 0). Since this point is on the edge OP we do not

have to take note of it.
(b) The edges excluding the corners.
On OP ,

z = f(x, 0) = ( 7
4a2 + ax− x2)/a,

where 0 < x < a. This is a function of the single variable x, and can be treated as in Section 15.4.
There is a maximum, with value z = 2a, at x = 1

2a: so z = 2a at T in Fig 10.
On PQ, z = f(a, y) = ( 7

4a2 − y2)/a, 0 < y < a.
There are no stationary points in this range.

On RQ, z = f(a, y) = ( 3
4a2 + ax− x2)/a, 0 < x < a.

There is a maximum, with value z = 2a, at x = 1
2a; so z = 2a at S on Fig. 10.

On OR, z = f(0, y) = ( 7
4a2 − y2)/a, 0 < y < a.

There are no stationary points in this range.
(c) The corners O,P, Q,R.
The values of z at these points are respectively 7

4a, 7
4a, 3

4a, 3
4a.
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Finally, the overall maximum z = 2a occurs on the edges at S and T , and the overall minimum
value z = 3

4a at the corners Q and R.

28.24. By (28.3) the order in which the individual differentiations are carried out in evaluating
an nth order partial derivative ∂nf/∂xr∂yn−r is immaterial. Therefore, If n is a fixed number,
the number of distinct nth order derivatives which may be formed is equal to the order r of the
x-derivative involved. We may have r = 0, 1, 2, . . . , n. Therefore the number of possible distinct
derivatives is n + 1.

Suppose that we had to write out all the possible nth order derivatives in all possible ways.
Then the first differentiation could be either with respect to x or y, the second with respect to x
or y and so on. Combining these possibilities, there would be 2× 2× · · · × 2 = 2n possible forms
for the derivatives.

28.25. Note that the correct form of the equation is g(x, y) = H{f(x, y)}, where H is a single-
valued function of a single variable. By (28.4),

∂g

∂x
= H ′{f(x, y)}∂f

∂x
,

∂g

∂y
= H ′{f(x, y)}∂f

∂y
.

Therefore
∂g

∂x

/
∂f

∂x
=

∂g

∂y

/
∂f

∂y
= H ′{f(x, y)},

so that
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= 0

for all x, y.

Chapter 29: Functions of two variables: geometry and formulae

29.1. Let z = f(x, y), and δx, δy be given increments in x and y. The corresponding increment
in z, δz about a ‘representative point’ (x, y), is defined (exactly) by

δz = f(x + δx, y + δy)− f(x, y). (i)

By (29.2), the ‘incremental approximation’ to δz is

δz ≈ ∂f

∂x
δx +

∂f

∂y
δy (ii)

for sufficiently small δx and δy, where the derivatives are evaluated at a representative point. The
‘percentage error’ E in the estimate (ii) to δz is given by

E = 100
(

approximation (ii)− exact value (i)
exact value (i)

)
.

Note: In physical applications the numerical values of the increments that appear in problems may
seem to be too large to qualify as ‘sufficiently small’ (for example, in Problem 29.5 an increment
of 50 occurs). However, a mere change of units could reduce this number to a small value without
changing the percentage error. A discussion of this point in one dimension follows Example 4.15.
(a) z = x2 + y2 at (3, 1), and δx = 0.1, δy = 0.3. The partial derivatives are

∂z

∂x
= 2x = 6,

∂z

∂y
= 2y = 2

at (3, 1). Hence, the incremental approximation is

δz ≈ ∂z

∂x
δx +

∂z

∂y
δy = (6× 0.1) + (2× 0.3) = 1.2.

23



The exact value is
δz = [(3.1)2 + (1.3)2]− [32 + 12] = 1.3.

The percentage error E in δz is given by

E = 100
(

1.2− 1.3
1.3

)
= −7.7%.

(b) z = sin xy at (0.5, 1.2) and δx = 0.1, δy = −0.05. The partial derivatives are

∂z

∂x
= y cosxy = 1.2 cos(0.6) = 0.990,

∂z

∂y
= x cosxy = 0.5 cos(0.6) = 0.413

at (0.5, 1.2) to 3 significant figures. The incremental approximation is

δz ≈ (0.990× 0.1)− (0.413× 0.05) = 0.0783,

and the exact value of δz is

δz = sin(0.6× 1.15)− sin(0.5× 1.2) = 0.0719.

The percentage error in δz is

E = 100
(

0.0783− 0.0719
0.0719

)
= 8.9%.

(c) z = ex2+3y2
at (1, 1) and δx = 0.1, δy = 0.2. The partial derivatives are

∂z

∂x
= 2xex2+3y2

= 109.2,
∂z

∂y
= 6yex2+3y2

= 327.6

at (1, 1). Hence the incremental approximation is

δz ≈ 109.2× 0.1 + 327.6× 0.2 = 76.44,

and the exact value of δz is
δz = e1.12+(3×1.22) − e4 = 197.54.

The percentage error in δz is

E = 100
(

76.44− 197.54
197.54

)
= −61.3%.

In this case, δy is too large for the incremental formula to give a useful result.
(d) z = 1/(x2 + y2)

1
2 at (2, 1) where δx = −0.2, δy = 0.1. The partial derivatives are

∂z

∂x
= − x

(x2 + y2)
3
2

= − 2
5
√

5
,

∂z

∂y
= − y

(x2 + y2)
3
2

= − 1
5
√

5

at (2, 1). Hence the incremental approximation is

δz ≈ − 2
5
√

5
× (−0.2)− 1

5
√

5
× 0.1 = 0.0268328.,

and the exact value of δz is

δz =
1

(1.82 + 1.12)
1
2
− 1

(22 + 12)
1
2

= 0.0268319.
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The percentage error in δz is

E = 100
(

0.0268328− 0.0268319
0.0268319

)
= 0.0034%.

29.2. Given z = x2 − y2 and the points P : (1.0, 2.1) and Q : (1.2, 2.0). The partial derivatives of
z are

∂z

∂x
= 2x,

∂z

∂y
= −2y.

(a) At P , ∂z/∂x = 2.0 and ∂z/∂y = −4.2. Between P and Q, δx = 1.2 − 1.0 = −0.2 and
δy = 2.0− 2.1 = −0.1. Hence, by (29.2), the change in z from P to Q is given approximately by

δz ≈
(

∂z

∂x

)

P

δx +
(

∂z

∂y

)

P

δy = (2.0× 0.2) + (−4.2)× (−0.1) = 0.82.

(b) At Q, ∂z/∂x = 2.4 and ∂z/∂y = −4. Between Q and P , δx = 1.0 − 1.2 = −0.2 and
δy = 2.1− 2.0 = 0.1. Hence, by (29.2), the change in z from Q to P is approximated by

δz ≈
(

∂z

∂x

)

Q

δx +
(

∂z

∂y

)

Q

δy = [2.4× (−0.2)] + [(−4)× 0.1] = −0.88.

(c) Although the δx and δy increments from P to Q are minus the increments from Q to P , the
partial derivatives at P and Q differ slightly, leading to small discrepancies in the estimates of |δz|.
29.3. The error E(δx, δy) in the approximation to δf at the point (x0, y0) is given by

E(δx, δy) = f(x0, y0) +
∂f

∂x

∣∣∣∣
(x0,y0)

δx +
∂f

∂y

∣∣∣∣
(x0,y0)

δy − f(x0 + δx, y0 + δy).

(a) f(x, y) = xy near (2, 1). The partial derivatives are

∂f

∂x
= y,

∂f

∂y
= x.

Hence the error in δf is

E(δx, δy) = 2 + (1× δx) + (2× δy)− (2 + δx)(1 + δy) = −δxδy.

(b) f(x, y) = x/y near (2, 1). The partial derivatives are

∂f

∂x
=

1
y
,

∂f

∂y
= − x

y2
.

Hence

E(δx, δy) = 2 + (1× δx) + (2× δy)− 2 + δx

1 + δy
=

δy(δx + 2δy)
1 + δy

.

29.4. (See Example 29.5.) The focal length f is given by

1
u

+
1
v

=
1
f

so that f =
uv

u + v
.

The partial derivatives are
∂f

∂u
=

v2

(u + v)2
,

∂f

∂v
=

u2

(u + v)2
.

The measured values of u and v are u = 0.31(±0.01) and v = 0.56(±0.03). Choose as the reference
values the central values u = 0.31 and v = 0.56, from which we obtain

∂f

∂u
= 0.127

∂f

∂v
= 0.414.
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Therefore
∆f ≈ 0.127∆u + 0.414∆v,

which takes its greatest magnitude 0.013 when ∆u = 0.01 and ∆v = 0.03. At u = 0.31, v = 0.56,
f = 0.20. Hence, the greatest possible error in estimating f is ∆f = 0.20(±0.01) to two decimal
places. The percentage error is 5%.

29.5. If the errors in d and l are ∆d and ∆l respectively, then by (29.3), the resultant error ∆η in
η is estimated by

∆η ≈ ∂η

∂d
∆d +

∂η

∂p
∆p. (i)

Taking reference values for the derivatives at the central points d = 0.002, l = 0.1, p = 5000 and
q = 1.66,

∂η

∂d
=

πpd3

32ql
= 23.7, and

∂η

∂p
=

πd4

128ql
= 23.7× 10−7.

From (i), and the error ranges specified, the error ∆η of the greatest magnitude occurs when
∆d = ±0.0001 and ∆p = ±50. In that case

∆η ≈ ±0.00249,

leadiong to an error of about 21%. (For a comment on the apparently large size of the increment
∆p, see the note at the opening of Problem 29.1.)

29.6. (See also Example 29.4.) The solution x(b, c) and its derivatives are given by

x =
1
2
[−b + (b2 − 4c)

1
2 ]; (i)

∂x

∂b
= −1

2
+

b

2(b2 − 4c)
1
2
,

∂x

∂c
= − 1

(b2 − 4c)
1
2
, (ii)

where the exact values of b and c are b = 20.4 and c = 95.5; and the rounded values are b = 20
and c = 96. Denote the rounding errors in b, c and x by ∆b, ∆c, ∆x, where

∆b = −0.4, ∆c = 0.5.

The incremental approximation is

δx ≈ ∂x

∂b
δb +

∂x

∂c
δx. (iii)

We may choose the ‘representative values’ of b, c (at which the derivatives in (iii) are to be
evaluated) to be the rounded values b = 20, c = 96. In this case the arithmetic is much simpler.
Then the incremental formula requires δb, δc and δx to stand for ‘(exact value)-(rounded value)’.
Therefore we should put

δb = 0.4 = −∆b, δc = −0.5 = −∆c, δx = ∆x, (iv)

along with
∂x

∂b
= 2,

∂x

∂c
= −0.25 (v)

into the incremental approximation (iii). Then

∆x = −δx ≈ −(2× 0.4)− [(−0.25)× (−0.5)] = −0.925.

The rounding error ∆x is about −0.9, and the percentage error (based on the rounded approxi-
mation to (i)) is about 11%.
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29.7. The area of a triangle with base b and base angles A and C is given by

S =
b2 tan A tan C

2(tan A + tan C)
.

The partial derivatives of S with respect to A and C are

∂S

∂A
=

b2 sec2 A tan2 C

2(tan A + tan C)2
,

∂S

∂C
=

b2 sec2 C tan2 A

2(tan A + tan C)2
.

The incremental approximation is

δS ≈ ∂S

∂A
δA +

∂S

∂C
δC.

The nominal values are b = 2, A = 30◦ and C = 60◦, so that at these values ∂S/∂A = 3
2 and

∂S/∂C = 1
2 . We now put δC = 5× 60/100 = 3◦ = 0.0524 radians. Thus

δS ≈ 3
2
δA +

1
2
δC =

3
2
δA +

1
2
0.0524.

S will take the same value if δS = 0. Therefore

δA = −1
3
× 0.0524 = −0.0175 radians.

Hence A must be reduced by 0.0175 radians or 1◦.

29.8. We are given S = ahr3/p2, where a is fixed but h, r and p are measured and contain errors.
Take the logarithms of S:

V = ln S = ln
[
ah3

p2

]
= ln a + ln h + 3 ln r − 2 ln p.

Using the incremental formula for a single variable (see 4.4) applied to the individual terms:

δV ≈ δS

S
≈ δh

h
+ 3

δr

r
− 2

δp

p
.

29.9. (a) The directional derivative at the point P in the direction θ on the surface z = f(x, y) is
given by

dz

ds
=

(
∂f

∂x

)

P

cos θ +
(

∂f

∂y

)

P

sin θ.

Along the contour through P , the derivative dz/ds = 0, so

tan θ = −
(

∂f

∂x

)

P

/(
∂f

∂y

)

P

.

Following Example 29.9, the directions of steepest ascent and descent are perpendicular to the
contour directions. These are the directions in which d(dz/ds)/dθ) = 0. The steepest ascent
occurs along the direction in which dz/dx is a maximum, namely

d2

dθ2

(
dz

ds

)
< 0,

by eqn (4.2) (or it can be deduced from the contour heights).
(a) z = f(x, y) = x2 + y2 at (1, 2), direction θ = 30◦. The partial derivatives of f are

∂f

∂x
= 2x = 2,

∂f

∂y
= 2y = 4, at (1, 2).
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Therefore the directional derivative is

dz

ds
= 2 cos 30◦ + 4 sin 30◦ = 2

√
3

2
+ 4

1
2

=
√

3 + 2.

The directions of the contour at P are given by the solutions of

tan θ = −∂f/∂x

∂f/∂y
= −2

4
= −1

2
,

which are the directions −26.6◦ and 153.4◦.
The directions of steepest ascent and descent are perpendicular to these directions. They are

respectively 63.4◦ and −116.6◦.
(b) f(x, y) = x2y2 at (2, 1), direction θ = −45◦. The partial derivatives are

∂f

∂x
= 2xy2 = 4,

∂f

∂y
= 2x2y = 8, at (2, 1).

Therefore the directional derivative is

dz

ds
= 4 cos(−45◦) + 8 sin(−45◦) = 4

1√
2
− 8

1√
2

= −2
√

2.

The directions of the contours at P are given by the solutions of tan θ = 1
2 , which are the directions

θ = 26.6◦ and θ = −153.4◦.
To find the direction θ of steepest ascents at (2, 1),

dz

ds
= 4 cos θ + 8 sin θ,

so that
d
dθ

(
dz

ds

)
= −4 sin θ + 8 cos θ,

d2

dθ2

(
dz

ds

)
= −4 cos θ − 8 sin θ.

The steepest paths occur where tan θ = 2, in directions θ = 63.43◦ and θ = −116.57◦. For
θ = 63.43◦,

d2

dθ2

(
dz

ds

)
= −4

1√
5
− 8

2√
5

= −4
√

5 < 0.

Hence dz/ds is a maximum which means that this direction is the steepest ascent.
(c) f(x, y) = x2y − xy2 + 2 at (−1, 1), direction θ = 120◦. The partial derivatives are

∂f

∂x
= 2xy − y2 = −3,

∂f

∂y
= x2 − 2xy = 3, at (−1, 1).

The directional derivative is

dz

ds
= −3 cos 120◦ + 3 sin 120◦ =

3
2

+
3
√

3
2

=
3
2
(1 +

√
3).

The directions of the contours are θ = 45◦ and θ = −135◦. The steepest ascent is in the direction
θ = 135◦.
(d) f(x, y) = sin xy at ( 1

2 , π), direction θ = −90◦. The partial derivatives are

∂f

∂x
= y cosxy = 0,

∂f

∂y
= x cosxy = 0, at ( 1

2 , π)

The directional derivative is
dz

ds
= 0,
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independently of the direction θ, because ( 1
2 , π) is a stationary point of f(x, y). The second

derivative test (28.9) fails for this stationary value. Since f(x, y) can never exceed 1, and f( 1
2 , π) =

1, the contour through ( 1
2 , π) is given by xy = 1

2π, which is a rectangular hyperbola. There is no
steepest ascent at ( 1

2 , π).
(e) f(x, y) = cos(x2 − y) at (0,−π), direction θ = 0. The partial derivatives are

∂f

∂x
= −2x sin(x2 − y) = 0,

∂f

∂y
= sin(x2 − y) = 0, at (0,−π)

The directional derivative is
dz

ds
= 0.

independently of the direction θ, because (0,−π) is a stationary point of f(x, y). As in (d) above,
the second derivative test (28.9) fails. The contour through (0,−π) is given by

cos(x2 − y) = cos π = −1,

which is the parabola y = x2 − π. Since

f(x, y)− f(0,−π) = cos(x2 − 1) + 1 ≥ 0

there will be a steepest ascent in the directions θ = 1
2π and θ = − 1

2π perpendicular to the contour
through (0,−π): there are no steepest descents.
(f) f(x, y) = ex−y at (1, 1), direction θ = −45◦. The partial derivatives are

∂f

∂x
= ex−y = 1,

∂f

∂y
= −ex−y = −1, at (1, 1).

The directional derivative is
dz

ds
= 1× 1√

2
+ 1× 1√

2
=
√

2.

The contour through (1, 1) is in the directions given by tan θ = 1, which are θ = 45◦ and θ = −135◦.
The steepest ascent is in the direction θ = −45◦.

29.10. The implicit-differentiation formula (29.6) for the slope of f(x, y) = c at any point (x, y)
is given by

dy

dx
= −∂f

∂x

/
∂f

∂y
.

(a) f(x, y) ≡ xy = 1 at (2, 1
2 ). The partial derivatives are

∂f

∂x
= y =

1
2
,

∂f

∂y
= x = 2, at

(
2,

1
2

)
.

Therefore
dy

dx
= −

1
2

2
= −1

4
.

(b) f(x, y) ≡ x2 + y2 = 25 at (3, 4). The partial derivatives are

∂f

∂x
= 2x = 6,

∂f

∂y
= 2y = 8, at (3, 4).

Therefore
dy

dx
= −6

8
= −3

4
.

(c) f(x, y) ≡ 1/x− 1/y at (1, 2). The partial derivatives are

∂f

∂x
= − 1

x2
= −1,

∂f

∂y
=

1
y2

=
1
4
, at (1, 2).
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Therefore
dy

dx
= − (−1)

1
4

= 4.

(d) f(x, y) ≡ 1
10x2 + 1

15y2 = 1 at (2, 3). The partial derivatives are

∂f

∂x
=

x

5
=

2
5
,

∂f

∂y
=

2y

15
=

2
5
, at (2, 3).

Therefore
dy

dx
= −

2
5
2
5

= −1.

(e) f(x, y) ≡ x3 + 2y3 = 3 at (1, 1). The partial derivatives are

∂f

∂x
= 3x2 = 3,

∂f

∂y
= 6y2 = 6, at (1, 1).

Therefore
dy

dx
= −3

6
= −1

2
.

(f) f(x, y) ≡ x3y + 3x2 − y2 − 19 = 0 at (2, 1). The partial derivatives are

∂f

∂x
= 3x2y + 6x = 24,

∂f

∂y
= x3 − 2y = 6, at (2, 1).

Therefore
dy

dx
= −24

6
= −4.

(g) f(x, y) ≡ xy2 − x2y + 6 = 0 at (3, 2). The partial derivatives are

∂f

∂x
= y2 − 2xy = −8,

∂f

∂y
= 2xy − x2 = 3, at (3, 2).

Therefore
dy

dx
= −−8

3
=

8
3
.

(h) f(x, y) ≡ x2 + y2 = 4 at (2 cos θ, 2 sin θ). The partial derivatives are

∂f

∂x
= 2x = 4 cos θ,

∂f

∂y
= 2y = 4 sin θ, at (cos θ, sin θ).

Therefore
dy

dx
= −4 cos θ

4 sin θ
= − cot θ.

(i) f(x, y) ≡ x2/a2 + y2/b2 = 1 at (a cos t, b sin t). The partial derivatives are

∂f

∂x
=

2x

a2
=

2
a

cos t,
∂f

∂y
=

2y

b2
=

2
b

sin t, at (a cos t, b sin t).

Therefore
dy

dx
= − b

a
cot t.

(j) f(x, y) ≡ x cos y − y sinx = 0 at ( 1
2π, 0). The partial derivatives are

∂f

∂x
= cos y − y cosx = 1,

∂f

∂y
= −x sin y − sin x = −1, at ( 1

2π, 0).

Therefore
dy

dx
= −

(
1
−1

)
= 1.
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(k) f(x, y) ≡ y2 − 4ax = 0 at (at2, 2at). The partial derivatives are

∂f

∂x
= −4a,

∂f

∂y
= 2y = 4at, at (at2, 2at).

Therefore
dy

dx
= −

(−4a

4at

)
=

1
t
.

29.11. The result can be verified by direct differentiation since V = RT/P implies
(

∂V

∂P

)

T

= −RT

P 2
,

and T = PV/R implies (
∂T

∂P

)

V

=
V

R
,

(
∂T

∂V

)

P

=
P

R
.

Hence
(

∂V

∂P

)

T

+
(

∂T

∂P

)

V

/(
∂T

∂V

)

P

= −RT

P 2
+

V

R

/
P

V

= −RT

P 2
+

RT

P 2
= 0,

since V = RT/P .
The result to be proved is that

(
∂V

∂P

)

T

= −
(

∂T

∂P

)

V

/(
∂T

∂V

)

P

,

which bears a close formal resemblance to the implicit-differentiation formula (29.6). If we rewrite
that formula in the more explicit form

(
dy

dx

)

f(x,y),constant
= −

(
∂f

∂x

)

y

/ (
∂f

∂y

)

x

,

an exact match is obtained by putting x = P , y = V and T = f(P, V ) (ignoring R, which is
constant throughout). The result therefore holds good for a general relationship between P , V and
R; not simply to PV = RT . Several such thermodynamic formulae are proved in Section 31.2.

29.12. Require the tangent line to the given curve at the point (x1, y1) on the curve. Use (29.6)
for the slope.
(a) The circle f(x, y) ≡ x2 + y2 = a2. The slope at (x1, y1) is given by

m =
dy

dx
= −∂f

∂x

/
∂f

∂y
= −2x

2y
= −x1

y1
.

Hence the tangent at (x1, y1) is (see (2.8))

y − y1 = m(x− x1) = −x1

y1
(x− x1), or x1x + y1y = a2.

(b) The ellipse f(x, y) ≡ x2/a2 + y2/b2 = 1. The slope at (x1, y1) is given by

m =
dy

dx
= −2x

a2

b2

2y
= −x1b

2

y1a2
.

Hence the tangent at (x1, y1) is

y − y1 = −x1b
2

y1a2
(x− x1), or

x1x

a2
+

y1y

b2
= 1.
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(c) f(x, y) ≡ a2x2 − b2y2 = c. The slope at (x1, y1) is given by

m =
dy

dx
= −

(
2a2x

−2b2y

)
=

a2x1

b2y1
.

Hence the tangent at (x1, y1) is (since x1y1 = 1),

y − y1 =
a2x1

b2y1
(x− x1), or a2x1x− b2y1y = c.

(d) The rectangular hyperbola f(x, y) ≡ xy = 1. The slope at (x1, y1) is given by

m =
dy

dx
= −y

x
= − y1

x1
.

Hence the tangent at (x1, y1) is

y − y1 = − y1

x1
(x− x1), or y1x + x1y = 2x1y1 = 2.

(e) f(x, y) ≡ x
2
3 + y

2
3 = 1. The slope at (x1, y1) is given by

m =
dy

dx
= −

2
3x−

1
3

2
3y−

1
3

= −
(

y1

x1

) 1
3

.

Hence the tangent at (x1, y1) is

y − y1 = −
(

y1

x1

) 1
3

(x− x1), or y
1
3
1 x + x

1
3
1 y = x

1
3
1 y

1
3
1 .

(f) F (x, y) ≡ ax2 + 2hxy + by2 + 2gx + 2fy + c = 0. The slope at (x1, y1) is given by

m =
dy

dx
= −∂F

∂x

/
∂F

∂y
= −2ax + 2hy + 2g

2hx + 2by + 2f
= −ax1 + hy1 + g

hx1 + by1 + f
.

Hence the tangent at (x1, y1) is

y − y1 = −ax1 + hy1 + g

hx1 + by1 + f
(x− x1),

or
ax1x + h(y1x + x1y) + by1y + fy1 + gy1 + c = 0.

29.13. The curves f(x, y) = α and g(x, y) = β intersect at (a, b). By (29.6) the slopes of the two
curves are respectively

m1 = −∂f

∂x

/
∂f

∂y
, m2 = −∂g

∂x

/
∂g

∂y

at (a, b). The curves intersect at right angles if m1m2 = −1, that is, if
(
−∂f

∂x

/
∂f

∂y

) (
−∂g

∂x

/
∂g

∂y

)
= −1, or,

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
= 0.

(a) f(x, y) ≡ x2 + y2 = α, g(x, y) ≡ y/x = β. Then

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
= (2x)

(
− y

x2

)
+ 2y

(
1
x

)
= 0

for all x and y. Hence the curves always intersect at right angles: the two families of curves are
said to be orthogonal.
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(b) f(x, y) ≡ x2 − y2 = α, g(x, y) ≡ xy = β. Then

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
= (2x)y + (−2y)x = 0

for all x and y. The two systems of curves are orthogonal.
(c) f(x, y) ≡ y3 − x3 = α, g(x, y) ≡ 1/y + 1/x = β. Then

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
= (−3x2)

(
− 1

x2

)
+ (3y2)

(
− 1

y2

)
= 0

for all x and y. The two systems of curves are orthogonal.
(d) f(x, y) ≡ (x2 + y2)/x = α, g(x, y) ≡ (x2 + y2)/y = β. Then

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
=

(
1− y2

x2

) (
2x

y

)
+

(
2y

x

)(
−x2

y2
+ 1

)
= 0

for all x and y. Hence the two system of curves are orthogonal.

29.14. At any point on the curve f(x, y) ≡ y3 − x3 = 1,

dy

dx
= −∂f

∂x

/
∂f

∂y
=

3x2

3y2
=

x2

y2
,

using (29.6).
The differential equation

y2 dy

dx
= x2

is a separable first-order equation (see Section 22.3) with solution
∫

y2dy =
∫

x2dx + C, or
1
3
y3 =

1
3
x3 + C,

where C is a constant. For the curve given in the problem, C = 1
3 . All the solutions are given by

y3 − x3 = A, where A is any constant.

29.15. (a) Let f(x, y) = x2 + 2y2. Then the slope at any point on the curve x2 + 2y2 = c is given
by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −2x

4y
= − x

2y

using (29.6). The family of curves is generated by the differential equation

2y
dy

dx
= −x.

The computed contours (they are ellipses) are shown in Figure 11.
(b) Let f(x, y) = x2 + xy− y3. Then the slope at any point on the curve x2 + xy− y3 = c is given
by

dy

dx
= −∂f

∂x

/
∂f

∂y
= − 2x + y

x− 3y2

using (29.6). The family of curves is generated by the differential equation

(x− 3y2)
dy

dx
= −(2x + y).

The computed contours are shown in Figure 12.
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Figure 11: Problem 29.15a
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Figure 12: Problem 29.15b

(c) Let f(x, y) = (x2 + y)/(x+ y2). Then the slope at any point on the curve (x2 + y)/(x+ y2) = c
is given by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −

(
x2 − y + 2xy2

(x + y2)2

) (
(x + y)2

x− 2x2y + y2

)

using (29.6). The family of curves is generated by the differential equation

(x− 2x2y + y2)
dy

dx
= −(x2 − y + 2xy2).

The computed contours are shown in Figure 13.
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Figure 13: Problem 29.15c

(d) Let f(x, y) = xye−x. Then the slope at any point on the curve xye−x = c is given by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −y(1− x)e−x

xe−x
= −y(1− x)

x

using (29.6). The family of curves is generated by the differential equation

x
dy

dx
= −y(1− x).

The computed contours are shown in the figure.
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Figure 14: Problem 29.15d

29.16. (See Example 29.12.) (a) f(x, y) ≡ y2 − x2 = c. The differential equation which generates
this family of curves is given by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −

(−2x

2y

)
=

x

y
.

Since the orthogonal system is everywhere perpendicular to the family above, its differential equa-
tion is

dy

dx
= −y

x
.

This is a separable equation (see Section 22.3) with solution
∫

dy

y
= −

∫
dx

x
+ C, or ln |y| = − ln |x|+ C, or ln |xy| = C.

All cases are covered by the family of rectangular hyperbolas xy = A, which is the orthogonal
system.
(b) f(x, y) ≡ y3 + x3 = c. The differential equation which generates this family of curves is given
by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −

(
3x2

3y2

)
= −x2

y2
.

Since the orthogonal system is everywhere perpendicular top the family above its differential equa-
tion is

dy

dx
=

y2

x2
.

This is a separable equation (see Section 22.3) with solution
∫

dy

y2
=

∫
dx

x2
+ C, or − 1

y
= − 1

x
+ C.

The orthogonal system is
y =

x

1− Cx
.

(c) f(x, y) ≡ y2/x = c. The differential equation which generates this family of curves is given by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −

(
−y2

x2

)/ (
2y

x

)
=

y

2x
.

Since the orthogonal system is everywhere perpendicular to the family above its differential equa-
tion is

dy

dx
= −2x

y
.

This is a separable equation (see Section 22.3) with solution
∫

ydy = −
∫

2xdx + C, or
1
2
y2 = −x2 + C,
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which is the orthogonal system (a family of ellipses).
(d) f(x, y) ≡ ey − ex = c. The differential equation which generates this family of curves is given
by

dy

dx
= −∂f

∂x

/
∂f

∂y
= −

(−ex

ey

)
= ex−y.

Since the orthogonal system is everywhere perpendicular top the family above its differential equa-
tion is

dy

dx
= −ey−x.

This is a separable equation (see Section 22.3) with solution
∫

e−ydy = −
∫

e−xdx + C, or − e−y = e−x + C,

or
e−x + e−y = −C,

which is the orthogonal system.

29.17. Let z = f(x, y), and let A = ∂f/∂x and B = ∂f/∂y at the point P : (a, b). The slope on
the surface z = f(x, y) in the direction θ at P is

dz

ds
= A cos θ + B sin θ.

Then the direction of steepest ascent occurs when

d
dθ

(
dz

dθ

)
= −A sin θ + B cos θ = 0 and M =

d2

dθ2

(
dz

ds

)
= −A cos θ −B sin θ < 0

at P by the test (4.2) for a local maximum .
(a) z = f(x, y) = 1

2x2 + y2. Then

A =
∂f

∂x
= x = a, B =

∂f

∂y
= 2y = 2b

at P . The directions of steepest ascent/descent are given by tan θ = B/A = 2b/a, that is where
θ = α1 = arctan(2b/a) and θ = α2 = arctan(2b/a) + π . Further, for θ = α1,

M = −a cos α1 − b sin α1 = −√(a2 + 2b2) < 0.

Therefore the direction α1 is the direction of steepest ascent.
(b) z = f(x, y) = x3y3. Then

A =
∂f

∂x
= 3x2y3 = 3a2b3, B =

∂f

∂y
= 3x3y2 = 3a3b2

at P . The directions of steepest ascent/descent are given by tan θ = B/A = a/b, that is where
θ = α1 = arctan(a/b) and θ = α2 = arctan(a/b) + π . Further, for θ = α1,

M = −3a2b3 cosα1 − 3a3b2 sin α1 = −3a2b2√(a2 + b2) < 0.

Therefore the direction α1 is the direction of steepest ascent.
(c) z = f(x, y) = 1

2y2 − y − x2. Then

A =
∂f

∂x
= −2x = −2a, B =

∂f

∂y
= y − 1 = b− 1
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at P . The directions of steepest ascent/descent are given by tan θ = B/A = −(b− 1)/(2a), that is
where θ = α1 = arctan[−(b− 1)/(2a)] and θ = α2 = arctan[−(b− 1)/(2a)] + π.
• b 6= 1. For θ = α1, M(α1) = −√(4a2 + (b− 1)2) < 0. Hence the steepest ascent is in the
direction α1.
•b = 1. In this case A = −2a and B = 0, and α1 = 0 and α2 = π. Hence M(α1) = 2a. Hence α1

is the direction of steepest ascent if a < 0 and α2 is the direction of steepest ascent if a > 0. If
a = 0, then the point (0, 1) is a minimum of z = 1

2y2 − x2.

29.18. Given f(x, y) = x2 + 2xy + y2 = c, direct differentiation gives

2x + 2x
dy

dx
+ 2y + 2y

dy

dx
= 0

as stated in the question. Hence
dy

dx
= −1.

Using (29.6) instead,
dy

dx
= −∂f

∂x

/
∂f

∂y
= −2x + 2y

2x + 2y
= −1

confirming the result.

29.19. The slope at a point P on the curve f(x, y) = c is, by (29.6),

dy

dx
= −

(
∂f

∂x

)

P

/(
∂f

∂y

)

P

.

Hence a normal vector n to the curve at P is

n =
[(

∂f

∂x

)

P

,

(
∂f

∂y

)

P

]

(see (29.7)).
(a) Let f(x, y) ≡ xy = 2 and g(x, y) ≡ x2 − y2 = −3. Then normal vectors to the two curves are

n1 =
(

∂f

∂x
,
∂f

∂y

)
= (y, x) = (2, 1), n2 =

(
∂g

∂x
,
∂g

∂y

)
= (2x,−2y) = (2,−4)

at P : (1, 2). By (10.4), the angle θ between the normals n1 and n2 is given by

cos θ =
n1 · n2

|n1||n2| = 0.

Hence the curves meet at right angles at (1, 2).
(b) Let f(x, y) ≡ y − x3 = 0 and g(x) ≡ x2 + 1

2y2 = 36. The normal vectors to the two curves are

n1 =
(

∂f

∂x
,
∂f

∂y

)
= (−3x2, 1) = (−12, 1), n2 =

(
∂g

∂x
,
∂g

∂y

)
= (2x, y) = (4, 8)

at P : (2, 8). By (10.4), the angle θ between the normals n1 and n2 is given by

cos θ =
n1 · n2

|n1||n2| =
−48 + 8√
145

√
80

= − 2√
29

.

(c) Let f(x, y) ≡ x2 +xy + y2 = 3 and g(x) ≡ x+ y = 2. The normal vectors to the two curves are

n1 =
(

∂f

∂x
,
∂f

∂y

)
= (2x + y, x + 2y) = (3, 3), n2 =

(
∂g

∂x
,
∂g

∂y

)
= (1, 1)
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at P : (1, 1). By (10.4), the angle θ between the n1 and n2 is given by

cos θ =
n1 · n2

|n1||n2| =
3 + 3√
18
√

2
= 1.

The surfaces have a common tangent plane at (1, 1).
(d) Let f(x) ≡ ax2 + 2hxy + by2 + c = 0 and

g(x) = ax0x + 1
2h(x0 + x)(y0 + y) + by0y + c = 0

(note the correction to g(x)). The normal vectors to the two curves at (x0, y0) are

n1 =
(

∂f

∂x
,
∂f

∂y

)

(x0,y0)

= (2ax0 + 2hy0, 2hx0 + 2by0),

n2 =
(

∂g

∂x
,
∂g

∂y

)

(x0,y0)

= (ax0 + hy0, hx0 + by0) =
1
2
n1.

The normals n1 and n2 are parallel and in the same direction at (x0, y0), so θ = 0. Note that any
point (x0, y0) on the first curve also lies on the second. In fact the second equation is the equation
of the tangent line at (x0, y0) (compare Problem 29.12(f)).

29.20. (a) Let f(x, y) ≡ x4 − y4 = 1. Then, by (29.6),

dy

dx
= −∂f

∂x

/
∂f

∂y
=

x3

y3
, or y3 dy

dx
− x3 = 0. (i)

Differentiate this equation with respect to x treating y as a function of x. Then

3y2

(
dy

dx

)2

+ y3 d2y

dx2
− 3x2 = 0,

or

3y2

(
x3

y3

)2

+ y3 d2y

dx2
− 3x2 = 0

using (i). Hence
d2y

dx2
=

3x2(y4 − x4)
y7

.

(b) Let f(x, y) ≡ xy = 1. Hence

dy

dx
= −y

x
, or x

dy

dx
+ y = 0.

Differentiate this equation with respect to x so that

dy

dx
+ x

d2y

dx2
+

dy

dx
= 0.

Therefore
d2y

dx2
= −2

dy

dx
=

2y

x2
=

2
x3

.

The result can be checked by differentiating y = 1/x directly.
(c) Let f(x, y) ≡ xyexy = 1. By (29.6)

dy

dx
= −yexy + xy2exy

xexy + x2yexy
= −y

x
.
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(Note that this can also be inferred since xy = constant.) The answer is therefore the same as the
previous one:

d2y

dx2
=

2y

x2
=

2
x3

.

29.21. (a) f(x, y) = 1/(x + y) at (1,−2). The gradient is given by

grad f =
(

∂f

∂x
,
∂f

∂y

)
=

(
− 1

(x + y)2
,− 1

(x + y)2

)
= (−1,−1)

at (1,−2). Further, the direction of the gradient is −135◦ to the positive x axis, and its magnitude
is |grad f | = √

(1 + 1) =
√

2.
(b) f(x, y) = y/x at (2, 0). The gradient is given by

grad f =
(
− y

x2
,
1
x

)
= (0, 1

2 )

at (2, 0). The direction of the gradient is at 90◦ to the x axis, and its magnitude is |grad f | = 1
2 .

(c) f(x, y) = y2 − 3x2 + 1 at (0, 0). The gradient is given by

grad f = (−6x, 2y) = (0, 0)

at (0, 0). Since this is a vector of zero magnitude, we cannot associate a direction with it.
(d) f(x, y) = 1/x− 1/y at (2, 1).The gradient is given by

grad f =
(
− 1

x2
,

1
y2

)
= (− 1

4 , 1)

at (2, 1). Its direction is 30◦ to the x axis., and its magnitude is about 104◦ to the x axis.

(e) f(x, y) = 1/r = 1/(x2 + y2)
1
2 at any point. The gradient is given by

grad f =
(
− x

(x2 + y2)
3
2
,− y

(x2 + y2)
3
2

)
=

(
− x

r3
,− y

r3

)
.

A vector with components (x, y) points outward radially. The gradient has components which ar
proportional to these. The negative sign means that the gradient always points towards the origin.

29.22. A normal to the curve f(x, , y) = c at any point is grad f and a unit normal is grad f/|grad f |.
(a) f(x, y) ≡ 2x− 3y + 1 = 0 at any point. A unit normal is given by

n =
grad f

|grad f | =
(2,−3)√
(22 + 32)

=
(

2√
13

,− 3√
13

)
.

(b) f(x, y) ≡ x2 + y2 = 5 at (2, 1). A unit normal is given by

n =
grad f

|grad f | =
(4, 2)√

(42 + 22)
=

(
2√
5
,

1√
5

)
.

(c) f(x, y) ≡ x2 + y2 = r2 at (x0, y0). Since this point lies on the circle, r2 = x2
0 + y2

0 . A unit
normal is given by

n =
grad f

|grad f | =
(2x, 2y)√

(4x2 + 4y2)
=

(x0

r
,
y0

r

)

at (x0, y0).
(d) f(x, y) ≡ x2/a2 + y2/b2 = 1 at (x0, y0). Since this point lies on the ellipse, x2

0/a2 + y2
0/b2 = 1.

A unit normal is given by

n =
grad f

|grad f | =
(

2x

a2
,
2y

b2

) (
x2

a4
+

y2

b4

)− 1
2

=
(x0b

2, y0a
2)√

(x2
0b

4 + y2
0a2)
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at (x0, y0).
(e) f(x, y) ≡ y − 3x2 = −2 at (2, 10). A unit normal is

n =
grad f

|grad f | =
(−6x, 1)√
(36x2 + 1)

=
(−12, 1)√

145

at (2, 10).

29.23. See (29.9) and Problem 29.19.
(a) Let f(x, y) ≡ y2 − x2 = −3 and g(x, y) ≡ x3 − y3 = 7 at (2, 1). Then normal vectors to the
two curves are

n1 =
(

∂f

∂x
,
∂f

∂y

)
= (−2x, 2y) = (−4, 2),

n2 =
(

∂g

∂x
,
∂g

∂y

)
= (3x2,−3y2) = (12,−3)

at (2, 1). By (10.4), the angle θ between the normals n1 and n2 is given by

cos θ =
n1 · n2

|n1||n2| =
(−4, 2) · (12,−3)√

20
√

153
= − 9√

85
.

Hence θ = 167◦.
(b) Let f(x, y) ≡ x2y− xy2 = 0 and g(x, y) = x/y− y/x = 0 at (2, 2). Then normal vectors to the
two curves are

n1 =
(

∂f

∂x
,
∂f

∂y

)
= (2xy − y2, x2 − 2xy) = (4,−4),

n2 =
(

∂g

∂x
,
∂g

∂y

)
=

(
1
y

+
y

x2
,− x

y2
− 1

x

)
= (1,−1)

at (2, 2). By (10.4), the angle θ between the normals n1 and n2 is given by

cos θ =
n1 · n2

|n1||n2| =
(4,−4) · (1,−1)√

32
√

2
= 0.

Hence the curves intersect at right angles.
(c) Let f(x, y) ≡ x2 + y2 + 2x − 4y + 4 = 0 and g(x, y) ≡ y − x2 − 2x − 2 = 0 at (−1, 1). Then
normal vectors to the two curves are

n1 =
(

∂f

∂x
,
∂f

∂y

)
= (2x + 2, 2y − 4) = (0,−2),

n2 =
(

∂g

∂x
,
∂g

∂y

)
= (−2x− 2, 1) = (0, 1)

at (−1, 1). By (10.4), the angle θ between the normals n1 and n2 is given by

cos θ =
n1 · n2

|n1||n2| =
(0,−2) · (0, 1)

2× 1
= −1.

Hence θ = 180◦, which means that the curves touch at (−1, 1) having a common tangent there.

29.24. From (29.12), the directional derivative is given by

df

ds
= |grad f | cos φ

where φ is the smaller angle between gradφ and the chosen direction.
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(a) Along the contour through a given point f is constant so that df/ds = 0. Hence cos φ = 0
and φ = 90◦. The directional derivative df/ds takes its greatest and least values where φ = 0 and
φ = π which are both perpendicular to the contour.
(b) The maximum rate of increase of f is equal to |grad f |, achieved when φ = 0.

Chapter 30: Chain rules, restricted maxima, coordinate systems

30.1. A list of possible parametrizations is given below: they are not unique.
(a) x2 + y2 = 25. This is a circle which can be parametrized by x(t) = 5 cos t, y(t) = sin t for
0 ≤ t < 2π.
(b) 1

4x2 + 1
9y2 = 1. This is an ellipse which can be described by x(t) = 2 cos t, y(t) = 3 sin t for

0 ≤ t < 2π.
(c) xy = 4. this is a rectangular hyperbola which can be described by x(t) = 2t, y(t) = 2/t for
0 < t < ∞ and −∞ < t < 0.
(d) x2−y2 = 1. This curve is a hyperbola which can be represented parametrically by x(t) = sec t,
y(t) = tan t for − 1

2π < t < 1
2π.

(e) 1
4x2− 1

9y2 = 1. This curve is a hyperbola which can be represented parametrically by x = 2 sec t,
y = 3 tan t for − 1

2π < t < 1
2π, for the branch in x > 0.

(f) y2 = 4ax. This curve is a parabola which can be represented parametrically by x = at2, y = 2at
for −∞ < t < ∞.
(g) (x − 1)2 + (y − 2)2 = 9. This curve is a circle centred at (1, 2) which can be represented
parametrically by x = 1 + 3cost, y = 2 + 3 sin t for 0 ≤ t < 2π

(h) 2x− 5y + 2 = 0. This is a straight line which can be represented in many ways parametrically
including x = t, y = 2(t + 1)/5 for −∞ < t < ∞.

30.2. Given f(x, y), x = x(t) and y = y(t) the chain rule (30.1) states that

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

(a) f(x, y) = x2 + y2, x(t) = t, y(t) = 1/t. Then

∂f

∂x
= 2x,

∂f

∂y
= 2y,

dx

dt
= 1,

dy

dt
= − 1

t2
.

Therefore
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= 2x.1− 2y.

1
t2

= 2t− 2
t3

.

(b) f(x, y) = x2 − y2, x(t) = cos t and y(t) = sin t. Then

∂f

∂x
= 2x,

∂f

∂y
= −2y,

dx

dt
= − sin t,

dy

dt
= cos t.

Therefore
df

dt
= 2x(− sin t)− 2y. cos t = −4 sin t cos t = −2 sin 2t.

(c) f(x, y) = xy, x(t) = 2 cos t and y(t) = sin t. Then

∂f

∂x
= y,

∂f

∂y
= x,

dx

dt
= −2 sin t,

dy

dt
= cos t.

Therefore
df

dt
= y(−2 sin t) + x. cos t = −2 sin2 t + 2 cos2 t = 2 cos 2t.
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(d) f(x, y) = x sin y, x(t) = 2t and y(t) = t2. Then

∂f

∂x
= sin y,

∂f

∂y
= x cos y,

dx

dt
= 2,

dy

dt
= 2t.

Therefore
df

dt
= 2 sin y + x cos y.(2t) = 2 sin(t2) + 4t2 cos(t2).

(e) f(x, y) = 4x2 + 9y2, x(t) = 1
2 cos t and y(t) = 1

3 sin t. Then

∂f

∂x
= 8x,

∂f

∂y
= 18y,

dx

dt
= −1

2
sin t,

dy

dt
=

1
3

cos t.

Therefore
df

dt
= 8x(− 1

2 sin t) + 18y(1
3 cos t) = 0.

30.3. Assume that R > r (for the sake of description although it is not a requirement in the
solution), that the origin is at the centre of the tracks, that the coordinates of the athlete on the
inner track are (x, y) and that of the athlete on the outer track are (X, Y ). Assume also that the
athletes start with y = Y = 0 at time t = 0. The athlete on the inner track makes one circuit in
time 2πr/v, so that the athlete’s subsequent location is given parametrically by

x = r cos(vt/r) y = r sin(vt/r).

Similarly, the location of the other athlete is given by

X = R cos(V t/R), Y = R sin(V t/R).

The distance D between the runners is therefore

D =
√

[(x−X)2 + y − Y )2]
=

√
[{r cos(vt/r)−R cos(V t/R)}2 + {r sin(vt/r)−R sin(V t/R)}2].

The rate of change of the distance D with time is

dD

dt
=

1
D

[(r cos(vt/r)−R cos(V t/R))(−v sin(vt/r) + V sin(V t/R))

+(r sin(vt/r)−R sin(V t/R))(v cos(vt/r)− V cos(V t/R))]

=
vR− rV

D
[cos(V t/R) sin(vt/r)− sin(V t/R) cos(vt/r)]

=
vR− rV

D
sin

(
v

r
− V

R

)
t.

The distance is stationary when dD/dt = 0, which occurs when

sin
(

v

r
− V

R

)
t = 0,

assuming that vR 6= V r. These stationary values occur when

t =
rRnπ

vR− V r
, (n = 0, 1, 2, . . .).

The minimum distances occur for n even and the maximum for n odd. The two athletes orbit at
different rates (just like two planets): they are at their closest when they lie on the same radius
and at their furthest when they lie on two directly opposite radii.
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30.4. (a) Let the edges of the rectangle have lengths x and y. Then the area A(x, y) = xy and
the perimeter P (x, y) = 2x + 2y. We wish to find the maximum area subject to the restriction
P (x, y) = 10. Using (30.4), we must solve

x + y = 5, (i)

∂A

∂x
− λ

∂P

∂x
= y − 2λ = 0, (ii)

∂A

∂y
− λ

∂P

∂y
= x− 2λ = 0. (iii)

From (i) and (ii), x = y, so that from (i) x = y = 5
2 . Hence the maximum area is 25

4 .
(b) Let the edges of the rectangle have lengths x and y. The perimeter P (x, y) = 2x + 2y and the
area A(x, y) = xy = 9. By (30.4), solve the equations

xy = 9, (i)

∂P

∂x
− λ

∂A

∂x
= 2− yλ = 0, (ii)

∂P

∂y
− λ

∂A

∂y
= 2− xλ = 0. (iii)

From (ii) and (iii), x = y, so that from (i) x = y = 3. The maximum value of the perimeter is 12.
(c) Let f(x, y) = x2 + 2y2 and g(x, y) ≡ x2 + y2 = 1. By the Lagrange-multiplier method x, y and
λ satisfy

x2 + y2 = 1, (i)

∂f

∂x
− λ

∂g

∂x
= 2x− 2xλ = 2x(1− λ) = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= 4y − 2yλ = 2y(2− λ) = 0. (iii)

From (iii), either y = 0 or λ = 2. If y = 0, then λ = 1 from (ii) (x = 0 is not a possibility since (i)
would not be satisfied) and from (i) y = ±1. If λ = 1, then x = 0 and y = ±1 from (i). There are
four solutions:
λ = 1, x = ±1, y = 0;
λ = 2, x = 0, y = ±1.
(d) Let x and y be the lengths of the sides of the rectangle parallel to the x and y axes. Then the
area of the rectangle is A(x, y) = xy and the restriction is g(x, y) ≡ 2x + y = 1. The Lagrange-
multiplier method (30.4) gives the equations

2x + y = 1, (i)

∂A

∂x
− λ

∂g

∂x
= y − 2λ = 0, (ii)

∂A

∂y
− λ

∂g

∂y
= x− λ = 0. (iii)

From (ii) and (iii), y = 2x so that, from (i), x = 1
4 and y = 1

2 . There is one stationary value at
(x, y) = ( 1

4 , 1
2 ), where A = xy = 1

8 , which a sketch shows to be a maximum.
(e) For any point (x, y) on the line x + 2y = 1, the square of the distance from this point to (1, 1)
is f(x, y) = (x − 1)2 + (y − 1)2 with the restriction g(x, y) ≡ x + 2y = 1. By (30.4) x, y and the
parameter λ satisfy

x + 2yh = 1, (i)

∂f

∂x
− λ

∂g

∂x
= 2(x− 1)− λ = 0, (ii)
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∂f

∂y
− λ

∂g

∂y
= 2(y − 1)− 2λ = 0, (iii)

From (ii) and (iii), y = 2x − 1, so that, from (i), x = 3
5 . Hence there is one stationary point at

( 3
5 , 1

5 ). The minimum distance is therefore 2/
√

5.
(f) The square of the distance from the origin of a point (x, y) given by f(x, y) = x2 + y2, and
(x, y) is restricted to the curve g(x, y) ≡ x2 + 8xy + 7y2 = 225. Using the Lagrange-multiplier
method of (30.4), x, y and the parameter λ satisfy

x2 + 8xy + 7y2 = 225, (i)

∂f

∂x
− λ

∂g

∂x
= 2x− (2x + 8y)λ = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= 2y − (8x + 14y)λ = 0. (iii)

Eliminate λ between (ii) and (iii):

x(4x + 7y) = y(x + 4y), or 2x2 − 3xy − 2y2 = 0, or (2x + y)(x− 2y) = 0.

Hence y = −2x or y = 1
2x. Substitute y = −2x into (i) so that

x2 − 16x2 + 28x2 = 225, or x2 = 225
13 or x = ± 15√

13
.

Substitute y = 1
2x into (i) so that

27x2 = 4× 225, or x = ± 10√
3
.

There are two points on the curve, namely (10/
√

3, 5/
√

3) and (−10
√

3,−5/
√

3) which give mini-
mum distances (the curve g(x, y) = 225 is a hyperbola with two branches). The minimum distance
is 5

√
5/
√

3.
(g) (Note: ‘minimum’ should be replaced by ‘maximum’ in the question.)
Referring to Example 30.8 and Fig. 30.4, the perimeter of the rectangle is P (x, y) = 4x + 4y
subject to the restriction g(x, y) ≡ x2 + 4y2 = 1. The Lagrange-multiplier equations are

x2 + 4y2 = 1, (i)

∂P

∂x
− λ

∂g

∂x
= 4− 2xλ = 0, (ii)

∂P

∂y
− λ

∂g

∂y
= 4− 8yλ = 0. (iii)

From (ii) and (iii), λ = 2/x = 1/(2y). Therefore x = 4y, and from (i), y = 1/(2
√

5), x = 2/
√

5
(assuming positive values for x and y) . The maximum perimeter is 2

√
5.

(h) In this problem f(x, y) = (x − y + 1)2 and g(x, y) ≡ y − x2 = 0. The Lagrange-multiplier
equations (30.4) become

y − x2 = 0, (i)

∂f

∂x
− λ

∂g

∂x
= 2(x− y + 1) + 2xλ = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= −2(x− y + 1)− λ = 0. (iii)

Eliminate λ between (ii) and (iii) to obtain (x− y + 1)(1 + 2x) = 0. Hence either x− y + 1 = 0 or
1 + 2x = 0. If x − y + 1 = 0, then elimination of y in (i) leads to x2 − x − 1 = 0 with solutions
x = 1

2 [1 ± √5] with corresponding y = 3
2 ± 1

2

√
5. If x = − 1

2 , then, from (i), y = 1
4 . Hence there

are three stationary points at:

( 1
2 [1 +

√
5], 3

2 + 1
2

√
5), ( 1

2 [1−√5], 3
2 − 1

2

√
5), (− 1

2 , 1
4 ).
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(i) Without loss we can choose the parabola to have the equation y2 = 2x. Let f(x, y) be the
square of the length of a straight line which joins the point (a, b) (a > 0 and −√2a < b <

√
2a),

which lies inside the parabola, and a point (x, y) on the parabola. At points on the parabola where
f(x, y) is stationary, the line will be normal to the parabola. Hence we require the points where

f(x, y) = (x− a)2 + (y − b)2is stationary subject to g(x, y) ≡ y2 − 2x = 0.

The Lagrange multiplier equations are

y2 − 2x = 0, (i)

∂f

∂x
− λ

∂g

∂x
= 2(x− a) + 2λ = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= 2(y − b)− 2yλ = 0. (iii)

Eliminate λ between (ii) and (iii) so that

y − b + y(x− a) = 0, or y3 + 2y(1− a)− 2b = 0.

This cubic equation always has at least one real solution (consider how the left-hand side behaves
as → ±∞) and at most three real solutions. Let

h(y) = y3 + 2y(1− a)− 2b.

Then
dh(y)

dy
= 3y2 + 2(1− a).

The curve z = h(y) has distinct stationary values where y = ±√[2(a− 1)/3 provided a > 1. These
lie above and below the y axis (in the (y, z) plane) which implies that the curve z = h(y) cuts the
y axis three times. For 0 < a < 1 there is just one real solution.

30.5. (a) f(x, y) = x2 + y2 on g(x, y) ≡ xy = 1.
(i) The curve xy = 1 can be parametrized by putting x = t, y = 1/t for −∞ < t < 0 and
0 < t < ∞. On this curve

f(x, y) = t2 +
1
t2

.

Stationary points occur where
df

dt
= 2t− 2

t3
= 0,

that is, where t4 = 1 or t = ±1. The corresponding coordinates of the stationary points are (1, 1)
and (−1,−1).
(ii) The equations (30.4) in the Lagrange-multiplier method are

xy = 1, (i)

∂f

∂x
− λ

∂g

∂x
= 2x− yλ = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= 2y − xλ = 0. (iii)

From (ii) and (iii), y2 = x2 so that y = ±x but only the plus sign leads to real solutions. Hence
(i) gives x2 = 1 or x = ±1. As in the parametric method the stationary points occur at (1, 1) and
(−1,−1).
(b) f(x, y) = x2 + y2 on g(x, y) ≡ (x− 1)2 + y2 = 1.
(i) The circle (x− 1)2 + y2 = 1 can be parametrized by x = 1 + cos t, y = sin t for 0 ≤ t < 2π. On
this circle

f(x, y) = (1 + cos t)2 + sin2 t = 2 + 2 cos t.
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Stationary points occur where
df

dt
= −2 sin t = 0,

that is, at t = 0 and t = π for the given interval of t. The corresponding stationary points are at
(2, 0) and (0, 0).
(ii) The equations using the Lagrange-multiplier method are

(x− 1)2 + y2 = 1, (i)

2x− 2(x− 1)λ = 0, (ii)

2y − 2yλ = 0. (iii)

From (ii) either y = 0 or λ = 1. If y = 0, then x = 2 or 0 from (i). The case λ = 1 is not consistent
with (ii). This confirms that f(x, y) is stationary at (2, 0) and (0, 0).
(c) f(x, y) = x2 + 4y2 on g(x, y) ≡ x2 + y2 = 1.
(i) The circle x2 + y2 = 1 can be parametrized by x = cos t, y = sin t for 0 ≤ t < 2π. On this circle

f(x, y) = cos2 t + 4 sin2 t.

Stationary points occur where

df

dt
= −2 cos t sin t + 8 sin t cos t = 6 sin t cos t = 3 sin 2t = 0,

that is, at t = 0, 1
2π, π, 3

2π. The corresponding stationary points are (1, 0), (0, 1), (−1, 0) and
(0,−1).
(ii) The equations using the Lagrange-multiplier method are

x2 + y2 = 1, (i)

∂f

∂x
− λ

∂g

∂x
= 2x− 2xλ = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= 8y − 2yλ = 0. (iii)

From (iii), either y = 0 or λ = 4. If y = 0, then from (i) x = ±1 and from (ii) λ = 1. If λ = 4,
then from (ii) x = 0 and from (i) y = ±1. The stationary points are therefore (1, 0), (0, 1), (−1, 0)
and (0,−1) as above.
(d) f(x, y) = 3x− 2y on g(x, y) ≡ x2 − y2 = 4.
(i) The curve x2 − y2 = 4 can be parametrized by x = 2 sec t, y = 2 tan t for − 1

2π < t < 1
2π and

1
2π < t < 3

2π. On this hyperbola

f(x, y) = 6 sec t− 4 tan t.

Stationary points occur where

df

dt
= 6 sec t tan t− 4 sec2 t = 0,

that is, where sin t = 2/3. For − 1
2 < t < 1

2 , x = 6/
√

5, y = 4/
√

5 and for 1
2π < t < 3

2π, x = −6/
√

5,
y = −4/

√
5.

(ii) The equations using the Lagrange-multiplier method are

x2 − y2 = 4, (i)

∂f

∂x
− λ

∂g

∂x
= 3− 2xλ = 0, (ii)
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∂f

∂y
− λ

∂g

∂y
= −2 + 2yλ = 0. (iii)

Eliminating λ between (ii) and (iii), 2x = 3y. Elimination of y in (i) leads to x = ±6/
√

5. The
stationary points are (

6√
5
,

4√
5

)
,

(
− 6√

5
,− 4√

5

)
.

(e) f(x, y) = xy on g(x, y) ≡ x2 + y2 = 1.
(i) The circle x2 + y2 = 1 can be parametrized by x = cos t, y = sin t for 0 ≤ t < 2π. On this circle

f(x, y) = cos t sin t = 1
2 sin 2t.

Stationary points occur where
df

dt
= cos 2t = 0,

that is, where t = 1
4π, 3

4π, 5
4π, 7

4π. The stationary points are therefore

(1/
√

2, 1/
√

2), (−1/
√

2, 1/
√

2), (−1/
√

2,−1/
√

2), (1/
√

2, 1/
√

2).

(ii) The equations using the Lagrange-multiplier method are

x2 + y2 = 1, (i)

df

dx
− λ

dg

dx
= y − 2xλ = 0, (ii)

df

dy
− λ

dg

dy
= x− 2yλ = 0. (iii)

From (ii) and (iii), y2 = x2 so that y = ±x and from (i) x = ±1/
√

2. Hence there are four
stationary points which agree with those listed above using the parametric method.

30.6. Figure 15 shows the curve g(x, y) = c and the family of curves f(x, y) = constant. Assume,
for the sake of discussion, that the values of f(x, y) are greater above the curve f(x, y) = constant
which just touches the curve g(x, y) = c. Then if we track the values of f along g(x, y) = c, they
will pass through a minimum at the point of contact.

The normals at the point of contact P are

n1 =
(

∂f

∂x
,
∂f

∂y

)

P

, n2 =
(

∂g

∂x
,
∂g

∂y

)

P

.

gHx,yD=c

f
H
x
,
y
D
=
c
o
n
s
t
a
n
tP

Figure 15: Problem 30.6

At the point of contact n1 and n2 are parallel so that n1 = λn2, from which the Lagrange-multiplier
equations (30.4) follow.
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The non-tangential case can be illustrated by an example. Let f(x, y) = x2y subject to x2+y2 =
1. The Lagrange equations (30.4) become

x2 + y2 = 1, (i)

∂f

∂x
− λ

∂g

∂x
= 2xy − 2xλ = 2x(y − λ) = 0, (ii)

∂f

∂y
− λ

∂g

∂y
= x2 − 2yλ = 0. (iii)

From (ii) either x = 0 or λ = y. If x = 0, then λ = 0 from (iii) (y cannot be zero) which means
that y = ±1. If λ = y, then, from (iii), x2 = 2y2. Finally from (i) 3y2 = 1 so that y = ±1/

√
3.

We can now list the stationary points:

(0, 1), (0,−1),

(√
2√
3
,

1√
3

)
,

(
−√2√

3
,

1√
3

)
,

(
−√2√

3
,− 1√

3

)
,

(√
2√
3
,− 1√

3

)
.

x2+y2=1

f
H
x
,
y
D
=
c
o
n
s
t
a
n
t

Figure 16: Problem 30.6: the dots show the stationary points.

The family of curves x2y = constant are shown in the figure together with the locations of the
stationary points on the circle x2 + y2 = 1. Contours of f(x, y) are tangential to the circle at the
four stationary points which are not on the axes. However, at the points at (0, 1) and (0,−1) the
contour is not tangential. At these points λ = 0, which means that ∂f/∂x = ∂f/∂y = 0: they are
unrestricted stationary points of f(x, y). It is not possible to define a normal vector to the curve
f(x, y) = c at points where ∂f/∂x = ∂f/∂y = 0: the method described in the first part of this
problem fails in this case.

30.7. The orthogonality conditions are given by (30.5).
(a) u = 2x + 3y, v = −3x + 2y. Then

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
= (2)(−3) + (3)(2) = 0.

(b) u = xy, v = x2 − y2. Then

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
= (y)(2x) + (x)(−2y) = 0.

(c) u = x2 + 2y2, v = y/x2.

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
= (2x)

(
−2y

x3

)
+ (4y)

(
1
x2

)
= 0.

(d) u = xy2, v = y2 − 2x2. Then

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
= (y2)(−4x) + (2xy)(2y) = 0.
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(e) u = x + 1/x + y2/x, v = y − 1/y + x2/y. Then

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
=

(
1− 1

x2
− y2

x2

)(
2x

y

)
+

(
2y

x

)(
1 +

1
y2
− x2

y2

)
= 0.

(f) x = 2u− v, y = u + 2v. Then

∂x

∂u

∂x

∂v
+

∂y

∂u

∂y

∂v
= 2× (−1) + 1× 2 = 0.

(g) x = u2 − v2, y = 2uv. Then

∂x

∂u

∂x

∂v
+

∂y

∂u

∂y

∂v
= (2u)(−2v) + (2v)(2u) = 0.

(h) x = u/(u2 + v2), y = v/(u2 + v2).

∂x

∂u

∂x

∂v
+

∂y

∂u

∂y

∂v
=

v2 − u2

(u2 + v2)2
× (−2uv)

(u2 + v2)2
+

(−2uv)
(u2 + v2)2

× u2 − v2

(u2 + v2)2
= 0.

(i) x = u2 − v2, y = −2uv.

∂x

∂u

∂x

∂v
+

∂y

∂u

∂y

∂v
= (2u)(−2v) + (−2v)(−2u) = 0.

30.8. In polar coordinates x = r cos θ, y = r sin θ.
(a) By the chain rule (30.1)

dx

dt
=

∂

∂r
(r cos θ)

dr

dt
+

∂

∂θ
(r cos θ)

dθ

dt
= cos θ

dr

dt
− r sin θ

dθ

dt
.

dy

dt
=

∂

∂r
(r sin θ)

dr

dt
+

∂

∂θ
(r sin θ)

dθ

dt
= sin θ

dr

dt
+ r cos θ

dθ

dt
.

(b) Differentiate dx/dt and dy/dt in (a) with respect to t:

d2x

dt2
=

d
dt

(cos θ)
dr

dt
+ cos θ

d2r

dt2
− d

dt
(r sin θ)

dθ

dt
− r sin θ

d2θ

dt2

= − sin θ
dθ

dt

dr

dt
+ cos θ

d2r

dt2
− sin θ

dθ

dt

dr

dt
− r cos θ

(
dθ

dt

)2

− r sin θ
d2θ

dt2

= −2 sin θ
dθ

dt

dr

dt
+ cos θ

d2r

dt2
− r cos

(
dθ

dt

)2

− r sin θ
d2θ

dt2
.

d2y

dt2
=

d
dt

(sin θ)
dr

dt
+ sin θ

d2r

dt2
+

d
dt

(r cos θ)
dθ

dt
+ r cos θ

d2θ

dt2

= 2 cos θ
dθ

dt

dr

dt
+ sin θ

d2r

dt2
− r sin θ

(
dθ

dt

)2

+ r cos θ
d2θ

dt2

(c) The result

cos θ
d2x

dt2
+ sin θ

d2y

dt2
=

d2r

dt2
− r

(
dθ

dt

)2

can be verified using (b). The second result follows since, from (b),

cos θ
d2y

dt2
− sin θ

d2x

dt2
=

dθ

dt

dr

dt
+ r

d2θ

dt2
=

1
r

d
dt

(
r2 dθ

dt

)
.
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30.9. (a) f(x, y) = 2x− y, x = uv, y = u2 − v2. By the chain rule (30.6)

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= 2v + (−1)(2u) = 2v − 2u.

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= 2u + 2v.

(b) f(x, y) = y/x, x = u + v, y = u− v. By the chain rule

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= − y

x2
+

1
x

= − u− v

(u + v)2
+

1
u + v

=
2v

(u + v)2
.

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= − y

x2
− 1

x
= − u− v

(u + v)2
− 1

u + v
=

−2u

(u + v)2
.

(c) f(x, y) = y2, x = u2 + v2, y = v/u. By the chain rule

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= 0 + 2y

(
− v

u2

)
= −2v2

u3
.

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= 0 + 2y

1
u

=
2v

u2
.

(d) f(x, y) = (x− y)/(x + y), x = v, y = u− v. By the chain rule

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
=

2y

(x + y)2
× 0 +

2x

(x + y)2
× 1 =

2x

(x + y)2
=

2v

u2
.

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
=

2y

(x + y)2
× 1 +

2x

(x + y)2
× (−1) =

2u− 4v

u2
.

30.10 Use the chain rule (30.6) twice:

∂2f

∂u2
=

∂

∂u

(
∂f

∂u

)
=

∂

∂u

[
∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

]

=
∂

∂u

(
∂f

∂x

)
∂x

∂u
+

∂f

∂x

∂2x

∂u2
+

∂

∂u

(
∂f

∂y

)
∂y

∂u
+

∂f

∂y

∂2y

∂u2

Similarly

∂2f

∂v2
=

∂

∂v

(
∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

)

=
∂

∂v

(
∂f

∂x

)
∂x

∂v
+

∂f

∂x

∂2x

∂v2
+

∂

∂v

(
∂f

∂y

)
∂y

∂v
+

∂f

∂y

∂2y

∂v2

and

∂2f

∂u∂v
=

∂

∂u

(
∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

)

=
∂

∂u

(
∂f

∂x

)
∂x

∂v
+

∂f

∂x

∂2x

∂u∂v
+

∂

∂v

(
∂f

∂y

)
∂y

∂v
+

∂f

∂y

∂2y

∂u∂v
.

(a) f(x, y) = y/x, x = u + v, y = u− v. We require the following first and second derivatives

∂f

∂x
= − y

x2
= − u− v

(u + v)2
,

∂f

∂y
=

1
x

=
1

u + v
,
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∂x

∂u
= 1,

∂x

∂v
= 1,

∂y

∂u
= 1,

∂y

∂v
= −1,

∂2x

∂u2
= 0,

∂2x

∂v2
= 0,

∂2x

∂u∂v
= 0,

∂2y

∂u2
= 0,

∂2y

∂v2
= 0,

∂2y

∂u∂v
= 0,

Using the formulae above

∂2f

∂u2
=

[
∂

∂u

(
− u− v

(u + v)2

)
× 1

]
−

[
u− v

(u + v)2
× 0

]

+
[

∂

∂u

(
1

u + v

)
× 1

]
+

[
1

u + v
× 0

]

=
u− 3v

(u + v)3
− 1

(u + v)2
= − 4v

(u + v)3

∂2f

∂v2
=

[
∂

∂v

(
− u− v

(u + v)2

)
× 1

]
−

[
u− v

(u + v)2
× 0

]

+
[

∂

∂v

(
1

u + v

)
× (−1)

]
+

[
1

u + v
× 0

]

=
3u− v

(u + v)3
+

1
(u + v)2

=
4u

(u + v)3

∂2f

∂u∂v
=

[
∂

∂u

(
− u− v

(u + v)2

)
× 1

]
−

[
u− v

(u + v)2
× 0

]

+
∂

∂u

(
1

u + v

)
× (−1) +

1
u + v

× 0

=
u− 3v

(u + v)3
+

1
(u + v)2

=
2u− 2v

(u + v)3

(b) f(x, y) = x2 + y2, x = uv, y = u2 − v2. We require the following first and second derivatives

∂f

∂x
= 2x = 2uv,

∂f

∂y
= 2y = 2u2 − 2v2,

∂x

∂u
= v,

∂x

∂v
= u,

∂y

∂u
= 2u,

∂y

∂v
= −2v,

∂2x

∂u2
= 0,

∂2x

∂v2
= 0,

∂2x

∂u∂v
= 1,

∂2y

∂u2
= 2,

∂2y

∂v2
= −2,

∂2y

∂u∂v
= 0,

Using the formulae above

∂2f

∂u2
=

∂

∂u
(2uv)× v − (2uv × 0) +

∂

∂u
(2u2 − 2v2)(2u) + [(2u2 − 2v2)× 2]

= 12u2 − 2v2

∂2f

∂v2
=

∂

∂v
(2uv)u− (2uv × 0) +

∂

∂v
(2u2 − 2v2))(−2v) + [(2u2 − 2v2)× (−2)]

= −2u2 + 12v2

∂2f

∂u∂v
=

∂

∂u
(2uv)u + (2uv × 1) +

∂

∂u
(2u2 − 2v2)(−2v) + [(2u2 − 2v2)× 0]

= −4uv.
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(c) f(x, y) = y2, x = uv, y = v. We require the following first and second derivatives

∂f

∂x
= 0,

∂f

∂y
= 2y = 2v,

∂x

∂u
= v,

∂x

∂v
= u,

∂y

∂u
= 0,

∂y

∂v
= 1,

∂2x

∂u2
= 0,

∂2x

∂v2
= 0,

∂2x

∂u∂v
= 1,

∂2y

∂u2
= 0,

∂2y

∂v2
= 0,

∂2y

∂u∂v
= 0,

Using the formulae above

∂2f

∂u2
=

∂

∂u
(0)v + (0)(0) +

∂

∂u
(2v)(0) + (0)(0) = 0,

∂2f

∂v2
=

∂

∂v
(0)u + (0)(0) +

∂

∂v
(2v)(1) + 2v(0) = 2,

∂2f

∂u∂v
=

∂

∂u
(0)u + (0)(1) +

∂

∂u
(2v)(1) + 2v(0) = 0.

(Comment: whilst the second-order chain rule is important for theoretical reasons, it is generally
not the simplest method of obtaining the u and v derivatives. Direct differentiation is often much
quicker in explicit cases. For example in (b),

f(x, y) = x2 + y2 = u2v2 + (u2 − v2)2.

It can be shown easily that

∂f

∂u
= 2uv2 + 4u(u2 − v2),

∂f

∂v
= 2u2v − 4v(u2 − v2),

∂2f

∂u2
= 12u2 − 2v2,

∂2f

∂v2
= −2u2 + 12v2,

∂2f

∂u∂v
= −4uv.)

30.11. f(x, y) = g(x2 − y2), x = u + v, y = u− v. Using the chain rule (30.6),

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

= g′(x2 − y2)(2x)(1) + g′(x2 − y2)(−2y)(1)
= g′(4uv)2(u + v) + g′(4uv)(−2u + 2v) = 4vg′(4uv),

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

= g′(x2 − y2)(2x)(1) + g′(x2 − y2)(−2y)(−1) = 4ug′(4uv),

∂2f

∂u2
=

∂

∂u
[4vg′(4uv)] = 16v2g′′(4v),

∂2f

∂v2
=

∂

∂v
[4ug′(4uv)] = 16u2g′′(4uv),

∂2f

∂u∂v
=

∂

∂u
[4ug′(4uv)] = 4g′(4uv) + 16uvg′′(uv).

30.12. Given
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
, (i)

differentiate the first equation in (i) with respect to x and the second equation with respect to y
so that

∂2u

∂x2
=

∂2v

∂x∂y
,

∂2u

∂y2
= − ∂2v

∂y∂x
. (ii)

52



Since the mixed derivatives
∂2v

∂x∂y
and

∂2v

∂y∂x

are identical, elimination of them in (ii) leads to

∂2u

∂x2
+

∂2u

∂y2
= 0. (iii)

The other equation
∂2v

∂x2
+

∂2v

∂y2
= 0 (iv)

can be obtained similarly by differentiating the first equation in (i) with respect to y and the second
equation with respect to x, and eliminating the mixed derivatives.

By (30.6),
∂w

∂x
=

∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x
, (v)

∂w

∂y
=

∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y
. (vi)

Differentiate (v) with respect to x and (vi) with respect to y:

∂2w

∂x2
=

∂

∂x

(
∂w

∂u

)
∂u

∂x
+

∂w

∂u

∂2u

∂x2
+

∂

∂x

(
∂w

∂v

)
∂v

∂x
+

∂w

∂v

∂2v

∂x2
,

∂2w

∂y2
=

∂

∂y

(
∂w

∂u

)
∂u

∂y
+

∂w

∂u

∂2u

∂y2
+

∂

∂y

(
∂w

∂v

)
∂v

∂y
+

∂w

∂v

∂2v

∂y2
.

Add these equations noting the results (i), (iii) and (iv):

∂2w

∂x2
+

∂2w

∂y2
=

[
∂

∂x

(
∂w

∂u

)
+

∂

∂y

(
∂w

∂v

)]
∂u

∂x
+

[
∂

∂y

(
∂w

∂u

)
− ∂

∂x

(
∂w

∂v

)]
∂u

∂y
.

Apply the chain rule (30.6) to the terms in the square brackets in the previous equation:

∂

∂x

(
∂w

∂u

)
+

∂

∂y

(
∂w

∂v

)
=

∂2w

∂u2

∂u

∂x
+

∂2w

∂v∂u

∂v

∂x
+

∂2w

∂u∂v

∂u

∂y
+

∂2w

∂v2

∂v

∂y

=
∂2w

∂u2

∂u

∂x
+

∂2w

∂u∂v

∂u

∂y
+

∂2w

∂v2

∂v

∂y
,

∂

∂y

(
∂w

∂u

)
− ∂

∂x

(
∂w

∂v

)
=

∂2w

∂u2

∂u

∂y
+

∂2w

∂v∂u

∂v

∂y
− ∂2w

∂u∂v

∂u

∂x
− ∂2w

∂v2

∂v

∂x

=
∂2w

∂u2

∂u

∂y
+

∂2w

∂u∂v

∂u

∂y
− ∂2w

∂v2

∂v

∂x
,

using (i). Hence

∂2w

∂x2
+

∂2w

∂y2
=

∂2w

∂u2

(
∂u

∂x

)2

+
∂2w

∂v2

(
∂u

∂x

)(
∂v

∂y

)
+

∂2w

∂u2

(
∂u

∂y

)2

−∂2w

∂v2

(
∂v

∂x

) (
∂u

∂y

)

=

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
] [

∂2w

∂u2
+

∂2w

∂v2

]
.

using (i) again. (Note that the right-hand side in the text is incorrect.)
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30.13. Given z = f(x, y), x = r cos θ, y = r sin θ.
(a) Using the chain rule (30.6)

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r
=

∂z

∂x
cos θ +

∂z

∂y
sin θ,

∂z

∂θ
=

∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ
= −∂z

∂x
r sin θ +

∂z

∂y
r cos θ.

Then
(

∂z

∂r

)2

+
1
r2

(
∂z

∂θ

)2

=
(

∂z

∂x
cos θ +

∂z

∂y
sin θ

)2

+
(
−∂z

∂x
sin θ +

∂z

∂y
cos θ

)2

=
(

∂z

∂x

)2

+
(

∂z

∂y

)2

as required.
(b) By using the chain rule:

∂z

∂x
= cos θ

∂z

∂r
− 1

r
sin θ

∂z

∂θ
,

∂z

∂y
= sin θ

∂z

∂r
+

1
r

cos θ
∂z

∂θ
,

Hence
∂2z

∂x2
=

(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)(
cos θ

∂z

∂r
− 1

r
sin θ

∂z

∂θ

)
, (i)

and
∂2z

∂y2
=

(
sin θ

∂

∂r
+

1
r

cos θ
∂

∂θ

)(
sin θ

∂z

∂r
+

1
r

cos θ
∂z

∂θ

)
. (ii)

The result
∂2z

∂x2
+

∂2z

∂y2
=

∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2

∂2z

∂θ2

follows by evaluating the derivatives ∂/∂r and ∂/∂θ on the right-hand sides of (i) and (ii) and
adding the results.

Chapter 31: Functions of any number of variables

31.1. The incremental formula for f(x, y, z, . . .) is (see (31.1))

δf ≈ ∂f

∂x
δx +

∂f

∂y
δy +

∂f

∂z
δz.

(a) f(x, y, z) = 2x + 3y2 + 4z2 − 3. The incremental approximation is

δf ≈ 2δx + 6yδy + 8zδz.

(b) f(x, y, t) = (x2 + y2)−
1
2 e−t, The incremental approximation is

δf ≈ −x(x2 + y2)−
3
2 e−tδx− y(x2 + y2)−

3
2 e−tδy − (x2 + y2)−

1
2 e−tδt.

(c) f(r, θ, t) = e−tr cos θ. The incremental approximation is

δf ≈ e−t cos θδr − e−tr sin θδθ − e−tr cos θδt.

(d) f(x, y, z, t) = x2 + y2 + z2 − t2. The incremental approximation is

δf ≈ 2xδx + 2yδy + 2zδz − 2tδt.
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(e) f(x1, y1, x2, y2) = (x1 − x2)2 + (y1 − y2)2. The incremental approximation is

δf ≈ 2(x1 − x2)δx1 + 2(y1 − y2)δy1 − (x1 − x2)δx2 − 2(y1 − y2)δy2.

(f) f(x, y, t) = (1/r)e−(x2+y2)/t, r = (x2 + y2)
1
2 . The incremental approximation can be expressed

as

δf ≈ e−(x2+y2)/t

[
t + 2x2 + 2y2

t(x2 + y2)
3
2

(−xδx− yδy) +
(x2 + y2)

1
2

t2
δt

]
.

If g(r, t) = (1/r)e−r2/t, then

δg ≈
[
− t + 2r2

tr2

]
e−r2/tδr +

r

t2
er2/tδt.

The increments δf and δg can be compared noting that rδr = xδx + yδy.

31.2 The distance between any two points (x1, y1, z1) and (x2, y2, z2) is

d(x1, y1, z1, x2, y2, z2) =
√

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2],

which is a function of six variables. The first derivatives of d are

∂d

∂x1
=

x1 − x2

d
,

∂d

∂y1
=

y1 − y2

d
,

∂d

∂z1
=

z1 − z2

d
,

∂d

∂x2
= −x1 − x2

d
,

∂d

∂y2
= −y1 − y2

d
,

∂d

∂z2
= −z1 − z2

d
,

From (31.1),

δd ≈ ∂d

∂x1
δx1 +

∂d

∂y1
δy1 +

∂d

∂z1
δz1 +

∂d

∂x2
δx2 +

∂d

∂y2
δy2 +

∂d

∂z2
δz2

=
1
d
[(x1 − x2)(δx1 − δx2) + (y1 − y2)(δy1 − δy2) + (z1 − z2)(δz1 − δz2)]

Using the data
(x1, y1, z1) = (1, 1, 2), (x2, y2, z2) = (1, 2, 1),

(δx1, δy1, δz1) = (0.1,−0.1,−0.2), (δx2, δy2, δz2) = (−0.1, 0.1, 0.1),

then d =
√

2 and

δd ≈ 1√
2
[0× (0.1 + 0.1) + (−1)× (−0.1− 0.1) + 1× (−0.2− 0.1)] ≈ −0.07.

31.3. The resistance R is given by

1
R

=
1

R4
+

R1 + R2

R1R2 + R2R3 + R3R1
.

By (31.1), the incremental change in R due to changes in R1, R2, R3 is given by

− 1
R2

δR ≈ δR1 + δR2

R1R2 + R2R3 + R3R1

− (R1 + R2)(R2δR1 + R1δR2 + R3δR2 + R2δR3 + R1δR3 + R3δR1)
(R1R2 + R2R3 + R3R1)2

The given data are R1 = 3, R2 = 10, R3 = 5 and R4 = 10, and increments δR1 = 0.2,
δR2 = −0.2: R4 does not change. We have to find the value of δR3 which causes δR = 0. The
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formula simplifies since δR1 + δR2 = 0. Hence δR3 is given by (we need not write down the
denominator nor the factor (R1 + R2))

10× 0.2 + 3× (−0.2) + 5× (−0.2) + 10δR3 + 3δR3 + 5× 0.2 = 1.4 + 13R3 = 0

if R3 = −1.4/13 ≈ −0.11.

31.4. Consider the general function

f(a, b, c, x) = ax3 − bx− c.

Then the incremental change in f due to changes in the coefficients is

δf ≈ ∂f

∂a
δa +

∂f

∂b
δb +

∂f

∂c
δc +

∂f

∂x
δx = x3δa− xδb− δc + (3ax2 − b)δx.

Now use the data: a = 2, b = 3, c = 45, x = 3, δa = 0.1, δb = −0.1, δc = 2. We put δf = 0 and
calculate δx. Hence

0 = 27× 0.1− 3× (−0.1)− 2 + (3× 2× 9− 3)δx.

Solving this equation δx = −1/51 = −0.0196 . . .. The approximate solution is x = 2.98 to 2
decimal places.

31.5. The small-error formula (31.3) for w = f(x, y, z, . . .) is

∆w ≈ ∂w

∂x
∆x +

∂w

∂y
∆y +

∂w

∂z
∆z + · · · .

In this question ∆ stands for
(central value) -(exact value).

(a) w = yz + zx + xy, x = 2(±0.1), y = 3(±0.2), z = 1(±0.1). Then, at (2, 3, 1)

∆w ≈ (z + y)∆x + (z + x)∆y + (y + x)∆z = 4∆x + 3∆y + 5∆z.

The maximum value of the magnitude of ∆w occurs if ∆x = ±0.1, ∆y = ±0.2, ∆z = ±0.1. Hence
the maximum value of |∆w| is given by

|∆w| ≈ (4× 0.1) + (3× 0.2) + (5× 0.1) = 1.5.

The central estimate value is w = 3 + 2 + 6 = 11 giving a maximum error in w of about 14%.
(b) w = (x − y)(y − z)(z − x), x = 1(±0.1), y = 2(±0.1), z = 3(±0.1). The first derivatives of w
are

∂w

∂x
= (y − z)(−2x + y + z),

∂w

∂y
= (z − x)(x− 2y + z),

∂w

∂z
= (x− y)(x + y − 2z).

Then, at (1, 2, 3),

∆w ≈ (y − z)(−2x + y + z)∆x + (z − x)(x− 2y + z)∆y

+(x− y)(x + y − 2z)∆z

= −3∆x + 0×∆y + 3∆z = −3∆x + 3∆z.

(The contribution of ∆y is of order (∆y)2 in this case.) The maximum value of |∆w| occurs if
∆x = ∓0.1, ∆y = ±0.1, ∆z = ±0.1 so that

|∆w| ≈ 0.3 + 0.3 = 0.6.

The estimated value is w = 2 which means a maximum error in w of about 30%.
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(c) w = (x+y+z−t)−1, x = 1.2, y = 2.9, z = 1.9, t = 2.1 after rounding to 1 decimal place. In each
case the rounding implies that x = 1.2(±0.05), y = 2.9(±0.05), z = 1.9(±0.05), t = 2.1(±0.05).
The first derivatives of w are

∂w

∂x
= −w2,

∂w

∂y
= −w2,

∂w

∂z
= −w2,

∂w

∂t
= w2.

Hence
∆w = w2(−∆x−∆y −∆z + ∆t) = (3.9)−2(−∆x−∆y −∆z + ∆t).

The maximum value of |∆w| occurs where ∆x = ∆y = ∆z = ∓0.05 and ∆t = ±0.05, so that
|∆w| = 0.013 since w = 1/3.9 ≈ 0.256. The percentage error is about 5%.

31.6. (a) The cosine rule for a triangle ABC is

c2 = a2 + b2 − 2ab cosA

with a = 2(±0.1), b = 4(±0.1), A = 135◦ or 3
4π(±0.035) radians. The incremental formula (31.3)

is
∆(c2) ≈ 2c∆c ≈ (2a− 2b cosA)∆a + (2b− 2a cosA)∆b + 2ab sin A∆A.

For the measured values c = 2
√

(5 + 2
√

2) = 5.60. Hence

∆c ≈ 1
c
(a− b cosA)∆a + (b− a cosA)∆b + (ab sin A)∆A

=


 1 +

√
2√

(5 + 2
√

2)


∆a +


 4 +

√
2

2
√

(5 + 2
√

2)


 ∆b +


 2

√
2√

(5 +
√

2)


 ∆A

≈ 0.43∆a + 0.48∆b + 0.51∆A.

The maximum error in |∆c| occurs where ∆a = ±0.1, ∆b = ±0.1 and ∆A = ±0.035. Hence the
maximum value of |∆c| is 0.11. The maximum percentage error is about 2% .
(b) d2 = (x1−x2)2 +(y1−y2)2 +(z1−z2)2, (x1, y1, z1) = (1, 2, 1), (x2, y2, z2) = (2, 1, 1) rounded to
1 significant figure. Hence all coordinates have maximum errors (±0.5). The incremental formula
is

∆(d2) = 2d∆d ≈ 2(x1 − x2)∆x1 + 2(y1 − y2)∆y1 + 2(z1 − z2)∆z1

−2(x1 − x2)∆x2 − 2(y1 − y2)∆y2 − 2(z1 − z2)∆z2.

At the rounded values, d =
√

2 = D, say. Hence

∆d =
1√
2
[−∆x1 + ∆y1 + ∆x2 −∆y1].

∆d takes its maximum/minimum values when ∆x1 = ∓0.5, ∆y1 = ±0.5, ∆x2 = ±0.5, ∆y2 = ∓0.5,
giving ∆d = ±√2. The range of possible values for d is given approximately by D − √2 = 0 ≤
d ≤ D +

√
2, or 0 ≤ d ≤ 2.83. (The exact range is 0 ≤ d ≤ 3, so approximate calculation is quite

good.) The greatest percentage error is ±100%.

(c) Area A = [s(s−a)(s−b)(s−c)]
1
2 , where s = 1

2 (a+b+c), a = 2(±0.1), b = 4(±0.1), c = 3(±0.1).
For the central values

A = A0 =

√
9
2

5
2

1
2

3
2

=
3
4

√
15 = 2.9.

The incremental formulae are

2A∆A ≈ [(s− a)(s− b)(s− c) + s(s− b)(s− c) + s(s− a)(s− c)
+s(s− a)(s− b)]∆s

−s(s− b)(s− c)∆a− s(s− a)(s− c)∆b− s(s− a)(s− b)∆c
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∆s ≈ 1
2 (∆a + ∆b + ∆c).

Hence

3
2

√
15∆A ≈

[
5
2

1
2

3
2

+
9
2

1
2

3
2

+
9
2

5
2

3
2

+
9
2

5
2

1
2

]
1
2
(∆a + ∆b + ∆c)

−9
2

1
2

3
2
∆a− 9

2
5
2

3
2
∆b− 9

2
5
2

1
2
∆c

=
111
8

(∆a + ∆b + ∆c)− 27
8

∆a− 135
8

∆b− 45
8

∆c

=
3
8
(28∆a− 8∆b + 22∆c)

Hence
∆A ≈ 1

4
√

15
(28∆a− 8∆b + 22∆c).

The maximum value of |∆A| occurs where ∆a = ∆b = ∆c = ±0.1. Hence

max |∆A| ≈ 1
4
√

15
× 0.1(28 + 8 + 22) = 0.374,

with A0 = 2.9, giving the percentage error 13%.

31.7. Implicit differentiation: if f(x, y, z, . . .) = 0 then

∂y

∂x
= −∂f

∂x

/
∂f

∂y
,

and similarly for any two other variables (see (31.6).
In this problem f(x, y, z, w)− c = 0 (the constant c does not affect the results).

(a) By the result above
∂y

∂x
= −∂f

∂x

/
∂f

∂y
,

∂x

∂y
= −∂f

∂y

/
∂f

∂x
.

In the product of these two derivatives the derivatives of f cancel leaving

∂x

∂y

∂y

∂x
= 1.

(b) Using the result above three times,

∂x

∂y

∂y

∂z
=

(
−∂f

∂y

/
∂f

∂x

)(
−∂f

∂z

/
∂f

∂y

)
=

∂f

∂z

/
∂f

∂x
= −∂x

∂z
.

(c) Using (b) and (a)
∂x

∂y

∂y

∂z

∂z

∂w

∂w

∂x
=

(
−∂x

∂z

) (
−∂z

∂x

)
= 1.

(i) x + 2y + 3z + 4w − 5 = 0.
(a) Treating x as a function of the remaining variables, and y as a function of the remaining
variables,

∂x

∂y
= −2,

∂y

∂x
= −1

2
,

confirming that
∂x

∂y

∂y

∂x
= 1.

(b) Similarly
∂x

∂y
= −2,

∂y

∂z
= −3

2
,

∂x

∂z
= −3
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confirming the result.
(c) It follows that

∂x

∂y
= −2,

∂y

∂z
= −3

2
,

∂z

∂w
= −4

3
,

∂w

∂x
= −1

4
,

which confirms (c) above.
(ii) xy2z3w − 1 = 0.
(a) Differentiate the equation with respect to y treating x as a function of y, z and w, and then
with respect to x treating y as a function of x, z and w

∂x

∂y
y2z3w + x(2y)z3w = 0, y2z3w + x(2y)

∂y

∂x
z3w = 0.

Hence
∂x

∂y
= −2x

y
,

∂y

∂x
= −y

x
,

and result (a) follows.
(b) The partial derivatives are given by

∂x

∂y
= −2x

y
,

∂y

∂z
= −3y

2z
,

∂x

∂z
= −3x

z
,

from which result (b) follows.
(c) The partial derivatives are given by

∂x

∂y
= −2x

y
,

∂y

∂z
= −3y

2z
,

∂z

∂w
= − z

3w
,

∂w

∂x
= −w

x
.

Hence
∂x

∂y

∂y

∂z

∂z

∂w

∂w

∂x
=

(
−2x

y

)(
−3y

2z

) (
− z

3w

)(
−w

x

)
= 1.

31.8. The required partial derivatives can be deduced from the incremental formula

δz ≈ ∂z

∂x
δx +

∂z

∂y
δy.

(a) 2x− 3y + 4z = 1. This is a linear relation so that

2δx− 3δy + 4δz = 0, or δz = − 1
2δx + 3

4δy.

Therefore, putting δy = 0 and δx = 0 successively,

∂z

∂x
= −1

2
,

∂z

∂y
=

3
4
.

(b) x2 + y2 + z2 = 14 at (1, 2,−3). The incremental formula gives

2xδx + 2yδy + 2zδz = 0.

Therefore
δz = −x

z
δx− y

z
δy.

By putting δy = 0 and δx = 0 we obtain respectively:

∂z

∂x
= −x

z
=

1
3
,

∂z

∂y
= −y

z
=

2
3

at (1, 2,−3).
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(c) 4x3 + y4 + 9z3 − xyz2 = 13 at (1, 1, 1). The incremental formula is

12x2δx + 4y3δy + 27z2δz − yz2δx− xz2δy − 2xyzδz = 0.

Solving for δz:

δz =
−(12x2 − yz2)δx− (4y3 − xz2)δy

27z2 − 2xyz
.

As above
∂z

∂x
=

yz2 − 12x2

27z2 − 2xyz
= −11

25
,

∂z

∂y
=

xz2 − 4y3

27z2 − 2xyz
= − 3

25

at (1, 1, 1).
(d) x2 − z2 = 9 at x = 5, y = y0, z = 4. The incremental formula is

2xδx− 2zδz = 0.

Therefore δz = (x/z)δx, and
∂z

∂x
=

x

z
,

∂z

∂y
= 0.

31.9. (a) Given f(x, y, z) = xy/z and x = t, y = 4t, z = 2t
Method 1: chain rule. Then, for x = t, y = 4t, z = 2t,

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

=
(y

z
× 1

)
+

(x

z
× 4

)
−

(xy

z2
× 2

)

=
4t

2t
+ 4

t

2t
− 2

4t2

4t2
= 2

Method 2: direct substitution. With x = t, y = 4t, z = 2t, f(x, y, z) = xy/z = 2t. Therefore

df

dt
= 2,

agreeing with Method 1.
(b) f(x, y, z) = sin(xy/z).
Method 1: chain rule. For x = t, y = 4t, z = 2t,

df

dt
=

(y

z
cos(xy/z)× 1

)
+

(x

z
cos(xy/z)× 4

)
−

(xy

z2
cos(xy/z)× 2

)

= 2 cos 2t + 2 cos 2t− 2 cos 2t = 2 cos 2t

Method 2: direct substitution. With x = t, y = 4t, z = 2t, f(x, y, z) = sin(xy/z) = sin 2t. Therefore

df

dt
= 2 cos 2t,

which agrees with Method 1.
(c) f(x, y, z) = g(xy/z). With x = t, y = 4t, z = 2t, f(x, y, z) = g(2t). Therefore, by direct
substitution,

df

dt
= 2g′(2t).

In case (b), on the path g(xy/z) = sin(xy/z) = sin 2t. Hence g′(t) = 2 cos 2t, which is the answer
given in (b).

31.10. For cylindrical coordinates (r, θ, z), x = r cos θ, y = r sin θ, z = z.
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(a) Using the chain rule (31.8),

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
+

∂f

∂z

∂z

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ, (i)

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
+

∂f

∂z

∂z

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ, (ii)

∂f

∂z
=

∂f

∂x

∂x

∂z
+

∂f

∂y

∂y

∂z
+

∂f

∂z

∂z

∂z
=

∂f

∂z
.

(b) The solution of (i) and (ii) by elimination leads to

∂f

∂x
= cos θ

∂f

∂r
− sin θ

r

∂f

∂θ
,

∂f

∂y
= sin θ

∂f

∂r
+

cos θ

r

∂f

∂θ
.

(c) Using the operators

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

twice, it follows that

∂2f

∂x2
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
f

=
sin2 θ

r

∂f

∂r
+

2 sin θ cos θ

r2

∂f

∂θ
+ cos2 θ

∂2f

∂r2
− 2 sin θ cos θ

r

∂2f

∂θ∂r
+

sin2 θ

r2

∂2f

∂θ2

∂2f

∂y2
=

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
f

=
cos2 θ

r

∂f

∂r
− 2 sin θ cos θ

r2

∂f

∂θ
+ sin2 θ

∂2f

∂r2
+

2 sin θ cos θ

r

∂2f

∂θ∂r
+

cos2 θ

r2

∂2f

∂θ2
.

The addition of these two equations gives the required answer:

∂2f

∂x2
+

∂2f

∂y2
=

∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2

∂2f

∂θ2
.

31.11. The vector function grad f is defined as (see (31.9))

grad f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z
.

(a) f(x, y, z) = x + y + z. Then
grad f = î + ĵ + k̂.

(b) f(x, y, z) = 2x− 3y + 5z − 6. Then

grad f = 2̂i− 3ĵ + 5k̂.

(c) f(x, y, z) = x2 + y2 + z2. Then

grad f = 2x̂i + 2yĵ + 2zk̂.

(d) f(x, y, z) = x3 + 3z3 − 1. Then

grad f = 3x2 î + 9z2k̂.
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(e) f(x, y, z) = x2 − 1
4y2 + 1

9z2. Then

grad f = 2x̂i− 1
2
y ∗ ĵ +

2
9
zk̂.

(f) f(x, y, z) = 1/r = (x2 + y2 + z2)−
1
2 . Then

grad f = − x

r3
î− y

r3
ĵ− z

r3
k̂,

which is a multiple (1/r3) of the position vector x̂i + yĵ + zk̂.

31.12. Given a point P on the surface f(x, y, z) = k, then n = grad f evaluated at P is normal to
the surface at P (see Section 31.5). A unit vector normal to the surface at P is n̂ = grad f/|grad f |.
(a)f(x, y, z) ≡ x− 2y + z = 0 at any point. A normal is n = grad f = (1,−2, 1) and a unit normal
vector is

n̂ =
grad f

|grad f | =
(1,−2, 1)√
(1 + 4 + 1)

=
1√
6
(1,−2, 1).

The surface in this case is a plane so that normals given by grad f at all points on the plane are
parallel.
(b) f(x, y, z) ≡ y2 + z2 = 2 at any point. A normal is

n = grad f = (0, 2y, 2z),

and a unit normal is
n̂ =

1
2
√

(y2 + z2)
(0, 2y, 2z) =

1√
2
(0, y, z),

since y2 + z2 = 2 on the surface.
(c) f(x, y, z) ≡ x2 + y2 + z2 = 9 at (2, 1,−2). A normal to the surface is

n = grad f = (2x, 2y, 2z) = (4, 2,−4),

and a unit normal is
n̂ =

1
2
√

(x2 + y2 + z2)
(2x, 2y, 2z) =

1
3
(2, 1,−2)

at (2, 1,−2).
(d) f(x, y, z) ≡ 1

4x2 + 1
9y2 + 1

16z2 = 1 at (2, 3, 4). A normal is

n = grad f = ( 1
2x, 2

9y, 1
8z) = (1, 2

3 , 1
2 ),

and a unit normal vector is
n̂ =

1√
61

(6, 4, 3)

at (2, 3, 4).
(e) f(x, y, z) ≡ x3y + zx3 = 5 at (1, 2, 3). A normal vector is

n = grad f = (3x2y + 3zx2, x3, x3) = (15, 1, 1),

and a unit normal is
n̂ =

1√
227

(15, 1, 1)

at (2, 3, 4).
(f) f(x, y, z) ≡ (1/x) + (1/y) + (1/z) = 1 at (2, 3, 6). A normal vector is

n = grad f =
(
− 1

x2
,− 1

y2
,− 1

z2

)
= (− 1

4 ,− 1
9 ,− 1

36 )
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and a unit normal vector is

n̂ =
1√[

1
16 + 1

81 + 1
1296

]
(
−1

4
,−1

9
,− 1

36

)
= −

√
2

14
(9, 4, 1)

at (2, 3, 6).
(g) f(x, y, z) ≡ (x2 + 4y2 − z2)−1 = 1

16 at (4, 1, 2). A normal vector is

n = grad f =
1

(x2 + 4y2 − z2)2
(−2x,−8y, 2z) =

1
64

(−2,−2, 1),

and a unit normal vector is

n̂ =
(
−2

3
,−2

3
,
1
3

)

at (4, 1, 2).

31.13. Given surfaces f(x, y, z) = α and g(x, y, z) = β, and a common point P : (a, b, c), normals
to the surfaces at the point are n = grad f and p = grad g. The angle θ between the surfaces at
P is the angle between the normal vectors. By (10.4),

cos θ =
n · p
|n||p| .

(a) f(x, y, z) ≡ x2 + y2 + z2 = 9 and g(x, y, z) ≡ x2 − z2 = (x − z)(x + z) = 0 at (2, 1, 2). The
normal vectors are therefore

n = grad f = (2x, 2y, 2z) = (4, 2, 4), p = grad (x2 − z2) = (4, 0,−4).

at (2, 1, 2). Hence

cos θ =
(4, 2, 4) · (4, 0,−4)

24
√

2
= 0,

which means that the surfaces meet at right angles.
(b) f(x, y, z) ≡ x2− y2 + z2 = 1, and g(x, y, z) ≡ 2x− 3y + z = −1 at (2, 2, 1). The normal vectors
are

n = grad f = (2x,−2y, 2z) = (4,−4, 2), p = grad g = (2,−3, 1)

at (2, 2, 1). The angle θ is given by

cos θ =
(4,−4, 2) · (2,−3, 1)

6
√

14
=

11
3
√

14
.

Hence θ = 11.5◦.
(c) f(x, y, z) = x2 + y2− z2 = 0 and g(x, y, z) = 3x + 4y + 5z = 50 at (3, 4, 5). The normal vectors
are

n = grad f = (2x, 2y,−2z) = (6, 8,−10), p = grad g = (3, 4, 5)

at (3, 4, 5). The angle θ is given by

cos θ =
(6, 8, 10) · (3, 4, 5)√

200
√

50
= 1.

Hence θ = 0◦, which means that the surfaces touch at (3, 4, 5). The second surface is a plane and
is therefore a tangent plane to the surface x2 + y2 − z2 = 0.

31.14. (a) f(x, y, z) = Aeα(2x2+4y2+z2)
1
2 . Then

grad f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

Aαeα(2x2+4y2+z2)
1
2

(2x2 + 4y2 + z2)
1
2

(2x, 4y, z).
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The common factor does not affect the direction of the vector, which means that (2x, 4y, z) is in
the direction grad f .
(b) Let f(x, y, z) = g[u(x, y, z)]. By the chain rule (28.4),

grad f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
∂g[u(x, y, z)]

∂x
,
∂g[u(x, y, z)]

∂y
,
∂g[u(x, y, z)]

∂z

)

=
(

g′(u)
∂u

∂x
, g′(u)

∂u

∂y
, g′(u)

∂u

∂z

)

= g′(u)
(

∂u

∂x
,
∂u

∂y
,
∂u

∂z

)

= g′(u)gradu

Hence gradu is in the same direction as grad f if g′(u) > 0, and in the opposite direction if
g′(u) < 0.

31.15. The directional derivative of f(x, y, z) in the direction ŝ is

df

ds
= ŝ · grad f.

(a) f(x, y, z) = x + 2y + 3z. The directional derivative is

df

ds
= ŝ · (1, 2, 3).

(b) f(x, y, z) = x2 − y2 − 3z. The directional derivative is

df

ds
= ŝ · (2x,−2y,−3).

(c) f(x, y, z) = (x− 1)3 + y3 + z3. The directional derivative is

df

ds
= ŝ · (3(x− 1)2, 3y2, 3z2).

31.16. The directional derivative of f(x, y, z) in the direction ŝ is

df

ds
= ŝ · grad f.

In all problems ŝ = ( 1
4

√
2, 1

4

√
2, 1

2

√
3) and the point is (2, 3, 2). (a) f(x, y, z) = x − y + 2z. The

gradient of f is
grad f = (1,−1, 2)

at all points. Hence

df

ds
= ŝ · grad f = ( 1

4

√
2, 1

4

√
2, 1

2

√
3) · (1,−1, 2) =

√
3.

(b) f(x, y, z) = xy + yz + zx. The gradient of f is

grad f = (y + z, x + z, y + x) = (5, 4, 5)

at (2, 3, 2). Hence
df

ds
= ( 1

4

√
2, 1

4

√
2, 1

2

√
3) · (5, 4, 5) = 9

√
2

4 + 5
√

3
2 .

(c) f(x, y, z) = (xy + yz + zx)2. The gradient of f is

grad f = 2(xy + yz + zx)(y + z, x + z, y + x) = (160, 128, 160)
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at (2, 3, 2). Hence

df

ds
= ( 1

4

√
2, 1

4

√
2, 1

2

√
3) · (160, 128, 160) = 72

√
2 + 80

√
3.

(d) f(x, y, z) = x2 − y2 + 5. The gradient of f is

grad f = (2x,−2y, 0) = (4,−6, 0)

at (2, 3, 2). Hence
df

ds
= ( 1

4

√
2, 1

4

√
2, 1

2

√
3) · (4,−6, 0) = − 1

2

√
2.

31.17. The normals to the two surfaces f(x, y, z) = a and g(x, y, z) = b are respectively n = grad f
and p = grad g. Consequently they are also respectively normal to any curves on the two surfaces.
Hence, at any point P on the curve of intersection C, n and p are each perpendicular to C. By
the property of the vector product (see Section 11.2), n× p is perpendicular to both n and p and
is therefore in the direction of the curve C. A unit vector ŝ in the direction of C is

ŝ =
n× p
|n× p| .

(a) f(x, y, z) ≡ 2x + 3y − z = 1, g(x, y, z) ≡ x − y − z = 0; these represent two planes and the
intersection will be a straight line. The normal vectors are

n = grad f = (2, 3,−1), p = grad g = (1,−1,−1).

Hence

ŝ =
n× p
|n× p| =

(2, 3− 1)× (1,−1,−1)
|(2, 3− 1)× (1,−1,−1)| =

1√
42

(−4, 1,−5).

(b) f(x, y, z) ≡ x + y = 0, g(x, y, z) ≡ x − z = 0; these represent two planes and the line of
intersection will be a straight line through the origin. The normal vectors are

n = (1, 1, 0), p = (1, 0,−1).

Hence

ŝ =
n× p
|n× p| =

(1, 1, 0)× (1, 0,−1)
|(1, 1, 0)× (1, 0,−1)| =

1√
3
(−1, 1,−1).

(c) f(x, y, z) ≡ x2 + y2 + z2 = 6, g(x, y, z) ≡ x− y + z = 0 at (1, 2, 1). The normal vectors are

n = (2x, 2y, 2z) = (2, 4, 2), p = (1,−1, 1)

at (1, 2, 1). Hence

ŝ =
n× p
|n× p| =

(2, 4, 2)× (1,−1, 1)
|(2, 4, 2)× (1,−1, 1)| =

1√
2
(1, 0,−1).

(d) f(x, y, z) ≡ x2 + (y − 1)2 = 1, g(x, y, z) ≡ x2 + (y − 2)2 = 4 at x = 0, y = 0 and any value of
z. The normal vectors are

n = (2x, 2(y − 1), 0) = (0,−2, 0), p = (2x, 2(y − 2), 0) = (0,−4, 0)

at the given point. Hence

ŝ =
n× p
|n× p| =

(0,−2, 0)× (0,−4, 0)
|(0,−2, 0)× (0,−4, 0)| = (0, 0, 0).

This is a case in which the method fails. The two surfaces are circular cylinders parallel to the z
axis which touch along the line x = 0, y = 0. As we have seen the two normals are coincident along
this line which makes the vector product zero. A unit vector in the direction of C is ŝ = (0, 0, 1).
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(e) f(x, y, z) ≡ xy + yz + zx = 3, g(x, y, z) ≡ x + y + z = 3 at (1, 1, 1). The normal vectors are

n = (y + z, x + z, y + x) = (2, 2, 2), p = (1, 1, 1)

at (1, 1, 1). These two vectors are parallel, so that we could have the case discussed in (d). We
still need to find the direction of the curve of intersection if it exists. Any point on the plane can
be represented by the two-parameter formula x = 1 + α, y = 1 + β, z = 1− α− β. Obviously the
choice α = β = 0 gives the common point. Points on the plane lie on the first surface if

(1 + α)(1 + β) + (1 + β)((1− α− β) + (1 + α)(1− α− β) = 3,

or
α2 + β2 + αβ = 0, or (α + 1

2β)2 + 3
4β2 = 0.

The only solution of this equation is α = β = 0, which means the surfaces meet only at one point.

31.18. The stationary values of f(x, y, z, . . .) occur at all simultaneous solutions of

∂f

∂x
= 0,

∂f

∂y
= 0,

∂f

∂z
= 0, · · · .

(a) f(x, y, z) = x2 + y2 + z2. We require all solutions of

∂f

∂x
= 2x = 0,

∂f

∂y
= 2y = 0,

∂f

∂z
= 2z = 0.

The only solution is x = y = z = 0, which is the location of the stationary point.
(b) f(x, y, z) = x3 − 3x + y3 − 3yz + 2z2. We require all solutions of

∂f

∂x
= 3x2 − 3 = 0, (i)

∂f

∂y
= 3y2 − 3z = 0, (ii)

∂f

∂z
= −3y + 4z = 0, (iii)

From (i) x = ±1. From (iii) z = 3
4y so that eliminating z in (ii),

y2 − 3
4y = 0, or y(y − 3

4 ) = 0.

Hence y = 0 or y = 3
4 . Finally we ensure that all combinations of x and y are included: each x

can be associated with each y, but z will be determined by the choice of y. Thus the stationary
points occur at

(−1, 0, 0), (−1, 3
4 , 9

16 ), (1, 0, 0), (1, 3
4 , 9

16 ).

(c) f(x, y, z) = xy + yz + zx + y − z. We require all solutions of

∂f

∂x
= y + z = 0,

∂f

∂y
= x + z + 1 = 0,

∂f

∂z
= y + x− 1 = 0.

Hence z = −y and
x− y + 1 = 0, x + y − 1 = 0.

Solving these equations, the function has one stationary point at (0, 1,−1).
(d) f(x, y, z) = x/z + y/x + z/y: note that the function is not defined on the axes including the
origin. Stationary points occur at the solutions of

∂f

∂x
=

1
z
− y

x2
= 0,

∂f

∂y
=

1
x
− z

y2
= 0,

∂f

∂z
=

1
y
− x

z2
= 0.
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Hence
x2 = yz, y2 = zx, z2 = xy,

from which it follows that x3 = y3 = z3. There are two solutions (excluding the zero solutions)
x = y = z = 1 and x = y = z = −1. Therefore there are two stationary points at (1, 1, 1) and
(−1,−1,−1).
(e) f(x, y, z, λ) = (x + y + z)− λ(x2 + y2 + z2 − 1). Stationary points occur at the solutions of

∂f

∂x
= 1− 2λx = 0,

∂f

∂y
= 1− 2λy = 0, (i)

∂f

∂z
= 1− 2λz = 0,

∂f

∂λ
= x2 + y2 + z2 − 1 = 0. (ii)

From (i), x = y = z = 1/(2λ), and substitution in (ii) gives

1
4λ2

+
1

4λ2
+

1
4λ2

= 1, or λ2 =
3
4
.

Hence λ = ±
√

3
2 . Therefore there are two stationary points, at

(
√

3
3 ,

√
3

3 ,
√

3
3 ,

√
3

2 ) and (−
√

3
3 ,−

√
3

3 ,−
√

3
3 ,−

√
3

2 ).

(f) f(x, y, z) = x4 + y4 + z4 − 2(x− y + z)2. Stationary points occur at the solutions of

4x3 − 4(x− y + z) = 0, (i)

4y3 + 4(x− y + z) = 0, (ii)

4z3 − 4(x− y + z) = 0. (iii)

From (i) and (ii), y3 = −x3. Hence y = −x. Substitution back into (i) leads to z = x3 − 2x. Now
substitute y and z in terms of x into (iii):

(x3 − 2x)3 − x3 = 0, or x3(x2 − 2)3 − x3 = 0.

Therefore either x = 0 or (x2 − 2)3 = 1. The solutions of the latter are x = ±√3. Working
backwards we are now in a position to list the stationary points: they are

(0, 0, 0), (
√

3,−
√

3,
√

3), (−
√

3,
√

3,−
√

3).

31.19. We require the stationary points of f(x, y, z) = x2 +y2 +z2 on the path x = cos t, y = sin t,
z = sin 1

2 t where 0 < t < 4π. Using the chain rule (see (31.22))

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
= −2x sin t + 2y cos t + 2z 1

2 cos 1
2 t

= −2 cos t sin t + 2 sin t cos t + sin 1
2 t cos 1

2 t = 1
2 sin t

Stationary points occur where df/dt = 1
2 sin t = 0, that is, at t = π, 2π, 3π in the interval. On

f(x, y, z) = x2+y2+z2 these values of t correspond to the points (−1, 0, 1), (1, 0, 0) and (−1, 0,−1).
Alternatively, substitute x = cos t, y = sin t, z = sin 1

2 t, and find the stationary points of

f(x(t), y(t), z(t)) = cos2 t + sin2 t + sin2 1
2 t = 1 + sin2 1

2 t

treated as a function of one variable.

31.20. The concentration s at (x, y, z) is given by

s = C exp{−α[2(x− 1)2 + 4y2 + z2]}.
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(a) The gradient of s is

grad s = αC exp{−α[2(x− 1)2 + 4y2 + z2]}(−4(x− 1),−8y,−2z).

This gives the direction of steepest ascent so that steepest descent is minus this, namely, (2(x −
1), 4y, z).
(b) Suppose that the insect moves from its current point (x, y, z) to (x+δx, y+δy, z+δz) along the
steepest descent. The direction is (δx, δy, δz) which must be the same as (2(x − 1), 4y, z). Hence
all the components must be in the same ratio, which can be expressed as

δx

2(x− 1)
=

δy

4y
=

δz

z
.

(c) Dividing by δt, we can write the equations as

1
2(x− 1)

δx

δt
=

1
z

δz

δt
,

1
4y

δy

δt
=

1
z

δz

δt
.

Let δt → 0 so that
1

2(x− 1)
dx

dt
=

1
z

dz

dt
,

1
4y

dy

dt
=

1
z

dz

dt
.

Since t does not appear explicitly in the equations, we can eliminate it from the equations and
write them as

dz

dx
=

z

2(x− 1
,

dz

dy
=

z

4y
.

(d) Both equations are of first-order separable type (see Section 22.3). Hence
∫

dz

z
=

∫
dx2(x− 1) + C

so that
ln |z| = 1

2
ln |x− 1|+ C, or z2 = M(x− 1).

Also
dz

z
=

∫
dy

4y
,

so that
ln |z| = 1

4
ln |y|, or z4 = Ny or z = Ay

1
4 .

Here M and N are arbitrary constants.
(e) The insect starts at (0, 1, 1). From (a), the direction taken by the insect is (−2, 4, 1). The path
is given by the intersection of the surfaces

z2 = M(x− 1) and z4 = Ny.

From the initial condition, M = −1 and N = 1. Hence the path is given by x = 1− z2, y = z4.

31.21. From (31.25), the stationary points of f(x, y, z) subject to g(x, y, z) = c are the solutions
for x, y, z, λ of

g = c,
∂f

∂x
− λ

∂g

∂x
= 0,

∂f

∂y
− λ

∂g

∂y
= 0,

∂f

∂z
− λ

∂g

∂z
= 0.

(a) f(x, y, z) = x + y + z subject to g(x, y, z) ≡ 1/x + 1/y + 1/z = 1. The stationary points are
solutions of

1
x

+
1
y

+
1
z

= 1, (i)
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1 +
λ

x2
= 0, 1 +

λ

y2
= 0, 1 +

λ

z2
= 0. (ii)

From (ii), −λ = x2 = y2 = z2. Hence, independently, y = ±x and z = ±z. Substituting y and z
into (i), the four cases give:

y = x, z = x ⇒ x = 3, y = 3, z = 3,

y = x, z = −x ⇒ x = 1, y = 1, z = −1,

y = −x, z = x ⇒ x = 1, y = −1, z = 1,

y = −x, z = −x ⇒ x = −1, y = 1, z = 1.

Hence there are stationary points at (3, 3, 3), (1, 1,−1), (1,−1, 1) and (−1, 1, 1).
(b) f(x, y, z) = xyz subject to g(x, y, z) ≡ 1/x + 1/y + 1/z = 1. The coordinates of the stationary
points are solutions of

1
x

+
1
y

+
1
z

= 1, (i)

yz +
λ

x2
= 0, zx +

λ

y2
= 0, xy +

λ

z2
= 0. (ii)

From (ii), x2yz = xy2z = xyz2 = −λ. By elimination of λ, it follows that x = y = z. Hence from
(i), x = y = z = 3. The function has one stationary value at (3, 3, 3).
(c) f(x, y, z) = x2 + y2 + z2 subject to g(x, y, z) ≡ ax + by + cz = 1. The coordinates of the
stationary points are solutions of

ax + by + cz = 1, (i)

2x− λa = 0, 2y − λb = 0, 2z − λc = 0. (ii)

Substitute x, y and z from (ii) into (i):

1
2λa2 + 1

2λb2 + 1
2λc2 = 1.

Therefore
λ =

2
a2 + b2 + c2

,

and the coordinates of the only stationary value are

x =
1
2
λa =

a

a2 + b2 + c2
, y =

1
2
λb =

b

a2 + b2 + c2
, z =

1
2
λa =

c

a2 + b2 + c2
.

(d) f(x, y, z) = xy + yz + zx subject to g(x, y, z) ≡ xyz = 1. The coordinates of the stationary
points are solutions of

xyz = 1, (i)

y + z − λyz = 0, z + x− λzx = 0, x + y − λxy = 0.

Hence, from (ii),

λ =
y + z

yz
=

z + y

zx
=

x + y

xy
.

Therefore x = y = z which means by (i) that x = y = z = 1. The stationary point is at (1, 1, 1).
This means that the block of given volume of smallest surface area is a cube.
(e) f(x, y, z) = xyz subject to g(x, y, z) ≡ x2/a2 + y2/b2 + z2/c2 = 1. The coordinates of the
stationary points are solutions of

x2/a2 + y2/b2 + z2/c2 = 1, (i)

yz =
2λx

a2
, zx =

2λy

b2
, xy =

2λz

c2
.
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From (ii)

λ =
a2yz

2x
=

b2zx

2y
=

c2xy

2z
.

Hence
x2

y2
=

a2

b2
,

z2

x2
=

c2

a2
,

so that from (i), 3x2 = a2 or x = ±a/
√

3. Further y = ±b/
√

3 and z = ±c/
√

3. There are eight
stationary points, at all sign combinations in

(
± a√

3
,± b√

3
,± c√

3

)
.

(f) f(x, y, z) = x2 + 4y2 + z2 subject to g(x, y, z) ≡ x − y − 2z = 0 and h(x, y, z) ≡ z = 1. This
is a Lagrange-multiplier problem with two constraints and uses (31.26). The coordinates of the
stationary points are solutions of

x− y − 2z = 0, z = 1, (i)

2x− λ, 8y + λ = 0, 2z + 2λ = 0, 2z + 2λ− µ = 0. (ii)

From (ii),
x = 1

2λ, y = − 1
8λ, z = −λ + 1

2µ.

Substituting into (i)
1
2
λ +

1
8
λ + 2λ− µ = 0, or − 11

8
λ− µ = 0,

and
−λ +

1
2
µ = 1.

The solution of these equations is λ = − 16
27 , µ = 22

27 . There is, therefore, one stationary point, at

x = 1
2λ = − 8

27 , y = − 1
8λ = 2

16 , z = −λ + 1
2µ = 1.

(g) f(x, y, z) = x2 − y2 − z2 subject to (x − 1)/2 = (y − 2)/(−1) = (z − 2)/3. The straight line
defines two constraints

x− 1
2

=
y − 1
−1

=
z − 2

3
,

which can be expressed in the forms

g(x, y, z) ≡ x + 2y = 5 and h(x, y, z) ≡ 3y + z = 8.

The coordinates of any stationary points are solutions of

x + 2y = 5, 3y + z = 8, (i)

2x− λ = 0, −2y − 2λ− 3µ = 0, −2z − µ = 0. (ii)

From (ii)
x = 1

2λ, y = −λ− 3
2µ, z = − 1

2µ.

Substsituting these into (i), we have

−3λ− 6µ = 10, −3λ− 5µ = 8.

Hence λ = 2
3 and µ = −2. Therefore there is one stationary point, with coordinates

x = 1
3 , y = 7

3 , z = 1.
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(h) f(x, y, z) = xyz subject to xy + yz + zx = 1. The coordinates of stationary ponts are solutions
of

xy + yz + zx = 1, (i)

yz − λ(y + z) = 0, zx− λ(z + x) = 0, xy − λ(x + y) = 0. (ii)

From (ii),
λ =

yz

y + z
=

zx

z + x
=

xy

x + y
,

from which it follows that x = y = z. Finally from (i), x = y = z = 1/
√

3 which are the coordinates
of the only stationary point.
(i) f(x, y, z) = x − y − 2z, subject to g(x, y, z) ≡ z = 1 and h(x, y, z) ≡ x2 + 4y2 + z2 = 6. The
coordinates of any stationary points are solutions of

z = 1, x2 + 4y2 + z2 = 6, (i)

1− 2xµ = 0, −1− 8yµ = 0, −2− λz − 2zµ. (ii)

From (ii),

x =
1
2µ

, y = − 1
8µ

, z = − 1
2µ

(2 + λ).

The restrictions in (i) imply

λ + 2µ = −2,
1

4µ2
+

4
16µ2

+
1

4µ2
(λ + 2)2 = 6.

The elimination of λ between these equations leads to µ = 1
4 , λ = − 5

2 or µ = − 1
4 , λ = − 3

2 . Hence
the function has two stationary values at

(2,− 1
2 , 1) and (−2, 1

2 , 1
2 ).

31.22. (a) The following Mathematica program reproduces the table in Example 31.6, and can be
adapted to other two- and three-dimensional steepest ascent problems.

<< Calculus‘VectorAnalysis‘
Clear[f, x, y, h]
f[x , y , z ] = 4 - xˆ2 - (1/2)yˆ2 - (1/2)zˆ2;
h = 0.05; a[0] = 1; b[0] = 1; c[0] = 1;
SetCoordinates[Cartesian[x, y, z]];
u[x , y , z ] = Grad[f[x, y, z]]/Sqrt[Grad[f[x, y, z]].Grad[f[x, y, z]]]
a[n ] := a[n] = a[n - 1] + h*Part[u[a[n - 1], b[n - 1], c[n - 1]], 1]
b[n ] := b[n] = b[n - 1] + h*Part[u[a[n - 1], b[n - 1], c[n - 1]], 2]
c[n ] := c[n] = c[n - 1] + h*Part[u[a[n - 1], b[n - 1], c[n - 1]], 3]
steepest = Table[i, a[i], b[i], c[i], i, 0, 5] // N
MatrixForm[%]

(b),(c) The following Mathematica program solves the problem of the steepest ascent up the hill
with altitude H = 0.5− x2 − 4y2.

<<Calculus‘VectorAnalysis‘
Clear[f, x, y, u, a, b, h]
f[x , y ] = 0.5 - xˆ2 - 4*yˆ2; h = 0.2;
a[0] = 2; b[0] = 2;
u[x , y ] = {D[f[x, y], x], D[f[x, y], y]}/Sqrt[(D[f[x, y], x])ˆ2 + (D[f[x, y], y]ˆ2];
a[n ] := a[n] = a[n - 1] + h*Part[u[a[n - 1], b[n - 1]], 1]
b[n ] := b[n] = b[n - 1] + h*Part[u[a[n - 1], b[n - 1]], 2]
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Figure 17: Problem 31.22(d)

steepest = Table[{i, a[i], b[i]}, {i, 0, 15}] // N;
MatrixForm[%]

(d) In this case the altitude is given by H = 0.5+x2−y2. The figure shows contours of the surface
which has a saddle point at the origin. The steepest descent is shown starting at the point (3, 2).
(e) Streamlines derived from the potential

φ(x, y) = x

(
1 +

1
x2 + y2

)

are given by

y

(
1− 1

x2 + y2

)
= constant.

Some streamlines outside the circle x2 + y2 = 1 are shown in the figure.
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Figure 18: Problem 31.22(e)

31.23. This problem is concerned with functions of the form

f(x, y, z) = g(u(x, y, z)).

(a) Examples of functions of a function:

w = (xy − z)e−xy+z, or w = ue−u, u = xy − z;

w = (x2 + y2 + z2) cos[
√

(x2 + y2 + z2)], or w = r2 cos r, r =
√

(x2 + y2 + z2).

(b) In the first derivative y and z are effectively constant so that we can use the chain rule (3.3)
for a function of one variable. Hence

∂f

∂x
= g′(u)

∂u

∂x
, and similarly

∂f

∂y
= g′(u)

∂u

∂y
,

∂f

∂z
= g′(u)

∂u

∂z
.
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(c) (i) w = ex2−y2+z2
. In this case u(x, y, z) = x2 − y2 + z2 and w = g(u) = eu. Hence

g′(u) = eu, and
∂u

∂x
= 2x,

∂u

∂y
= −2y,

∂u

∂z
= 2z.

By (b)
∂w

∂x
= g′(u)

∂u

∂x
= eu2x = 2xex2−y2+z2

.

Similarly
∂w

∂y
= −2yex2−y2+z2

,
∂w

∂z
= 2zex2−y2+z2

.

(ii) w = sin(xy/z). In this case choose u = xy/z so that w = g(u) = sin u. Hence g′(u) = cos u
and

∂w

∂x
= cos u× y

z
=

y

z
cos(xy/z),

∂w

∂y
=

x

z
cos(xy/z),

∂w

∂z
= −xy

z2
cos(xy/z).

(d) Assuming that x = x(t), y = y(t), z = z(t), then

f(x, y, z) = g[u(x(t), y(t), z(t)],

and the chain rule can be expressed in the form

df

dt
= g′(u)

∂u

∂x

dx

dt
+ g′(u)

∂u

∂y

dy

dt
+ g′(u)

∂u

∂z

dz

dt
.

(e) Using the chain rule given in (b)

df

dt
= g′

(
cos t sin t

t

) (
−y

z
sin t +

x

z
cos t− xy

z2

)

= g′
(

cos t sin t

t

)(
− sin2 t

t
+

cos2 t

t
− sin t cos t

t2

)

= g′
(

sin 2t

2t

)
1

2t2
(2t cos 2t− sin 2t)

31.24. Given f(u, v, w) where u = u(x, y, z), v = v(x, y, z) and w = w(x, y, z). Then by (31.8)
(this is simply a notational change)

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
+

∂f

∂w

∂w

∂x
,

∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y
+

∂f

∂w

∂w

∂y
,

∂f

∂z
=

∂f

∂u

∂u

∂z
+

∂f

∂v

∂v

∂z
+

∂f

∂w

∂w

∂z
.

(a) φ = f(x− y, y − z, z − x). Here u = x− y, v = y − z, w = z − x. Using the chain rule above,

∂φ

∂x
=

∂φ

∂u
− ∂φ

∂w
,

∂φ

∂y
= −∂φ

∂u
+

∂φ

∂v
,

∂φ

∂z
= −∂φ

∂v
+

∂φ

∂w
.

Adding these results
∂φ

∂x
+

∂φ

∂y
+

∂φ

∂z
= 0.
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In this example f(u, v, w) = uvw. Hence

∂φ

∂x
= vw − uv,

∂φ

∂y
= −vw + uw,

∂φ

∂z
= −uw + uv,

and the result follows by adding these equations.
(b) φ = f(y/x, z/x). Let u = y/x and v = z/x. Then, using the chain rule (31.8),

∂φ

∂x
=

∂φ

∂u

(
− y

x2

)
+

∂φ

∂v

(
− z

x2

)
,

∂φ

∂y
=

∂φ

∂u

1
x

,
∂φ

∂z
=

∂φ

∂v

1
x

.

Therefore
x

∂φ

∂x
+ y

∂φ

∂y
+ z

∂φ

∂z
= 0.

The function φ = x/y + y/z + z/x can be expressed as

φ = f(u, v) =
1
u

+
u

v
+ v.

Hence
∂φ

∂x
=

(
− 1

u2
+

1
v

) (
− y

x2

)
+

(
− u

v2
+ 1

)(
− z

x2

)
=

1
y
− z

x2
,

∂φ

∂y
=

(
− 1

u2
+

1
v

)(
1
x

)
= − x

y2
+

1
z
,

∂φ

∂z
=

(
−xy

z2
+ 1

) (
1
x

)
= − y

x2
+

1
x

.

It can be verified that
x

∂φ

∂x
+ y

∂φ

∂y
+ z

∂φ

∂z
= 0.

31.25. Given f(x, y, z, t) = ei(k1x+k2y+k3z−ωt), then

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
− 1

c2

∂2f

∂t2

= −k2
1e

i(k1x+k2y+k3z−ωt) − k2
2e

i(k1x+k2y+k3z−ωt)

−k2
3e

i(k1x+k2y+k3z−ωt) +
ω2

c2
ei(k1x+k2y+k3z−ωt)

=
(
−k2

1 − k2
2 − k2

3 +
ω2

c2

)
ei(k1x+k2y+k3z−ωt)

= 0,

if c = ω/
√

(k2
1 + k2

2 + k2
3). Let f(x, y, z, t) = g(k1x + k2y + k3z − ωt). Then

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
− 1

c2

∂2f

∂t2
=

(
k2
1 + k2

2 + k2
3 −

ω2

c2

)
g′′(k1x + k2y + k3z − ωt) = 0

using the the value of c defined above. Hence g(k1x + k2y + k3z − ωt) satisfies the wave equation.

31.26. By (31.29) the envelope of f(x, y, α) = 0, is obtained by eliminating the parameter α
between this equation and ∂f/∂α = 0.
(a) Let f(x, y, α) = y − α− α2x. Then

∂f

∂α
= −1− 2αx.

Eliminate α between
y − α− α2x = 0, (i)
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and
−1− 2αx = 0. (ii)

From (ii), α = −1/(2x), so that (i) becomes

y +
1
2x

− x

4x2
= 0, or 4xy = −1.

The envelope is given by 4xy = −1, which is a rectangular hyperbola.
(b) Let f(x, y, α) = y + α2x− α. Then

∂f

∂α
= 2αx− 1.

Eliminate α between
y + α2x− α = 0, (i)

and
2αx− 1 = 0.

From (ii) α = 1/(2x), so that (i( becomes

y +
x

4x2
− 1

2x
= 0.

The envelope is given by 4xy = 1, which is a rectangular hyperbola.
(c) Express the function f in the form f(x, y, α) = (1− α)x + αy − α(1− α). Then

∂f

∂α
= −x + y − 1 + 2α.

Eliminate α between
(1− α)x + αy − α(1− α) = 0, (i)

and
−x + y − 1 + 2α = 0. (ii)

From (ii), α = 1
2 (x− y + 1) so that (i) becomes

x(−x + y + 1) + y(x− y + 1)− 1
2
(x− y + 1)(−x + y + 1) = 0,

which, after expansion, is the envelope

x2 + y2 − 2xy − 2x− 2y + 1 = 0.

(d) Let f(x, y, θ) = x cos θ + y sin θ − 1. Then

∂f

∂θ
= −x sin θ + y cos θ.

Eliminate θ between
x cos θ + y sin θ − 1 = 0, (i)

and
−x sin θ + y cos θ = 0. (ii)

From (ii), tan θ = y/x. Hence, cos θ = x/
√

(x2 + y2) and sin θ = y/
√

(x2 + y2), so that (i) becomes

x2

√
(x2 + y2)

+
y2

√
(x2 + y2)

= 1,

which is the equation of the circle x2 + y2 = 1.
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Figure 19: Problem 31.27

31.27. (a) The semicircular mirror is shown in Figure 19 with a ray AP falling on the mirror at
P , and reflected along PB. Since P has coordinates (cos θ, sin θ), the radius to P makes an angle
θ with the x axis. The ray is reflected at the same angle θ to the radius at P , and therefore makes
an angle 2θ with the x axis. Hence the slope of PB is tan θ, and its equation is

y − sin θ = tan 2θ(x− cos θ)

or
y cos 2θ − sin θ cos 2θ = x sin 2θ − cos θ sin 2θ.

Since sin 2θ cos θ − cos 2θ sin θ = sin θ, the equation of the reflected ray is

x sin 2θ − y cos 2θ = sin θ.

(b) Let
f(x, y, θ) = x sin 2θ − y cos 2θ − sin θ.

By (31.29), the caustic is given by eliminating θ between f(x, y, θ) = 0 and ∂f(x, y, θ)/∂θ.
Hence θ has to be eliminated between

x sin 2θ − y cos 2θ = sin θ, (i)

and
2x cos 2θ − 2y sin 2θ = cos θ.(ii)

Divide (ii) through by 2, and then square and add (i) and (ii):

(x sin 2θ − y cos 2θ)2 + (x cos 2θ − y sin 2θ)2 = sin2 θ +
1
4

cos2 θ,

or
x2 + y2 = 1

4 + 3
4 sin2 θ.(iii)

Eliminate x between (i) and (ii), so that

−y = sin θ cos 2θ − 1
2

cos θ sin 2θ = sin θ − 2 sin3 θ − cos2 θ sin θ

= sin θ − 2 sin3 θ − sin θ + sin3 θ

= − sin3 θ

Hence sin θ = y
1
3 . Finally eliminating sin θ in (iii) we obtain the equation of the caustic.

x2 + y2 =
1
4
(3y

2
3 + 1).

The grey curve in Figure 20 shows the caustic.
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Figure 20: Problem 31.27(b)

31.28. The length cut of by the line between the axes is L. Let the line make angle θ with the x
axis: in other words its slope is tan θ. The line cuts the x axis at (−L cos θ, 0) and the y axis at
(0, L sin θ) (note that, if the intercept is in the first quadrant, then 1

2π < θ < π). the equation of
the straight line is

y − L sin θ = x tan θ. (i)

Differentiate this equation with respect to θ so that

-1 -0.5 0.5 1 x

-1

-0.5

0.5

1

y

Figure 21: Problem 31.28

−L cos θ = x sec2 θ. (ii)

The envelope is given by the elimination of θ between (i) and (ii). From (ii)

cos3 θ = − x

L
, or cos θ =

(
− x

L

) 1
3

. (iii)

From (i)
y = L sin θ + x tan θ = L sin θ − L cos3 θ tan θ = L sin3 θ.

Therefore

sin θ =
( y

L

) 1
3

. (iv)

Squaring and adding (iii) and (iv),
x

2
3 + y

2
3 = L

2
3 ,

which is the envelope of the straight lines. The envelope is shown in Figure 21.

Chapter 32: Double integration

32.1. The integration is in two stages: with respect to the inner variable first and then with
respect to the outer variable. However, with constant limits of integration the order of integration
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can be changed with out affecting the limits. Thus, by (32.1)

I =
∫ d

c

∫ b

a

f(x, y)dxdy =
∫ d

c

(∫ b

a

f(x, y)dx

)
dy,

and, changing the order of integration,

I =
∫ b

a

∫ d

c

f(x, y)dydx =
∫ b

a

(∫ d

c

f(x, y)dy

)
dx

also.
(a) ∫ 1

0

∫ 2

1

xy2dxdy =
∫ 1

0

[
1
2
x2y2

]2

x=1

dy =
∫ 1

0

[
3
2
y2

]
dy =

[
1
2
y3

]1

0

=
1
2
.

(b) ∫ 1

0

∫ 1

0

yexydxdy =
∫ 1

0

[exy]1x=0dy =
∫ 1

0

(ey − 1)dy = [ey − y]10 = e− 2.

(c) ∫ d

c

∫ b

a

dxdy =
∫ d

c

[x]bx=ady =
∫ d

c

(b− a) dy = (b− a)[y]dc = (b− a)(d− c).

(d) ∫ b

a

∫ d

c

dxdy =
∫ b

a

[x]dx=cdy =
∫ b

a

(d− c)dy = (d− c)[y]ba = (b− a)(d− c) :

the answer is the same as that for (c).
(e) Note that in this problem the integration is with respect to y first. Hence

∫ d

c

∫ b

a

dydx =
∫ d

c

[y]by=adx =
∫ d

c

(b− a) dx = (b− a)[x]dc = (b− a)(d− c),

which is the same answer as in (c) and (d).
(f)

∫ 1
2

0

∫ 1
2 π

0

y sin(xy)dxdy =
∫ 1

2

0

[− cos(xy)]
1
2 π
x=0 dy =

∫ 1
2

0

{− cos
(

1
2πy

)
+ 1

}
dy

=
[
− 2

π
sin

(
1
2
πy

)
+ y

] 1
2

0

= − 2
π

sin
1
4
π +

1
2

= −
√

2
π

+
1
2
.

(g) ∫ 1

−1

∫ 1

−1

x2dxdy =
∫ 1

−1

[
1
3
x3

]1

x=−1

dy =
2
3

∫ 1

−1

dy =
4
3
.

(h) Integrate with respect ot y first:

∫ 2

1

∫ 1

0

x2dydx =
∫ 2

1

x2[y]10dx =
∫ 2

1

x2dx =
[
1
3
x3

]2

1

=
1
3
(8− 1) =

7
3
.
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(i)

∫ 1

0

∫ 1

−1

(xy2 − x2y)dxdy =
∫ 1

0

[
1
2
x2y2 − 1

3
x3y

]1

x=−1

dy

=
∫ 1

0

(
1
2
y2 − 1

3
y − 1

2
y2 − 1

3
y

)
dy =

∫ 1

0

(
−2

3
y

)
dy

=
[
−2

3
1
2
y2

]1

0

= −1
3

(j) Integrate with respect to y first:

∫ 1

−1

∫ 1

0

(xy2 − x2y)dydx =
∫ 1

−1

[
1
3
xy3 − 1

2
x2y

]1

y=0

dx =
∫ 1

−1

(
1
3
x− 1

2
x2

)
dx

=
[
1
6
x2 − 1

6
x3

]1

−1

= −1
3

Alternatively, change the order of integration and the limits, and use the answer to the previous
problem: ∫ 1

−1

∫ 1

0

(xy2 − x2y)dydx =
∫ 1

0

∫ 1

−1

(xy2 − x2y)dxdy = −1
3
.

(k)

∫ 1

0

∫ 1

0

(x + y2 + 1)2dxdy =
∫ 1

0

[
1
3
(x + y2 + 1)3

]1

x=0

dy

=
∫ 1

0

1
3
[(2 + y2)3 − (1 + y2)3] dy

=
∫ 1

0

1
3
[3y4 + 9y2 + 7]dy =

1
3

[
3
5
y5 + 3y3 + 7y

]1

0

=
53
15

(l) Integrate with respect to y first:

∫ 1
2 π

0

∫ 1
2 π

0

cos(x + y)dydx =
∫ 1

2 π

0

[sin(x + y)]
1
2 π
y=0 dx

=
∫ 1

2 π

0

[
sin

(
x +

1
2
π

)
− sin x

]
dx

=
[
− cos

(
x +

1
2
π

)
+ cos x

] 1
2 π

0

= 0

(m) ∫ 2

1

∫ 1

0

x

y
dxdy =

∫ 2

1

[
x2

2y

]1

x=0

dy =
∫ 2

1

1
2y

dy =
1
2

[ln y]21 =
1
2

ln 2.

32.2. The signed volume V between the surface z = f(x, y) and the plane z = 0 over the rectangle
a ≤ x ≤ b, c ≤ y ≤ d is given by

V =
∫ d

c

∫ b

a

f(x, y)dxdy, or
∫ b

a

∫ d

c

f(x, y)dydx.
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(a) z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The signed volume is

V =
∫ 1

0

∫ 1

0

xydxdy =
∫ 1

0

[
1
2
x2

]1

0

ydy =
1
2

∫ 1

0

ydy =
1
4
.

(b) z = xy, −1 ≤ x ≤ 1, 0 ≤ y ≤ 1. Then

V =
∫ 1

0

∫ 1

−1

xydxdy =
∫ 1

0

[
1
2
x2

]1

−1

ydy = 0.

If (x0, y0, z0) is any point on the surface, then the point (−x0, y0,−z0) also lies on the surface.
Elements of volume about these points cancel out so that the total signed volume is zero.
(c) z = x + y, −1 ≤ x ≤ 2, −2 ≤ y ≤ 1. The signed volume is

V =
∫ 1

−2

∫ 2

−1

(x + y)dxdy =
∫ 1

−2

[
1
2
x2 + xy

]2

−1

dy

=
∫ 1

−2

[
3
2

+ y

]
dy =

[
3
2
y + 3

1
2
y2

]1

−2

=
3
2

+
3
2

+ 3− 6 = 0.

(d) z = −1, a ≤ x ≤ b, c ≤ y ≤ d. The signed volume is

V =
∫ d

c

∫ b

a

(−1)dxdy = −
∫ d

c

[x]bady = −
∫ d

c

(b− a)dy = −(b− a)(d− c).

(e) z = 2x− y + 3, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The signed volume is

V =
∫ 1

0

∫ 1

0

(2x− y + 3)dxdy =
∫ 1

0

(4− y)dy =
[
4y − 1

2
y2

]1

0

=
7
2
.

(f) z = 1/(x + y), 1 ≤ x ≤ 2, 0 ≤ y ≤ 1. The signed volume is
∫ 1

0

∫ 2

1

1
x + y

dxdy =
∫ 1

0

[ln(x + y)]2x=1dy

=
∫ 1

0

[ln(2 + y)− ln(1 + y)]dy.

=
∫ 3

2

ln sds−
∫ 2

1

ln tdt (s = y + 2, t = y + 1)

= [s ln s− s]32 − [t ln t− t]21 (see Appendix E)
= 3 ln 3− 4 ln 2

(g) z = (x + 2y − 1)2, −2 ≤ x ≤ 1, −1 ≤ y ≤ 1. The signed volume is given by

V =
∫ 1

−1

∫ 1

−2

(x + 2y − 1)2dxdy =
∫ 1

−1

1
3
(x + 2y − 1)3]1−2dy

=
∫ 1

−1

1
3
[8y3 − (2y − 3)3] dy

=
1
3

[
2y4 − 1

8
(2y − 3)4

]1

−1

= 26

32.3. The region of integration is shown in each case. The values of the repeated integrals are
also stated.

(a)
∫ 1

0

∫ y

0

dxdy =
∫ 1

0

[x]yx=0dy =
∫ 1

0

ydy =
1
2
.
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Figure 22: Problem 32.3(a), (b)

(b)
∫ 1

0

∫ 1

y

dxdy =
1
2
.
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Figure 23: Problem 32.3(c), (d)

(c)
∫ 1

0

∫ y

0

x2ydydx =
∫ 1

0

x2

[
1
2
y2

]x

y=0

dx =
1
2

∫ 1

0

x4dx =
1
10

.

(d)
∫ 1

0

∫ x

0

(x + y2)2dxdy =
9
20

.

-1 1
x

1
y

-1 1 2
x

1

2
y

Figure 24: Problem 32.3(e), (f)

(e)
∫ 1

0

∫ y

−y

ydxdy =
2
3
.
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(f)
∫ 2

0

∫ y

− 1
2 y

y2 sin(xy)dxdy = 4 cos 1 sin3 1.
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Figure 25: Problem 32.3(g), (h)

(g)
∫ 2

0

∫ 1− 1
2 x

0

x2dydx =
∫ 2

0

x2[y]1−
1
2 x

y=0 dx =
∫ 2

0

x2(1− 1
2
x)dx =

2
3
.

(h)
∫ 1

0

∫ √
(1−y2)

0

xdxdy =
1
3
.

(i) The region of integration is the same as that shown for (h) but with the strip parallel to the x
axis. The value of the integral is

∫ 1

0

∫ √
(1−x2)

0

xdydx =
1
3
,

which, as expected, is the same as that in (h).

32.4. The base of the wedge is the semi-circle x2 + y2 = 1, y ≥ 0, and its height at any point
(x, y) on the base is z = 2y. Take a strip in the (x, y) plane of width δy which is parallel to the
x axis. Its length will be 2

√
(1− y2), and the semi-circle will be covered if 0 ≤ y ≤ 1. Hence the

volume V is given by

V =
∫ 1

0

∫ √
(1−y2)

−√(1−y2)

zdxdy =
∫ 1

0

∫ √
(1−y2)

−√(1−y2)

2ydxdy

= 2
∫ 1

0

y[x]
√

(1−y2)
−√(1−y2)dy = 4

∫ 1

0

y
√

(1− y2)dy

= −4
3

[
(1− y2)

3
2

]1

0
=

4
3

32.5. The region of integration should be sketched as shown in each case together with the new
strip.

(a)
∫ 1

0

∫ y

0

f(x, y)dxdy =
∫ 1

0

∫ 1

x

f(x, y)dydx.

(b)
∫ 1

0

∫ 1

y

f(x, y)dxdy =
∫ 1

0

∫ x

0

f(x, y)dydx.

(c) It can be seen from the shape of the region that the integration with respect to y will be the
sum of two integrals over regions separated by the line x = 2. Thus

∫ 2

1

∫ y+1

0

f(x, y)dxdy =
∫ 2

1

∫ 2

0

f(x, y)dydx +
∫ 3

2

∫ 2

x−1

f(x, y)dydx.
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Figure 26: Problem 32.5(a), (b)
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Figure 27: Problem 32.5(c), (d)

(d)
∫ 1

0

∫ √
(1−y2)

−√(1−y2)

f(x, y)dxdy =
∫ 1

−1

∫ √
(1−x2)

0

f(x, y)dydx.

(e) Two integrals are required for the change of the order of integration. Thus
∫ 4

2

∫ 1
2 y

0

f(x, y)dxdy =
∫ 1

0

∫ 4

2

f(x, y)dydx +
∫ 2

1

∫ 4

2x

f(x, y)dydx.

(f) The curves y = x2 and y = x3 intersect at the points (0, 0) and (1, 1), so the limits of integration

1 2
x

1

2

3

4

y

1
x

1
y

Figure 28: Problem 32.5(e), (f)

for x are 0 and 1. Thus
∫ 1

0

∫ x2

x3
f(x, y)dydx =

∫ 1

0

∫ y
1
3

y
1
2

f(x, y)dxdy.

(g) In the reversed order, the integral becomes the sum of two integrals separated at y = 0. Thus
∫ 1

0

∫ 1−x

−1+x

f(x, y)dydx =
∫ 0

−1

∫ 1+y

0

f(x, y)dxdy +
∫ 1

0

∫ 1−y

0

f(x, y)dxdy.
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(h) The region of integration is the circle shown which has centre at (0, 1) and radius 1. In

1
x

1
y

1
x

1

y

Figure 29: Problem 32.5(g), (h)

the reversed order of integration the strip parallel to the x axis lies between −√(2y − y2) and√
(2y − y2). Thus

∫ 1

−1

∫ 1+
√

(1−x2)

1−√(1−x2)

f(x, y)dydx =
∫ 2

0

∫ √
(2y−y2)

−√(2y−y2)

f(x, y)dxdy.

32.6. (a) The limits of integration are all constants, which means that the region of integration is
a rectangle with two sides along the axes. To reverse the order of integration simply transpose the
integrals with their limits. Hence

∫ 1
2

0

∫ 1
2 π

0

x sin(xy)dxdy =
∫ 1

2 π

0

(∫ 1
2

0

x sin(xy)dy

)
dx

=
∫ 1

2 π

0

[− cos(xy)]
1
2
y=0 dx

=
∫ 1

2 π

0

(− cos 1
2x + 1

)
dx

=
[−2 sin 1

2x + x
] 1

2 π

0
= −√2 + 1

2π.

(b) The straight boundaries of the region are x = 0, y = 2 and x = 2(y − 1). Hence when the

1 2
x

1

2

y

1
x

1
y

Figure 30: Problem 32.6(b), (c)

order of integration is reversed the limits on y are y = 1
2x + 1 and y = 2 as shown. Therefore

∫ 2

1

∫ 2(y−1)

0

x2dxdy =
∫ 2

0

∫ 2

1
2 x+1

x2dydx =
∫ 2

0

[
x2y

]2
y= 1

2 x+1

=
∫ 2

0

[x2 − 1
2
x3]dx =

[
1
3
x3 − 1

8
x4

]2

0

=
2
3
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(c) From Figure 30
∫ 1

0

∫ y

0

x2exydxdy =
∫ 1

0

∫ 1

x

x2exydydx

=
∫ 1

0

[xexy]1x =
∫ 1

0

[xex − xex2
]dx

The first integral can be evaluated by integration by parts:
∫ 1

0

xexdx = [xex]10 −
∫ 1

0

exdx = e− e + 1 = 1,

and, using the substitution u = x2, the second becomes
∫ 1

0

xex2
dx = [

1
2
ex2

]10 =
1
2
e− 1

2
.

Hence ∫ 1

0

∫ y

0

x2exydxdy = 1− 1
2e + 1

2 = 3
2 − 1

2e.

(d) This is an infinite integral in y. The region of integration lies between the two curves shown

1 2 3
x

1

2

y

xy2=1

4xy2=1

Figure 31: Problem 32.6(d)

in Figure 31. Hence, reversing the order of integration

∫ ∞

0

∫ y−2

1
4 y−2

x2ye−x2y2
dxdy =

∫ ∞

0

∫ x−
1
2

y= 1
2 x−

1
2

x2ye−x2y2
dydx

=
1
2

∫ ∞

0

[
−e−x2y2

]x−
1
2

1
2 x−

1
2

dx

=
1
2

∫ ∞

0

[−e−x + e−
1
4 x]dx

=
1
2

[
e−x − 4e−

1
4 x

]∞
0

=
3
2

(f) The limits are all constants so that we need only transpose the integrals. Hence
∫ 2

1

∫ 1

0

y

x2 + y2
dxdy =

∫ 1

0

∫ 2

1

y

x2 + y2
dydx

=
1
2

∫ 1

0

∫ 4

1

1
x2 + u

dudx (substituting u = y2)

=
1
2

∫ 1

0

[
ln(x2 + u)

]4
1
dx =

1
2

∫ 1

0

[ln(x2 + 4)− ln(x2 + 1)dx
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Figure 32: Problem 32.6(f), (g)

A typical integral on the right is
∫

ln(x2 + a2)dx = x ln(x2 + a2)−
∫

2x2dx

x2 + a2
dx

= x ln(x2 + a2)− 2
∫ (

1− a2

x2 + a2

)
dx

= x ln(x2 + a2)− 2x + 2a arctan(x/a).

after integrating by parts. Now put a successively equal to 2 and 1. Then
∫ 2

1

∫ 1

0

y

x2 + y2
dxdy

= 1
2 [x{ln(x2 + 4)− ln(x2 + 1)}+ 4 arctan(x/2)− 2 arctan x]10

= 1
2 ln 5

2 − 1
4π + 4arctan 1

2

(g) (Note: this repeated integral does not converge, that is, its value is not finite.) Replace by
∫ ∞

1

∫ ∞

0

1
(x + y)3

dxdy.)

Then
∫ ∞

1

∫ ∞

0

1
(x + y)3

dxdy =
∫ ∞

0

∫ ∞

1

1
(x + y)3

dydx = −1
2

∫ ∞

0

[
1

(x + y)2

]∞

y=1

dx

=
1
2

∫ ∞

0

1
(x + 1)2

dx = −1
2

[
1

x + 1

]∞

0

=
1
2

(h)

∫ 1

0

∫ 1

y

y(x2 − y2)
1
2 dxdy =

∫ 1

0

∫ x

0

y(x2 − y2)
1
2 dydx

=
1
2

∫ 1

0

∫ x2

0

(x2 − u)
1
2 dudx (using the substitution u = y2)

= −1
3

∫ 1

0

[
(x2 − u)

3
2

]x2

u=0
dx =

1
3

∫ 1

0

x3dx =
1
12

(i) The integral must be split into two parts. Thus
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Figure 33: Problem 32.6(h), (i)

∫ 2

0

∫ y−1

−y−1

x2dxdy =
∫ 2

0

∫ −1

−y−1

x2dxdy +
∫ 2

0

∫ y−1

−1

x2dxdy

=
∫ −1

−3

∫ 2

−x−1

x2dydx +
∫ 1

−1

∫ 2

x+1

x2dydx

=
∫ −1

−3

x2[y]2−x−1dx +
∫ 1

−1

x2[y]2x+1dx

=
∫ −1

−3

(3x2 + x3)dx +
∫ 1

−1

(x2 − x3)dx

=
[
x3 +

x4

4

]−1

−3

+
[
x3

3
− x4

4

]1

−1

=
(
−1 +

1
4

+ 27− 81
4

)
+

(
1
3
− 1

4
+

1
3

+
1
4

)
=

20
3

(j) The region of integration is the same as that shown for Problem 32.6(h). Thus

∫ 1

0

∫ 1

y

ydxdy

(x2 − y2)
1
2

=
∫ 1

0

∫ x

0

ydydx

(x2 − y2)
1
2

=
1
2

∫ 1

0

∫ x2

0

dudx

(x2 − u)
1
2

= −
∫ 1

0

[(x2 − u)
1
2 ]x

2

0 dx =
∫ 1

0

xdx =
1
2

32.7. (a) Integrate with respect to x first. Then, using the figure,

∫ ∫

R
f(P )dA =

∫ 4

1

∫ 2

1

(x2 + y2)dxdy =
∫ 4

1

[
1
3
x3 + xy2

]2

x=1

dy

=
∫ 4

1

(
7
3

+ y2

)
dy =

[
7
3
y +

1
3
y3

]4

1

= 28

(b) To avoid having to split the integral integrate with respect to y first. The upper and lower
limits for y lie on the lines y = −(x−√3)/

√
3 and y = (x−√3)/

√
3 respectively. Therefore

∫ ∫

R
f(P )dA =

∫ √
3

0

∫ −(x−√3)/
√

3

(x−√3)/
√

3

xdydx

=
∫ √

3

0

[y]−(x−√3)/
√

3

(x−√3)/
√

3
dx

= − 2√
3

∫ √
3

0

(x2 − x
√

3)dx
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Figure 34: Problem 32.7(a), (b)

= − 2√
3

[
1
3
x3 − 1

2
x2
√

3
]√3

0

= − 2√
3

[
(
√

3)3

3
− (

√
3)3

2

]
= 1.

(c) Integrating with respect to x first,

1 2
x

1

2
y

Figure 35: Problem 32.7(c)

∫ ∫

R
f(P )dA =

∫ 2

−2

∫ √
(4−y2)

−√(4−y2)

y2dxdy = 2
∫ 2

−2

y2√(4− y2)dy

= 32
∫ 1

2 π

− 1
2 π

sin2 t cos2 tdt (substituting y = 2 sin t)

= 8
∫ 1

2 π

− 1
2 π

sin2 2tdt = 4
∫ 1

2 π

− 1
2 π

(1− cos 4t)dt = 4π

32.8. If the sector R is the region a ≤ r ≤ b, α ≤ θ ≤ β, and P is a representative point in R,
then, in polar coordinates, the double integral of f(P ) over R is

∫ ∫

R
f(P )dA =

∫ β

α

∫ b

a

f(r, θ)rdrdθ,

(see (32.4) and Figure 32.9).
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(a) R is x2 + y2 ≤ 1, and f(P ) = x2 + y2 = r2. In this problem a = 0, b = 1, α = 0 and β = 2π.
Hence ∫ ∫

R
f(P )dA =

∫ 2π

0

∫ 1

0

r3drdθ =
1
4

∫ 2π

0

[r4]10dθ =
1
4

∫ 2π

0

dθ =
1
2
π.

(b) R is x2 + y2 ≤ 1, and f(P ) = y2 = r2 sin2 θ. In this problem a = 0, b = 1, α = 0 and β = 2π.
Hence

∫ ∫

R
f(P )dA =

∫ 2π

0

∫ 1

0

r3 sin2 θdrdθ =
1
4

∫ 2π

0

[
r4

]1
0
sin2θdθ

=
1
4

∫ 2π

0

1
2
(1− cos 2θ)dθ =

1
4
π.

(c) R is the region r ≤ 2, x ≥ 0, y ≥ 0, and f(P ) = xy = r2 sin θ cos θ. In the this problem a = 0,
b = 2, θ = 0 and θ = 1

2π. Therefore

∫ ∫

R
f(P )dA =

∫ 1
2 π

0

∫ 2

0

r3 sin θ cos θdrdθ =
1
4

∫ 1
2 π

0

[
r4

]2
0
sin θ cos θdθ

= 4
∫ 1

2 π

0

1
2

sin 2θdθ

= [− cos 2θ]
1
2 π
0 = 2

(d) R is the sector 1 ≤ r ≤ 2, 0 ≤ θ ≤ 1
2π, and f(P ) = xy = r2 sin θ cos θ. This is like (c) but with

a change of lower limit for r. Thus
∫ ∫

R
f(P )dA =

∫ 1
2 π

0

∫ 2

1

r3 sin θ cos θdrdθ

=
1
4

∫ 1
2 π

0

[
r4

]2
1
sin θ cos θdθ

=
15
4

∫ 1
2 π

0

1
2

sin 2θdθ

=
15
16

[− cos 2θ]
1
2 π
0 =

15
8

(e) R is the disc x2 + y2 ≤ 4, and f(x, y) = arctan(y/x) = θ. Therefore
∫ ∫

R
f(P )dA =

∫ 2π

0

∫ 2

0

rθdrdθ

=
∫ 2π

0

θ

[
1
2
r2

]2

0

dθ

= 2
∫ 2π

0

θdθ = 4π2

(f) R is the first quadrant r ≥ 0, 0 ≤ θ 1
2 ≤ π, and f(x, y) = e−4(x2+y2) = e−4r2

. Then

∫ ∫

R
f(x, y)dA =

∫ 1
2 π

0

∫ ∞

0

re−4r2
drdθ

=
1
2

∫ 1
2 π

0

∫ ∞

0

e−4ududθ (substituting u = r2)

=
1
2

∫ 1
2 π

0

[
−1

4
e−4u

]∞

0

dθ =
1
8

∫ 1
2 π

0

dθ

=
1
16

π
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(g) Assuming that the equation of the sphere is x2 + y2 + z2 = a2, consider the section z = 0
(that is, the (x, y) plane) of the sphere. The volume V of the sphere is twice the volume of the
hemisphere z = (a2 − x2 − y2)

1
2 which can be expressed as the integral of f(z) over the circle

x2 + y2 = a2. Therefore

V = 2
∫ 2π

0

∫ a

0

r(a2 − r2)
1
2 drdθ = 2

∫ 2π

0

[
1
3
(a2 − r2)

3
2

]a

0

dθ

=
2
3
a3

∫ 2π

0

dθ =
4
3
πa3

(h) R is the half-plane y ≥ 0 and f(P ) = ye−(x2+y2) = r sin θe−r2
. Hence, since the integral is

separable,
∫ ∫

R
f(x, y)dA =

∫ π

0

∫ ∞

0

r2 sin θe−r2
drdθ =

∫ π

0

sin θdθ

∫ ∞

0

r2e−r2
dr

= [− cos θ]π0

∫ ∞

0

r

(
−1

2

)
d
dr

(
e−r2

)
dr

= −
(

[re−r2
]∞0 −

∫ π

0

e−r2
dr

)
(integrating by parts)

=
∫ ∞

0

e−r2
dr =

1
2
√

π,

using the special formula given in Example 32.11.

32.9. A cylindrical hole of equation (x− 1
2a)2 + y2 = 1

4a2 is drilled through a sphere of equation
x2 +y2 +z2 = a2 as shown in Figure 32.20 in the book. Consider the polar coordinates (r, θ) in the
(x, y) plane. The polar equation of the cylindrical hole is r = a cos θ (since the angle subtended by
a diameter at a point on the circle is a right angle). At the location (r, θ) the length drilled from
the sphere within the hole is 2

√
(a2 − r2) perpendicular to the (x, y) plane. Hence the element of

volume removed at (r, θ) is 2r
√

(a2 − r2)rδrδθ. The total volume removed from the sphere is (note
that sin θ is missing from one of the upper limits in the problem)

Vc = 2
∫ 1

2 π

− 1
2 π

∫ a cos θ

0

r
√

(a2 − r2)drdθ =
2
3

∫ 1
2 π

− 1
2 π

[
−(a2 − r2)

3
2

]a cos θ

0
dθ

=
2a3

3

∫ 1
2 π

− 1
2 π

(1− cos3 θ)dθ

=
2a3

3

(
[θ]

1
2 π

− 1
2 π
−

∫ 1
2 π

0

(1− sin2 θ)
d sin θ

dθ
dθ

)

=
2a3

3

(
π −

[
sin θ − 1

3
sin3 θ

] 1
2 π

− 1
2 π

)
= a3

(
2π

3
− 8

9

)

Hence the volume of the remaining part of the sphere is

V = 4
3πa3 − Vc = 4

3πa3 = − 2
3πa3 + 8

9a3 = 2
3πa3 + 8

9a3

32.10. The Jacobian determinant is given by

J(u, v) =
∂(x, y)
∂(u, v)

= det
[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
, or, alternatively,

∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ .

(a) x = u2 − v2, y = uv. Then

J(u, v) =
∣∣∣∣

2u −2v
v u

∣∣∣∣ = 2(u2 + v2) ≥ 0.
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(b) x = u− v, y = 2v. Then

J(u, v) =
∣∣∣∣

1 −1
0 2

∣∣∣∣ = 2.

(c) u = 2x− y, v = x + 2y, or x = 2
5u + 1

5v, y = − 1
5u + 2

5v. Then

J(u, v) =
∣∣∣∣

2
5

1
5

− 1
5

2
5

∣∣∣∣ =
4
25

+
1
25

=
1
5
.

(d) x = u− e−v, y = u− ev. Then

J(u, v) =
∣∣∣∣

1 e−v

1 −ev

∣∣∣∣ = −ev − e−v = −2 cosh v.

32.11. Given x = u/v, y = uv, then (see introduction to the previous problem)

J(u, v) =
∣∣∣∣

1/v −u/v2

v u

∣∣∣∣ =
u

v
+

u

v
= 2

u

v
.

The region of integration in the (x, y) plane bounded by the lines y = 2x, y = x and the rectangular

1 2 3
x

1
2
3
4
5
y

R

1 2 3
u

1

v

Figure 36: Problem 32.11

hyperbolas xy = 1 and xy = 8 is shown in the figure. In the (u, v) plane this region becomes a
rectangle bounded by the straight lines u = 1, u = 2

√
2, v = 1 and v =

√
2. Using (32.12),

∫ ∫

R
xy2dxdy =

∫ √
2

1

∫ 2
√

2

1

u

v
(uv)2|J(u, v)|dudv

=
∫ √

2

1

∫ 2
√

2

1

u3v
2u

v
dudv

= 2
∫ √

2

1

∫ 2
√

2

1

u4dudv = 2
[
u5

5

]2
√

2

1

[v]
√

2
1

=
2
5
[257− 129

√
2]

32.12. The intersection of the parabolas y = x2, y = 2x2, x = y2, x = 2y2 occurs in the first
quadrant as shown in the first figure. The transformation u = y/x2, v = x/y2 maps the region in
the (x, y) plane into the square with edges u = 1, u = 2, v = 1, v = 2. If R denotes the region
between the parabolas in the (x, y) plane, then the area A of R is given by

A =
∫ ∫

R
dxdy =

∫ 2

1

∫ 2

1

|J(u, v)|dudv,

where the Jacobian

J(u, v) = det
[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
, or

∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ .
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Figure 37: Problem 32.12

In terms of u and v, x = u−
1
3 v−

2
3 , y = u−

2
3 v−

1
3 . Hence

J(u, v) =
∣∣∣∣
− 2

3u−
5
3 v−

1
3 − 1

3u−
2
3 v−

4
3

− 1
3u−

4
3 v−

2
3 − 2

3u−
1
3 v−

5
3

∣∣∣∣ =
1
3
u−2v−2 ≥ 0.

Therefore

A =
1
3

∫ 2

1

∫ 2

1

u−2v−2dudv =
1
3

∫ 2

1

u−2du

∫ 2

1

v−2dv =
1
12

.

32.13. The region R is shown in the figure. If integration with respect to x is taken first, then
the integral has to be split into two integrals, for y > 0 and y < 0. The edge AB is x+ y = 1, edge
AD is −x + y = 1, edge BC is x− y = 1, and edge CD is −x− y = 1. Hence

1
x

1

y

ÈxÈ+ÈyÈ=1

A

B

C

D

Figure 38: Problem 32.13

∫ ∫

R
xex+ydA =

∫ 1

0

∫ −y+1

y−1

xex+ydxdy +
∫ 0

−1

∫ y+1

−y−1

xex+ydxdy.

Using integration by parts
∫

xexdx = xex −
∫

exdx = xex − ex.

Therefore
∫ ∫

R
xex+ydA =

∫ 1

0

ey [(x− 1)ex]−y+1
y−1 dy +

∫ 0

−1

ey [(x− 1)ex]y+1
−y−1 dy

=
∫ 1

0

[−ye− (y − 2)e2y−1dy +
∫ 0

−1

[ye2y+1 + (y + 2)e−1]dy

=
[
− 5

4e
+

e

4

]
+

[
9
4e
− e

4

]
=

1
e
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32.14. The equations of the edges of the rhombus R are for AB, y = 1− 1
2x, for AD, y = 1 + 1

2x,
for BC, y = −1+ 1

2x and for CD, y = −1− 1
2x. As in the previous problem, the volume is the sum

of two repeated integrals. In this case integrate with respect to y first and then x so that separate
integrals are required for x > 0 and x < 0. However, the integrand is even in x and independent
of y so we need only double the value of the integral over x > 0. Hence the volume is given by

-2 -1 1 2
x

1

y

A

B

C

D

Figure 39: Problem 32.14

V = 2
∫ ∫

R
(x2 + 2)dA = 4

∫ 2

0

∫ 1− 1
2 x

−1+ 1
2 x

(x2 + 2)dydx

= 4
∫ 2

0

(x2 + 2)[y]1−
1
2 x

−1+ 1
2 x

dx =
∫ 2

0

(x2 + 2)(2− x)dx

= 4
∫ 2

0

(−x3 + 2x2 − 2x + 4)dx

= −4
[
1
4
x4 − 2

3
x3 + x2 − 4x

]2

0

=
64
3

32.15. For x = r cos θ, y = r sin θ, the Jacobian of the transformation is

J(r, θ) =
∂(x, y)
∂(r, θ)

=
∣∣∣∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =
∣∣∣∣

cos θ −r sin θ
sin θ r cos θ

∣∣∣∣
= r(cos2 θ + sin2 θ) = r.

Elimination of θ and r gives the inverse of the transformation:

r =
√

(x2 + y2), tan θ =
y

x
.

Hence

J(x, y) =
∂(r, θ)
∂(x, y)

=

∣∣∣∣∣
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣∣ =
∣∣∣∣

x/
√

(x2 + y2) y/
√

(x2 + y2)
−y/(x2 + y2) x/(x2 + y2)

∣∣∣∣ =
1
r
.

Therefore
∂(r, θ)
∂(x, y)

=
1
r

= 1
/

∂(x, y)
∂(r, θ)

.

If u = y/x2 and v = x/y2, then

∂(u, v)
∂(x, y)

=
∣∣∣∣
−2y/x3 1/x2

1/y2 −2x/y3

∣∣∣∣ =
3

x2y2
= 3u2v2.

Hence, using inverse rule above,
∂(x, y)
∂(u, v)

=
1

3u2v2
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32.16. The Jacobian of the transformation u = x2 − y2, v = 2xy is, using the general inverse
result in Example 30.16,

∂(x, y)
∂(u, v)

= 1
/

∂(u, v)
∂(x, y)

= 1
/∣∣∣∣

2x −2y
2y 2x

∣∣∣∣ =
1

4(x2 + y2)
.

The first figure shows the intersection of the hyperbolas x2− y2 = 1, x2− y2 = 4, xy = 2, xy = 4.

-3 -2 -1 1 2 3
x

-2

-1

1

2

y

R

R

1 2 3 4u

2

4

6

8
v

Figure 40: Problem 32.16

The region R is in two pieces, in the first and third quadrants, which are symmetric about the
origin. With u = x2 − y2, v = 2xy, both regions map on to the same rectangle bounded by the
straight lines u = 1, u = 4, v = 4, v = 8. Since the integrand is x2 + y2, by symmetry, the values
of the double integral over the two regions of R are the same. Hence

∫ ∫

R
(x2 + y2)dxdy =

∫ 8

4

∫ 4

1

(x2 + y2)
∣∣∣∣
∂(x, y)
∂(u, v)

∣∣∣∣ dudv

=
∫ 8

4

∫ 4

1

(x2 + y2)
1

(x2 + y2)
dudv

=
∫ 8

4

∫ 4

1

dudv = [u]41[v]84 = 3× 4 = 12

32.17. Move the origin to the corner P as shown in the figure. The coordinates of Q becomes
(xQ− xP , yQ− yP ) and of S becomes (xS − xP , yS − yP ). We define a transformation which maps
the parallelogram on to a rectangle. The equations of PQ and PS can be expressed respectively
as

x

y

P

Q

R

S

W

Figure 41: Problem 32.17

(xQ − xP )y = (yQ − yP )x, (xS − xP )y = (yS − yP )x.

Let
u = (xQ − xP )y − (yQ − yP )x, v = −(xS − xP )y + (yS − yP )x.
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Hence on PQ, u = 0 and on PS, v = 0.
Since SR is parallel to PQ, its equation can be written as

(xQ − xP )(y − yS + yP ) = (yQ − yP )(x− xS + xP ),

from which it follows that, on SR,

u = (xQ − xP )(yS − yP )− (yQ − yP )(xS − xP )

=
∣∣∣∣

xQ − xP xS − xP

yQ − yP yS − yP

∣∣∣∣ = ∆,

say. Similarly, the equation of QR can be expressed as

(xS − xP )(y − yQ + yP ) = (yS − yP )(x− xQ + yP ).

Hence on QR, v = ∆ also.
The Jacobian of the transformation is

∂(u, v)
∂(x, y)

=
∣∣∣∣
−(yQ − yP ) xQ − xP

yS − yP −(xS − xP )

∣∣∣∣ = −∆.

Using (32.12) and Example 30.16, the area W of the parallelogram is given by

W =
∫ ∫

R
dxdy =

∫ ∆

0

∫ ∆

0

1
|∆|du dv =

∆2

|∆| = |∆|,

as required.

32.18. (a) Integrate both sides of the given identity with respect to x:
∫ ∞

0

e−ax − e−bx

x
dx =

∫ ∞

0

∫ b

a

e−xydydx

=
∫ b

a

∫ ∞

0

e−xydxdy (changing the order of integration)

=
∫ b

a

[
−−exy

y

]∞

0

dy

=
∫ b

a

dy

y
= [ln y]ba

= ln(b/a)

(b) Consider the following integral: for any a and b,
∫ b

a

sin xy

x
dy =

[
−cos(xy)

x2

]b

a

=
cos ax− cos bx

x2
.

Since cos ax = cos(−ax) and cos bx = cos(−b), all signs of a and b are covered by

cos ax− cos bx

x2
=

∫ |b|

|a|

sin xy

x
dy.

y is always positive in this integral, which is required in the substitution below. Now integrate
both sides with respect to x and interchange the order of integration in the repeated integral so
that

∫ ∞

−∞

cos ax− cos bx

x2
dx =

∫ ∞

−∞

∫ |b|

|a|

sin(xy)
x

dydx =
∫ |b|

|a|

∫ ∞

−∞

sin(xy)
x

dxdy

=
∫ |b|

|a|

∫ ∞

−∞

sin u

u
dudy (putting x = u/y: y is positive)

=
∫ |b|

|a|

√
πdy =

√
π(|b| − |a|)
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Chapter 33: Line integrals

33.1. The path AOB consists of two straight lines AO along which δx < 0, and OB along which
δx > 0. In each case note where δx or δy changes sign and split the integral into separate segments
on which δx and δy have constant sign.
(a) δxchanges sign at O, so we split the integral there:

∫

(AOB)

xdx =
∫

(AO)

xdx +
∫

(OB)

xdx =
∫ 0

1

xdx +
∫ 1

0

xdx

= −
∫ 1

0

xdx +
∫ 1

0

xdx = 0.

(Notice that the integral is independent of the path connecting A and B.)
(b) On AO, y = −x and on OB, y = x and δx changes sign at O. Therefore

∫

(AOB)

ydx =
∫

(AO)

ydx +
∫

(OB)

ydx =
∫ 0

1

(−x)dx +
∫ 1

0

ydx

= −1
2
[x2]01 +

1
2
[x2]10

=
1
2

+
1
2

= 1.

(c) As in (a),
∫

(AOB)

x2dx =
∫

(AO)

x2dx +
∫

(OB)

x2dx =
∫ 0

1

x2dx +
∫ 1

0

x2dx

= −
∫ 1

0

x2dx +
∫ 1

0

x2dx = 0

33.2. On the parabola y2 = x, δx > 0 for y > 0, δx < 0 for y < 0, and δy has constant sign.
(a) ∫

P
xdx =

∫

(AO)

xdx +
∫

(OB)

xdx =
∫ 0

1

xdx +
∫ 1

0

xdx = 0.

(b) Since y = x2 on the parabola
∫

P
ydx =

∫ 0

1

(−x
1
2 )dx +

∫ 1

0

x
1
2 dx = 2

∫ 1

0

x
1
2 dx =

4
3
.

(c) ∫

P
x2dx =

∫ 0

1

x2dx +
∫ 1

0

x2dx = 0.

(d) The element δy > 0 on AOB. Hence
∫

P
(x + y)dy =

∫ 1

−1

(y2 + y)dy =
[
y3

3
+

y2

2

]1

−1

=
2
3
.

(e) As in (d) ∫

P
xy2dy =

∫ 1

−1

y4dy =
[
y5

5

]1

−1

=
2
5
.

(f) δx changes sign at o and δy > 0 throughout, so
∫

P
(xdx + ydy) =

∫ 0

1

xdx +
∫ 1

0

dx +
∫ 1

−1

ydy

= 0 +
[
y2

2

]1

−1

= 0
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(g) As in (f) ∫
P(1

2dx− ydy) = 1
2

∫ 0

1
dx + 1

2

∫ 1

0
dx− [

1
2y2

]1
−1

= 0− 0 = 0.

(h) On AO, y = −x
1
2 and on OB, y = x

1
2 . Therefore

∫

P
(ydx− xdy) =

∫ 0

1

(−x
1
2 )dx +

∫ 1

0

x
1
2 dx−

∫ 1

−1

y2dy

= 2
[
2
3
x

3
2

]1

0

−
[
y3

3

]1

−1

=
4
3
− 2

3
=

2
3

33.3. (a) P is given parametrically by x = t2, y = t, 0 ≤ t ≤ 1. Then
∫

P
xy2dx =

∫ 1

0

xy2 dx

dt
dt =

∫ 1

0

t4.2tdt = 2
∫ 1

0

t5dt =
1
3
.

(b) P is given parametrically by x = cos t, y = sin t, 0 ≤ t ≤ π. Then
∫

P
(xdy − ydx) =

∫ π

0

(
x

dy

dt
− y

dx

dt

)
dt

=
∫ π

0

[cos t. cos t− sin t(− sin t)]dt =
∫ π

0

dt = π

(c) P is given parametrically by x = t + 1, y = t, z = 2t, 0 ≤ t ≤ 1: this is a path in three
dimensions. Then

∫

P
(zdx− xdy + ydz) =

∫ 1

0

(
z
dx

dt
− x

dy

dt
+ y

dz

dt

)
dt

=
∫ 1

0

[2t− (t + 1) + 2t]dt =
∫ 1

0

(3t− 1)dt

=
[
3
2
t2 − t

]1

0

=
1
2
.

(d) P is given parametrically by x = cos t, y = sin t, z = t, 0 ≤ t ≤ 2π. Then
∫

P
(x2dx + y2dy + z2dz) =

∫ 2π

0

(
x2 dx

dt
+ y2 dy

dt
+ z2 dz

dt

)
dt

=
∫ 2π

0

[cos2 t(− sin t) + sin2 t cos t + t2]dt

=
[
1
3

cos3 t +
1
3

sin3 t +
1
3
t3

]2π

0

= 0 + 0 +
1
3
(2π)3 =

8π3

3

(e) P is given parametrically by x = t2 + 1, y = 2t− t2, z = 2t2, 0 ≤ t ≤ 1. Then
∫

P
(zdx− xdy + ydz) =

∫ 1

0

(
z
dx

dt
− x

dy

dt
+ y

dz

dt

)
dt

=
∫ 1

0

[2t2(2t)− (t2 + 1)(2− 2t) + (2t− t2)(4t)]dt

=
∫ 1

0

[2t3 + 6t2 + 2t− 2]dt =
[
1
2
t4 + 2t3 + t2 − 2

]1

0

=
3
2
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33.4. On AO, y = −x
1
2 , and on OB, y = x

1
2 . Hence, with f(x, y) = x + y,

∫

(AB)

f(x, k(x))
dk

dx
dy

=
∫

(AO)

(x + y)
dy

dx
dx +

∫

(OB)

(x + y)
dy

dx
dx

=
∫ 0

1

(x− x
1
2 )

(
−1

2
x−

1
2

)
dx +

∫ 1

0

(x + x
1
2 )

(
1
2
x−

1
2

)
dx

= −
∫ 1

0

(x− x
1
2 )

(
−1

2
x−

1
2

)
dx +

∫ 1

0

(x + x
1
2 )

(
1
2
x−

1
2

)
dx

=
∫ 1

0

x
1
2 dx =

2
3
[x

3
2 ]10

=
2
3
,

which agrees with the answer to Problem 33.2(d).

33.5. On AB, x = 1 and δx = 0, on BC, y = 2 and δy = 0, on AO, y = 0 and δy = 0, and on
OC, x = 0 and δx = 0.

(a)
∫

(ABC)

dx =
∫

(AB)

dx +
∫

(BC)

dx = 0 +
∫ 0

1

dx = [x]01 = −1.

(b)
∫

(AOC)

dy =
∫

(AO)

dy +
∫

(OC)

dy =
∫ 2

0

dy + 0 = [y]20 = 2.

(c)
∫

(ABC)

(xdy − ydx) =
∫

(AB)

(xdy − ydx) +
∫

(BC)

(xdyydx)

=
∫ 2

0

dy +
∫ 0

1

(−2)dx = [y]20 − 2[x]01 = 2 + 2 = 4.

(d)
∫

(AOC)

(xdy − ydx) =
∫

(AO)

(xdy − ydx) +
∫

(OC)

(xdy − ydx) = 0 + 0 = 0.

(e)
∫

(ABC)

ydy =
∫

(AB)

ydy +
∫

(BC)

ydy =
∫ 2

0

ydy + 0 =
1
2
[y2]20 = 2.

(f)
∫

(AOC)

ydy =
∫

(AO)

ydy +
∫

(OC)

ydy = 0 +
∫ 2

0

ydy =
1
2
[y2]20 = 2.

(g)
∫

(ABC)

(ydx + xdy) =
∫

(AB)

xdy +
∫

(BC)

ydx =
∫ 2

0

dy +
∫ 0

1

2dx = 2− 2 = 0.

(h)
∫

(AOC)

(ydx + xdy) =
∫

(AO)

ydx +
∫

(OC)

xdy = 0 + 0 = 0,

since y = 0 on AO, and x = 0 on OC.
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33.6. The integrand f(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz a perfect differential if there exists a
function S(x, y, z) such that

f(x, y, z) =
∂S

∂x
, g(x, y, z) =

∂S

∂y
, h(x, y, z) =

∂S

∂z
.

If S is single-valued in a region R and P in R is any path joining the points A and B, then
∫

P
[f(x, y, z)dx + ig(x, y, z)dy + h(x, y, z)]dz = SB − SA.

(a) P is a path joining (−1, 1,−1) to (1,−1, 1). In this example S(x, y, z) = 1
2 (x2 +y2 +z2). Hence

∫

P
(xdx + ydy + zdz) =

1
2

∫

P
d(x2 + y2 + z2) =

1
2
[x2 + y2 + z2](1,−1,1)

(−1,1,−1) = 3− 3 = 0.

(b) P is a path joining (0, 0, 0) to (1, 1, 1). In this case S(x, y, z) = xyz. Hence
∫

P
(yzdx + zxdy + xydz) =

∫

P
d(xyz) = [xyz](1,1,1)

(0,0,0) = 1.

(c) P is a path joining (0, 0, 0) to (1, 1, 1). In this case S(x, y, z) = 1
2ex2+y2+z2

. Hence
∫

P
ex2+y2+z2

(xdx + ydy + zdz) =
1
2

∫

P
d(ex2+y2+z2

)

= [ex2+y2+z2
](1,1,1)
(0,0,0) =

1
2
(e3 − 1).

(d) P is a path joining (1, 1, 1) to (0, 1, 0). In this case, S(x, y, z) is given by

∂S

∂x
= y + z,

∂S

∂y
= z + x,

∂S

∂z
= x + y.

Integrating these partial derivatives in turn, we obtain

S(x, y, z) = xy + zx + f(y, z) S(x, y, z) = yz + xy + g(x, z),

S(x, y, z) = zx + yz + h(x, y).

These equations are consistent if we choose

f(y, z) = yz, g(x, z) = zx, h(x, y) = xy.

Hence S(x, y, z) = yz + zx + xy, and
∫

P
[(y + z)dx + (z + x)dy + (x + y)dz] =

∫

P
d(yz + zx + xy)

= [yz + zx + xy](0,1,0)
(1,1,1) = 0− 3 = −3

(e) P is a path joining (1, 0, π) to (0, π, 1). In this case S(x, y, z) is given by

∂S

∂x
= (y + z) cos(xy + yz + zx) =

∂

∂x
(sin(xy + yz + zx)),

∂S

∂y
= (z + x) cos(xy + yz + zx) =

∂

∂y
(sin(xy + yz + zx)),

∂S

∂z
= (x + y) cos(xy + yz + zx) =

∂

∂z
(sin(xy + yz + zx)).
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Hence S(x, y, z) = sin(xy + yz + zx), and
∫
[cos(xy + yz + zx)][(y + z)dx + (z + x)dy + (x + y)dz]

=
∫

P
d[sin(xy + yz + zx)]

= [sin(xy + yz + zx)](1,0,π)
(0,π,1) = 0

(f) P is a path joining (1, 1) to (2, 2). This is a path in the (x, y) plane. In this case S(x, y) = 1
2x2y2.

Hence ∫
P(xy2dx + x2ydy) = 1

2

∫
P d(x2y2) = 1

2 [x2y2](2,2)
(1,1) = 8− 1

2 = 15
2 .

33.7. (a) The circle C : x2 + y2 = 4 can be parametrized in an anticlockwise sense by x = 2 cos t,
y = 2 sin t, (0 ≤ t < 2π). Then

∫

C
(x2dy − y2dx) =

∫ 2π

0

(
x2 dy

dt
− y2 dx

dt

)
dt

=
∫ 2π

0

[4 cos2 t.2 cos t− 4 sin2 t(−2 sin t)]dt

= 8
∫ 2π

0

(cos3 t + sin3 t)dt = 0,

since both cos3 t and sin3 t have mean value of zero over their period 2π.
(b) Given the parametrization x = 2 cos θ, y = 3 sin θ, (0 ≤ θ < 2π),

∫

C

(
x

y
dx +

y

x
dy

)
=

∫ 2π

0

(
2 cos θ

3 sin θ
(−2 sin θ) +

3 sin θ

2 cos θ
(3 sin θ)

)
dθ

=
∫ 2π

0

(
−4

3
cos θ +

9
4

sin θ

)
dθ = 0

33.8. (a) The path C is given by x = sin t, y = cos t, z = sin t. Then
∫

C
(ydx + zdy + xdz) =

∫ 2π

0

(
y
dx

dt
+ z

dy

dt
+ x

dz

dt

)
dt

=
∫ 2π

0

[cos t(cos t) + sin t(− sin t) + sin t(cos t)]dt

=
∫ 2π

0

[cos2 t− sin2 t + sin t cos t]dt

=
∫ 2π

0

[cos 2t + 1
2 sin 2t]dt = 0

(b) ABC is the triangle A : (1, 0, 0), B : (0, 1, 0), C : (0, 0, 1). On AB, x + y = 1 and z = 0, on
BC, y + z = 1 and x = 0, on CA, z + x = and y = 0. Hence

∫

(ABC)

(ydx + zdy + xdz) =
∫

(AB)

(ydx + zdy + xdz)

+int(BC)(ydx + zdy + xdz) +
∫

(CA)

(ydx + zdy + xdz)

=
∫ 0

1

(1− x)dx +
∫ 0

1

(1− y)dy +
∫ 0

1

(1− z)dz

(using x, y, z as parameters on AB, BC, CA)
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=
[
x− 1

2
x2

]0

1

+
[
y − 1

2
y2

]0

1

+
[
z − 1

2
z2

]0

1

= −1
2
− 1

2
− 1

2
= −3

2

(c) In differentials dS(x, y, z) = d(xyz) = yzdx + zxdy + xydz. Hence for any path between any
two points, say, A and B,

∫ B

A

(yzdx + zxdy + xydz) =
∫ B

A

d(xyz) = SB − SA.

In other words the integral is independent of the path joining A and B. If A and B coincide than
the path is a closed path C and SB = SA. Hence

∫

C
(yzdx + zxdy + xydz) = 0.

33.9. In terms of differentials dS(x, y, z) = d( 1
3x3y) = yx2dx + 1

3x3dy. Hence

∫

(AB)

(yx2dx +
1
3
x3dy) =

∫ B

A

d( 1
3x3y) = SB − SA,

which depends only on the values of S at A and B.
Given the polar equation r = eθ/(2π) for 0 ≤ θ ≤ π, the point A occurs where θ = 0, r = 1,

and B is located at θ = 2π, r =
√

e. Hence A has coordinates (1, 0), B has coordinates (−√e, 0).
Therefore, since the integral is path-independent,

∫
(AB)

(yx2dx + 1
3x3dy) =

∫
(AB)

d( 1
3x3y) = [ 13x3y](−

√
e,0)

(1,0) = 0.

33.10. Let C be any closed curve, and A and B any two points on C. Consider the paths
C1 = (APB) and c2 = (BQA). Then

∫

C
(fdx + gdy) =

∫

C1
(fdx + gdy) +

∫

C2
(fdx + gdy).

But ∫

C2
(fdx + gdy) = −

∫

AQB

(fdx + gdy) = −
∫

C1
(fdx + gdy)

(by hypothesis). Therefore
∫

C
(fdx + gdy) =

∫

C1
(fdx + gdy)−

∫

C1
(fdx + gdy) = 0.

33.11. We shall consider the two-dimensional case (in higher dimensions the procedure is the
same). A differential form fdx + gdy is ‘perfect’ if (and only it) there exists a function S(x, y)
such that f = ∂S/∂x and g = ∂S/∂y. Given a perfect differential in the form

∂S

∂x
dx +

∂S

∂y
dy,

change the variables from x, y to u, v, where

x = p(u, v), y = q(u, v), (i)

and put
S(x, y) = S(p(u, v), q(u, v)) = E(u, v). (ii)
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From the incremental formula and eqn (i),

∂S

∂x
dx +

∂S

∂y
dy =

∂S

∂x

(
∂p

∂u
du +

∂p

∂v
dv

)
+

∂S

∂y

(
∂q

∂u
du +

∂q

∂v
dv

)

=
(

∂S

∂x

∂p

∂u
+

∂S

∂y

∂q

∂u

)
du +

(
∂S

∂x

∂p

∂v
+

∂S

∂y

∂q

∂v

)
dv

=
∂E

∂u
du +

∂E

∂v
dv, (iii)

by the chain rule (30..6), using the notations in (i) and (ii). This is a perfect differential form in
u and v.

In polar coordinates put u = r, v = θ, with the change of variable

x = p(r, θ) = r cos θ, y = q(r, θ) = r sin θ. (iv)

We have to verify independently that for the given case d(xy) = ydx + xdy takes the form (iii) in
polar coordinates. In the above notation S(x, y) = xy, so from (ii),

E(r, θ) = r2 cos θ sin θ,
∂E

∂r
= 2r cos θ sin θ,

∂E

∂θ
= r2(cos2 θ − sin2 θ) (v)

From (iv) and the incremental formula

ydx + xdy = r sin θ(cos θdr − r sin θdθ) + r cos θ(sin θdr + r cos θdθ)
= 2r cos θ sin θ + r2(cos2 θ − sin2 θ)dθ

=
∂E

∂r
dr +

∂E

∂θ
, (vi)

by comparison with (v), confirming that under the change of coordinates to polars, the differential
form remains ‘perfect’.

33.12. Green’s theorem in a plane states that (see 33.12)), if P and Q are smooth on C and its
interior A, then ∫

C
(Pdx + Qdy) =

∫ ∫

A

(
∂Q

∂x
− ∂P

∂y

)
dA,

where A is the region enclosed by a simple closed curve C.
(a) As an example, let C be the circle x2+y2 = 1, and let P (x, y) = x, Q(x, y) = x. The curve C can
be represented parametrically in an counterclockwise sense by x = cos t, y = sin t, (0 ≤ t < 2π).
Then

∫

C
(Pdx + Qdy) =

∫

C
(xdx + xdy =

∫ 2π

0

[cos t(− sin t) + cos t cos t]dt

=
∫ 2π

0

[
−1

2
sin 2t +

1
2
(1 + cos 2t)

]
dt

=
[
1
4

cos 2t +
1
2
t +

1
4

sin 2t

]2π

0
= π

The double integral becomes
∫ ∫

A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫ ∫

A
dA

= (area of a circle of unit radius)
= π.

Hence Green’s theorem is verified.
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1

1

O

B

A

C

A

Figure 42: Problem 33.12(b)

(b) Let C be the closed curve bounded by y = x2, y = 0 and x = 1, and let P (x, y) = xy − y2,
Q(x, y) = x2. On y = x2. The boundary C must be traversed in the counterclockwise sense. Hence

∫

C
(Pdx + Qdy) =

∫

(OA)

[(xy − y2)dx + x2dy] +
∫

(AB)

[(xy − y2)dx + x2dy]

+
∫

(BO)

[(xy − y2)dx + x2dy]

= 0 +
∫ 1

0

dy +
∫ 0

1

[(x3 − x4)dx + x2(2x)dx]

= [y]10 +
∫ 0

1

(3x3 − x4)dx

= 1− 3
4

+
1
5

=
9
20

The double integral gives
∫ ∫

A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫ ∫

A
(x + 2y)dxdy

=
∫ 1

0

∫ x2

0

(x + 2y)dydx

=
∫ 1

0

[
xy + y2

]x2

y=0
dx

=
∫ 1

0

[x3 + x4]dx

=
1
4

+
1
5

=
9
20

,

which agrees with the line integral above.

33.13. By Green’s theorem, the area A enclosed by the curve C taken counterclockwise is given
by

A = 1
2

∫
C(xdy − ydx).

(a) The circle x2 + y2 = 4 can be described parametrically by x = 2 cos t, y = sin t for 0 ≤ t < 2π.
Therefore

A =
1
2

∫ 2π

0

[
x

dy

dt
− y

dx

dt

]
dt =

1
2

∫ 2π

0

[2 cos t(2 cos t)− (2 sin t)(−2 sin t)]dt

= 2
∫ 2π

0

dt = 4π

which is the area of a circle of radius 2.
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(b) The ellipse 1
4x2 + 1

9y2 = 1 can be described parametrically by x = 2 cos t, y = 3 sin t for
0 ≤ t < 2π. Therefore

A =
1
2

∫ 2π

0

[2 cos t(3 cos t)− 3 sin t(−2 sin t)]dt = 3
∫ 2π

0

dt = 6π,

which is the area of an ellispe with semi-axes 2 and 3.
(c) The path C is the triangle with vertices A : (−1, 0), B : (2, 0), C : (0, 4). By the usual formula
the area of the triangle is

1
2 (base)× (height) = 1

2 (3× 4) = 6.

On AB, y = 0and δy = 0, on BC, y = 4− 2x, and on CA, y = 4 + 4x. Therefore

-1 1 2

1

2

3

4 C

BA

A
C

Figure 43: Problem 33.13(c)

A =
1
2

∫

(AB)

(xdy − ydx) +
1
2

∫

(BC)

(xdy − ydx) +
1
2

∫

(CA)

(xdy − ydx)

= 0 +
1
2

∫ 0

2

[x(−2)− (4− 2x)]dx +
1
2

∫ −1

0

[x(−4)− (4− 4x)]dx

=
1
2

∫ 0

2

(−4)dx +
1
2

∫ −1

0

(−4)dx

=
1
2
[−4x]02 +

1
2
[−4x]−1

0 = 4 + 2 = 6,

which agrees with the result above.

33.14. The curve x
2
3 + y

2
3 = 1 (shown in the figure) can be parametrized by putting x = cos3 t,

y = sin3 t for 0 ≤ t < 2π. As in Example 33.9, the area A enclosed by the curve C is given by

-1 1
x

-1

1

y

Figure 44: Problem 33.14: graph of the curve x
2
3 + y

2
3 = 1.

A =
1
2

∫

C
(xdy − ydx) =

1
2

∫ 2π

0

(
x

dy

dt
− y

dx

dt

)
dt

104



=
1
2

∫ 2π

0

[cos3 t(3 sin2 t cos t)− sin3 t(−3 cos2 t sin t)]dt

=
3
2

∫ 2π

0

sin2 t cos2 t(cos2 t + sin2 t)dt

=
3
8

∫ 2π

0

sin2 2tdt =
3
16

∫ 2π

0

(1− cos 4t)dt

=
3
8
π.

33.15. From (33.14), the work done is

W =
∫

C
F.dr,

where C is a path from infinity to A, a point with position vector R, and F = −γMmr/r3.
Therefore

W = −γMm

∫

C

r
r3

.dr = −γMm

∫

C

xdx + ydy + zdz

r3

= −γMm

∫ R

∞

rdr

r3
= γMm

∫ R

∞
d(r−1)

=
γMm

R
.

It is simply a notational change to replace R by r to obtain the work done to the point r.

33.16. (a) Let f = (x2 − y2, 2xy). Then, for any closed curve C enclosing the region A,
∫

C
f · dr =

∫

C
[(x2 − y2)dx + 2xydy]

=
∫ ∫

A

[
∂

∂x
(2xy)− ∂

∂y
(x2 − y2)

]
dxdy

=
∫ ∫

A
[2y + 2y]dxdy =

∫ ∫

A
4ydxdy 6= 0

in general. We conclude that f is not conservative.
(b) Let f = ( 1

2 ln(x2 + y2), arctan(y/x)) for x > 0. Then, using (33.12), for any closed curve C,
∫ ∫

C
f · dr =

∫

C

[
1
2

ln(x2 + y2)dx + arctan
(y

x

)
dy

]

=
∫ ∫

A

[
∂

∂x

{
arctan

(y

x

)}
− ∂

∂y

{
1
2

ln(x2 + y2)
}]

dxdy

=
∫ ∫

A

[
− y

x2 + y2
− y

x2 + y2

]
dxdy

= −
∫ ∫

A

2ydxdy

x2 + y2

which is not zero in general. Hence f is not conservative.

33.17. We first decide whether f = yî + ĵ + xk̂ has a potential. If ∂V/∂x = −y, then V =
−xy+g(y, z). Hence ∂V/∂y = −x+∂g(y, z)/∂y. This can never be consistent with the ĵ component
of f for any choice of g(y, z). Hence f is not conservative. As a consequence work done will be
path-dependent.
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The path between (0, 0, 0) and (1, 1, 1) can be given parametrically by x = t, y = t, z = t for
0 ≤ t ≤ 1. Hence the work done on the path against f given by

W = −
∫ t=1

t=0

f · dr = −
∫ 1

0

(t, 1, t) · (1, 1, 1)dt = −
∫ 1

0

(2t + 1)dt = −[t2 + t]10 = −2.

33.18. Given f(x, y, z) = yzî + xzĵ + xyk̂, it is obvious that V (x, y, z) = −xyz is the potential of
f . The potential is single-valued, so that f is conservative.

The path C, x = cos t, y = sin t, z = sin t cos t for − 1
2π ≤ t ≤ 1

2π joins the points A : (0,−1, 0)
and B : (0, 1, 0). Since f is conservative, the work done is independent of the path. Hence the
work done against f is given by

W = −
∫

C
f · dr =

∫

(AB)

gradV · dr = VB − VA = 0.

33.19. The vector field f can be written as

f = rαr̂ = rα−1r = (x2 + y2 + z2)(α−1)/2(x̂i + yĵ + zk̂).

Consider the potential V (x, y, z) = k(x2 +y2 +z2)β where k and β are constants to be determined.
The first components match if

−∂V

∂x
= 2βkx(x2 + y2 + z2)β−1 = x(x2 + y2 + z2)(α−1)/2.

They are the same if 2βk = 1 and β−1 = 1
2 (α−1). Hence β = 1

2 (α+1) and k = 1/(α+1). Hence

V (x, y, z) =
1

α + 1
(x2 + y2 + z2)(α+1)/2.

It can be seen by symmetry that ∂V/∂y and ∂V/∂z give the other components of f . Hence f has
a potential, and is single-valued.

33.20. With f = r̂f(r), r = (x2 + y2 + z2)
1
2 ,

f =
f(r)

r
r =

f(r)
r

(x̂i + yĵ + zk̂).

Suppose that V (x, y, z) = −g(r). Then the first component of f is given by

∂V

∂x
= −g′(r)x(x2 + y2 + z2)−

1
2 = −x

g′(r)
r

= x
f(r)

r

(and similarly for the other components of f). Therefore g′(r) = −f(r) so that

g(r) = −
∫

f(r)dr :

any indefinite integral will do.

33.21. We transform the annular region into a simple closed path by bridging the points (1, 0)
and (2, 0) by two paths in opposite directions AB and BA, whose contributions to the integral
cancel. The closed path C consists of the circle x2 + y2 = 1 taken clockwise, the line AB, the circle
x2 + y2 = 4 taken counterclockwise and the line BA. In the integral

∫

C
[(2x− y3)dx− xydy],

106



-2 -1 1 2
x

-2

-1

1

2

y

O BA
C

A

Figure 45: Problem 33.21

P (x, y) = 2x−y3 and Q(x, y) = −xy. The circle C1 : x2+y2 = 4 can be represented parametrically
by x = 2 cos t, y = 2 sin t, for 0 ≤ t ≤ 2π, and the circle C2 : x2 + y2 = 1 can be represented by
x = cos t, y = − sin t for 0 ≤ t ≤ 2π. Hence

∫

C
[(2x− y3)dx− xydy] =

∫

C2
+

∫

(BA)

+
∫

C1
+

∫

(AB)

[(2x− y3)dx− xydy]

=
∫ 2π

0

[−8 cos t sin t + 16 sin4 t− 4 sin t cos2 t]dt

+
∫ 2π

0

[−2 sin t cos t− sin4 t− sin t cos2 t]dt

= 12π − 3
4π = 45

4 π,

since the integrals along AB and BA cancel.
The double integral becomes

∫ ∫

A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫ ∫

A
(−y + 3y2)dxdy

=
∫ 2π

0

∫ 2

1

(−r sin θ + 3r2 sin2 θ)rdrdθ

(in polar coordinates)
= 45

4 π,

which agrees with the line integral.

33.22. In the integral ∫

C
(5x4ydx + x5dy),

P (x, y) = 5x4y, and Q(x, y) = x5. In Green’s theorem the integrand of the double integral is

∂Q

∂x
− ∂P

∂y
= 5x4 − 5x4 = 0.

Hence the line integral is zero.

33.23. The closed curve generated by (cos t − 1
2 sin 2t, sin t) is shown in the figure. The area is
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Figure 46: Problem 33.23

given by the formula in Example 33.9. Then

A =
1
2

∫

C
(xdy − ydx) =

∫ 2π

0

[(cos t− 1
2 sin 2t) cos t− sin t(− sin t− cos 2t)]dt

=
∫ 2π

0

(1− 1
2 sin 2t cos t + sin t cos 2t)dt

=
∫ 2π

0

[1− sin t cos2 t + sin t(cos2 t− sin2 t)]dt

=
∫ 2π

0

(1− sin3 t)dt

= 2π,

Chapter 34: Vector fields: divergence and curl

34.1. Let R be the projection of the surface

S : z =
√

(a2 − x2 − y2)− a + h, (0 < h ≤ a).

on to the (x, y) plane. From Section 34.3, the surface area S is given by

S =
∫ ∫

R

dA

|n̂ · k̂| ,

where n̂ is a unit normal to S. By (28.7),

n̂ =
(−x,−y,−1)√
(a2 − x2 − y2)

.

Therefore
|n̂ · k̂| = 1√

(a2 − x2 − y2)
.

Also, R is a circle of radius
√

[a2 − (a− h)2]. Therefore

S =
∫ ∫

R

√
(a2 − x2 − y2)dxdy =

∫ 2π

0

∫ √
[a2−(a−h)2]

0

√
(a2 − r2)rdrdθ

in polar coordinates. Hence, since the integrand is separable,

S =
∫ 2π

0

dθ

∫ √
[a2−(a−h)2]

0

√
(a2 − r2)rdr

= 2π
1
3
[−(a2 − r2)

3
2 ]
√

[a2−(a−h)2]
0

=
2
3
π[a3 − (a− h)3].
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34.2. (a)
∫ 1

0

∫ z

0

∫ 2y

y

xdxdydz =
∫ 1

0

∫ z

0

[
1
2
x2

]2y

y

dydz

=
∫ 1

0

∫ z

0

(
2y2 − 1

2
y2

)
dydz

=
∫ 1

0

[
2
3
y3 − 1

6
y3

]z

0

dz

=
∫ 1

0

(
2
3
z3 − 1

6
z3

)
dz

=
[
1
6
z4 − 1

24
z4

]1

0

=
1
6
− 1

24
=

1
8

(b)

∫ 1

0

∫ z

0

∫ √
(1−y2)

0

xdxdydz =
∫ 1

0

∫ z

0

[
1
2
x2

]√(1−y2)

0

dydz

=
∫ 1

0

∫ z

0

(
1
2
− 1

2
y2

)
dydz

=
∫ 1

0

[
1
2
y − 1

6
y3

]z

0

dydz

=
∫ 1

0

(
1
2
z − 1

6
z3

)
dz

=
[
1
4
z2 − 1

24
z4

]1

0

=
1
4
− 1

24
=

5
24

(c)

∫ 1

0

∫ z

0

∫ √
(1−y2−z2)

− 1
2
√

(1−y2−z2)

x3dxdydz =
∫ 1

0

∫ z

0

[
1
4
x4

]√(1−y2−z2)

− 1
2
√

(1−y2−z2)

dydz

=
∫ 1

0

∫ z

0

(
1
4
(1− y2 − z2)2 − 1

64
(1− y2 − z2)2

)
dydz

=
15
64

∫ 1

0

∫ z

0

(1 + y4 + z4 + 2y2z2 − 2y2 − 2z2)dydz

=
15
64

∫ 1

0

[
y +

1
5
y5 + yz4 +

2
3
y3z2 − 2

3
y3 − 2yz2

]z

0

dz

=
15
64

∫ 1

0

(
z − 8

3
z3 +

28
15

z5

)
dz

=
15
64

[
1
2
− 2

3
+

14
45

]
=

13
384

34.3. The figure shows that part of the sphere which lies in the first octant, and a box element of
side-lengths δx, δy and δz. Imagine that the box slides parallel to the x axis between the sphere
and the (y, z) plane. For a general point the limits on x are x = 0 and x =

√
(a2 − y2 − z2). The

resulting column is now moved in a plane parallel to the (x, y) between y = 0 and y =
√

(a2 − z2).
Finally this slab is moved in the z direction between z = 0 and z = a so that the whole octant has
now been covered. The complete repeated integral reads

∫ a

0

∫ √
(a2−z2)

0

∫ √
(a2−y2−z2)

0

f(x, y, z)dxdydz.
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Figure 47: Problem 34.3

34.4. The tetrahedron is shown in the figure together with a box element with side-lengths δx,
δy and δz. Slide the element in the x, then y and finally z directions to cover the interior of the

x

y

z

A

B

C

O

Figure 48: Problem 34.4

tetrahedron. Thus the volume V is given by

V =
∫ c

0

∫ b(1− z
c )

0

∫ a(1− y
b− z

c )

0

dxdydz

=
∫ c

0

∫ b(1− z
c )

0

a
(
1− y

b
− z

c

)
dydz

= a

∫ c

0

[
y − y2

2b
− yz

c

]b(1− z
c )

0

dz

= a

∫ c

0

(
b
(
1− z

c

)
− b

2

(
1− z

c

)2

− bz

c

(
1− z

c

))
dz

= ab

∫ c

0

(
1
2
− z

c
+

z2

2c2

)
dz

= abc

[
1
2
− 1

2
+

1
6

]
=

1
6
abc.

34.5. A unit normal to the surface z = x2 + y is (see (28.7))

n̂ =
(2x, 1,−1)√
(4x2 + 1 + 1)

=
(2x, 1,−1)√
(4x2 + 2)

.

The surface area S is given by

S =
∫ ∫

R
dS =

∫ ∫

R

dA

|n̂ · k̂| ,
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where R is the projection of S on to the (x, y) plane. In this case R is the square |x| ≤ 1, |y| ≤ 1
and

|n̂ · k̂| = 1√
(4x2 + 2)

.

Therefore

S =
∫ 1

−1

∫ 1

−1

√
(4x2 + 2)dxdy =

∫ 1

−1

√
(4x2 + 2)dx

∫ 1

−1

dy

= 4
∫ 1

−1

√
(x2 + 1

2 )dx.

Using the substitution x = (sinh t)/
√

2,

S = 2
∫ sinh−1(

√
2)

− sinh−1(
√

2)

√
(1 + sinh2 t) cosh tdt = 2

∫ sinh−1(
√

2)

− sinh−1(
√

2)

cosh2 tdt

=
∫ sinh−1(

√
2)

− sinh−1(
√

2)

(1 + cosh 2t)dt

=
[
t +

1
2

sinh 2t

]sinh−1(
√

2)

− sinh−1(
√

2)

= [t + sinh t cosh t]sinh−1(
√

2)

− sinh−1(
√

2)

= 2 sinh−1(
√

2) + 2
√

2
√

3 = 2 sinh−1(
√

2) + 2
√

6

34.6. The vector field F is irrotational if curlF = 0. For the given vector field F, using (34.8),

curlF =

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

yzexyz − y sin xy + z xzexyz − x sin xy xyexyz + x

∣∣∣∣∣∣

= î
[

∂

∂y
(xyexyz + x)− ∂

∂z
(xzexyz − x sin xy)

]

+ĵ
[

∂

∂z
(yzexyz − y sin xy + z)− ∂

∂x
(xyexyz + x)

]

+k̂
[

∂

∂x
(xzexyz − x sin xy)− ∂

∂y
(yzexyz − y sin xy + z)

]

= 0.

Since curlF = 0, there exists a function φ such that F = gradφ. Therefore

∂φ

∂x
= yzexyz − y sin xy + z,

∂φ

∂y
= xzexyz − x sin xy,

∂φ

∂z
= xyexyz + x.

Integrate the partial derivatives with respect to x, y and z respectively:

φ =
∫

(yzexyz − y sin xy + z)dx + f(y, z) = exyz + xz + cos xy + f(y, z),

φ =
∫

(xzexyz − x sin xy)dy + g(z, x) = exyz + cos xy + g(z, x),
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φ =
∫

(xyexyz + x)dz + h(x, y) = exyz + xz + h(x, y).

These expressions for φ are consistent if

f(y, z) = C, g(z, x) = xz + C, h(x, y) = cosxy + C,

in which case
φ = exyz + xz + cos xy + C.

34.7. If r = x̂i + yĵ + zk̂, and

x = uv cosφ, y = uv sin φ, z =
1
2
(u2 − v2),

the scale factors of this paraboloidal transformation are (see (34.18))

h1 =
∣∣∣∣
∂r
∂u

∣∣∣∣ = |v cos φ̂i + v sin φĵ + uk̂|,

=
√

[v2 cos2 φ + v2 sin2 φ + u2] =
√

(u2 + v2),

h2 =
∣∣∣∣
∂r
∂v

∣∣∣∣ = |u cos φ̂i + u sinφĵ− vk̂|,

=
√

[u2 cos2 φ + u2 sin2 φ + v2] =
√

(u2 + v2)

h3 =
∣∣∣∣
∂r
∂φ

∣∣∣∣ = | − uv sin φ̂i + uv cosφĵ|,

=
√

(u2v2 sin2 φ + u2v2 cos2 φ) = uv,

since u ≥ 0, v ≥ 0.
By (34.20), for any vector field F = Fuêu + Fvêv + Fφêφ,

div F =
1

h1h2h3

[
∂

∂u
(h2h3Fu) +

∂

∂v
(h3h1Fv) +

∂

∂φ
(h2h3Fφ)

]

=
1

uv(u2 + v2)

[
∂

∂u
[uv
√

(u2 + v2)Fu] +
∂

∂v
[uv
√

(u2 + v2)Fv]

+
∂

∂φ
[(u2 + v2)Fφ]

]

34.8. In the identities assume that F = F1 î + F2ĵ + F3k̂ and G = G1 î + G2ĵ + G3k̂.
(a)

grad (UV ) =
∂(UV )

∂x
î +

∂(UV )
∂y

ĵ +
∂(UV )

∂z
k̂

=
(

U
∂V

∂x
+ V

∂U

∂x

)
î +

(
U

∂V

∂y
+ V

∂U

∂y

)
ĵ +

(
U

∂V

∂z
+ V

∂U

∂z

)
k̂

= U

(
∂V

∂x
î +

∂V

∂y
ĵ +

∂V

∂z
k̂
)

+ V

(
∂U

∂x
î +

∂U

∂y
ĵ +

∂U

∂z
k̂
)

= UgradV + V gradU.

(b)

div (UF) =
∂

∂x
(UF1) +

∂

∂y
(UF2) +

∂

∂z
(UF3)

=
∂U

∂x
F1 + U

∂F1

∂x
+

∂U

∂y
F2 + U

∂F2

∂y
+

∂U

∂z
F3 + U

∂F3

∂z

=
(

∂U

∂x
F1 +

∂U

∂y
F2 +

∂U

∂z
F3

)
+ U

(
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

= (gradU) · F + Udiv F
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(c) The vector product is given by

F×G = (F2G3 − F3G2)̂i + (F3G1 − F1G3)̂j + (F1G2 − F2G1)k̂.

Hence

div (F×G) =
∂

∂x
(F2G3 − F3G2) +

∂

∂y
(F3G1 − F1G3) +

∂

∂z
(F1G2 − F2G1)

= G1

(
∂F3

∂y
− ∂F2

∂z

)
+ G2

(
∂F1

∂z
− ∂F3

∂x

)
+ G3

(
∂F2

∂x
− ∂F1

∂y

)

−
[
F1

(
∂G3

∂y
− ∂G2

∂z

)
+ F2

(
∂G1

∂z
− ∂G3

∂x

)
+ F3

(
∂G2

∂x
− ∂G1

∂y

)]

= (curlF) ·G− F · (curlG).

(d) Using (34.8),

curl curlF =

∣∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

∂F3
∂y − ∂F2

∂z
∂F1
∂z − ∂F3

∂x
∂F2
∂x − ∂F1

∂y

∣∣∣∣∣∣∣

=
(

∂2F2

∂y∂x
− ∂2F1

∂y2
− ∂2F1

∂z2
+

∂2F3

∂x∂z

)
î

+
(

∂2F3

∂z∂y
− ∂2F2

∂z2
− ∂2F2

∂x2
− ∂2F1

∂x∂y

)
ĵ

+
(

∂2F1

∂x∂z
− ∂2F3

∂x2
− ∂2F3

∂y2
− ∂2F2

∂y∂z

)
k̂

Consider the first component of curl curlF. Then, by adding and subtracting a term ∂2F1/∂x2

to the î component, we obtain,
(

∂2F2

∂y∂x
− ∂2F1

∂y2
− ∂2F1

∂z2
+

∂2F3

∂x∂z

)
î

=
(

∂2F1

∂x2
+

∂2F2

∂y∂x
+

∂2F3

∂x∂z
− ∂2F1

∂x2
− ∂2F1

∂y2
− ∂2F3

∂z2

)
î

=
[(

∂

∂x
div F

)
+ div gradF1

]
î.

Similar expansions occur can be found for the ĵ and k̂ components. Therefore addition of these
terms leads to

curl curlF = grad (div F)− div gradF.

(e) Consider the î component of each term of

(F× curlG) + (G× curlF) + (F · grad )G + G · grad )F.

The expansions of the individual terms are as follows:

F× curlG =

∣∣∣∣∣∣

î ĵ k̂
F1 F2 F3

∂G2
∂y − ∂G2

∂z
∂G1
∂z − ∂G3

∂x
∂G2
∂x − ∂G1

∂y

∣∣∣∣∣∣

=
[
F2

(
∂G2

∂x
− ∂G1

∂y

)
− F3

(
∂G1

∂z
− ∂G3

∂x

)]
î + · · · ,

G× curlF =

∣∣∣∣∣∣

î ĵ k̂
G1 G2 G3

∂F2
∂y − ∂F2

∂z
∂F1
∂z − ∂F3

∂x
∂F2
∂x − ∂F1

∂y

∣∣∣∣∣∣

=
[
G2

(
∂F2

∂x
− ∂F1

∂y

)
−G3

(
∂F1

∂z
− ∂F3

∂x

)]
î + · · · ,
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(F · grad )G =
(

F1
∂

∂x
+ F2

∂

∂y
+ F3

∂

∂z

)
(G1 î + G2ĵ + G3k̂)

=
(

F1
∂G1

∂x
+ F2

∂G1

∂y
+ F3

∂G1

∂z

)
î + · · · ,

(G · grad )F =
(

G1
∂

∂x
+ G2

∂

∂y
+ G3

∂

∂z

)
(F1 î + F2ĵ + F3k̂)

=
(

G1
∂F1

∂x
+ G2

∂F1

∂y
+ G3

∂F1

∂z

)
î + · · · ,

Adding these î components on the right-hand side:

î component of grad (F ·G) =

=
(

F1
∂G1

∂x
+ G1

∂F1

∂x
+ F2

∂G2

∂x
+ G2

∂F2

∂x
+ F3

∂G3

∂x
+ G3

∂F3

∂x

)
î

=
(

∂(F1G1)
∂x

+
∂(F2G2)

∂x
+

∂(F3G3)
∂x

)
î

=
∂

∂x
(F ·G)̂i,

The other components can be verified in a similar manner.

34.9. Since
gradφ =

∂φ

∂x
î +

∂φ

∂y
ĵ +

∂φ

∂z
k̂,

then, from the definition (34.4),

div gradφ =
∂

∂x

(
∂φ

∂x

)
+

∂

∂y

(
∂φ

∂y

)
+

∂

∂z

(
∂φ

∂z

)

=
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
.

If φ = 1/
√

(x2 + y2 + z2), then

∂φ

∂x
= − x

(x2 + y2 + z2)
3
2
,

∂2φ

∂x2
= − 1

(x2 + y2 + z2)
3
2

+
3x2

(x2 + y2 + z2)
5
2

=
2x2 − y2 − z2

(x2 + y2 + z2)
5
2
.

Similarly
∂2φ

∂y2
=

2y2 − z2 − x2

(x2 + y2 + z2)
5
2
,

∂2φ

∂z2
=

2z2 − x2 − y2

(x2 + y2 + z2)
5
2
.

The sum of these second derivatives is zero, confirming that φ = 1/
√

(x2 + y2 + z2) satisfies
Laplace’s equation.

34.10. (a) Let F = F1 î + F2ĵ + F3k̂ and G = G1 î + G2ĵ + G3k̂. Then, from the definition (34.4),

div (F + G) =
∂

∂x
(F1 + G1) +

∂

∂y
(F2 + G2) +

∂

∂z
(F3 + G3)

=
(

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
+

(
∂G1

∂x
+

∂G2

∂y
+

∂G3

∂z

)

= div F + div G
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(b) From (34.8)

curl (F + G) =

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

F1 + G1 F2 + G2 F3 + G3

∣∣∣∣∣∣

=

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

G1 G2 G3

∣∣∣∣∣∣
= curlF + curlG.

The last step uses a property of determinants illustrated in Problem 8.10.

34.11. (a) Using definition (34.4),

div (exyz î + ey2z ĵ + exzk̂) =
∂

∂x
(exyz) +

∂

∂y
(ey2z) +

∂

∂z
exz)

= yzexyz + 2yzey2z + xexz

(b) Using definition (3.4)

div ((xz − y)̂i + yzĵ + 2xyĵ =
∂

∂x
(xz − y) +

∂

∂y
(yz) +

∂

∂z
(2xy)

= z = z = 2z.

(c) Using definition (34.4),

div [(xz − y2)̂i + yzĵ + 2x2yk̂] =
∂

∂x
(xz − y2) +

∂

∂y
(yz) +

∂

∂z
(2x2y)

= z + z = 2z.

Hence
div F = 2z.

None of the vector fields is solenoidal.

34.12. Use the definition (34.8).
(a) F = exyz î + ey2z ĵ + exzk̂. Then

curlF =

∣∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

exyz ey2z exz

∣∣∣∣∣∣∣
= −y2ey2z î + (xyexyz − zexz )̂j− xzexyzk̂.

(b) F = (xz − y)̂i + yzĵ + 2xyk̂. Then

curlF =

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

xz − y yz 2xy

∣∣∣∣∣∣
= (2x− y)̂i + (x− 2y)̂j + k̂

(c) F = (2xy + yz)̂i + (x2 + xz)̂j + xyk̂. Then

curlF =

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

2xy + yz x2 + xz xy

∣∣∣∣∣∣
= 0.
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Hence the F is irrotational.

34.13. Since the vector field is irrotational, curl v = 0, which implies that there exists a scalar
potential such that v = gradΦ. If the vector field v is also solenoidal, then div v = 0. Therefore

div gradΦ = 0, or ∇2Φ = 0.

34.14. We are given r = x̂i + yĵ + zk̂ and r = (x2 + y2 + z2)
1
2 .

(a)

div (r2r) =
∂

∂x
(xr2) +

∂

∂y
(yr2) +

∂

∂z
(zr2)

= (r2 + 2x2) + (r2 + 2y2) + (r2 + 2z2) = 5r2.

(b)

curl (r3r) =

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

r3x r3y r3z

∣∣∣∣∣∣

=
(

∂

∂y
(zr3)− ∂

∂z
(yr3)

)
î +

(
∂

∂z
(xr3)− ∂

∂x
(zr3)

)
ĵ

+
(

∂

∂x
(yr3)− ∂

∂y
(xr3)

)
k̂

= 0,

since
∂

∂y
(zr3)− ∂

∂z
(yr3) = z

∂(r3)
∂y

− y
∂(r3)
∂z

= 3zyr − 3zyr = 0,

and similarly for the other two components. The function r3r is therefore irrotational.

(c) grad (r3) = grad (x2 + y2 + z2)
3
2 = 3rr.

(d)

div (r/r3) =
∂

∂x

( x

r3

)
+

∂

∂y

( y

r3

)
+

∂

∂z

( z

r3

)

=
(

1
r3
− 3x2

r5

)
+

(
1
r3
− 3y2

r5

)
+

(
1
r3
− 3z2

r5

)

= 0.

The function r/r3 is therefore solenoidal.
(e)

curl (r/r2) =

∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

x/r2 y/r2 z/r2

∣∣∣∣∣∣

=
(
−2zy

r3
+

2yz

r3

)
î +

(
−2zx

r3
+

2xz

r3

)
ĵ +

(
−2yx

r3
+

2xy

r3

)
k̂

= 0

Therefore the function r/r2 is irrotational.
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(f)

grad (r3) =
∂

∂x
(x2 + y2 + z2)

3
2 î +

∂

∂y
(x2 + y2 + z2)

3
2 ĵ +

∂

∂z
(x2 + y2 + z2)

3
2 k̂

= 3xrî + 3yrĵ + 3zrk̂ = 3rr.

Secondly

div grad r3 = div (3rr) = 3
[

∂

∂x
(rx) +

∂

∂y
(ry) +

∂

∂z
(rz)

]

= 3
[
r +

x2

r
+ r +

y2

r
+ r +

z2

r

]
= 12r

34.15. Compare the components on both sides of

(v · grad )v = 1
2grad v2 − (v × curl v).

Let v = v1 î + v2ĵ + v3k̂. The î component of (v · grad )v is

v1
∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z
=

1
2

∂

∂x
(v2

1) + v2
∂v1

∂y
+ v3

∂v1

∂z
.

On the right, the î component of 1
2grad v2 − v × curl v is

1
2

∂

∂x
(v2

1 + v2
2 + v2

3)− v2

(
∂v2

∂x
− ∂v1

∂y

)
+ v3

(
∂v1

∂z
− ∂v3

∂x

)

=
1
2

∂

∂x
(v2

1 + v2
2 + v2

3)− 1
2

∂

∂x
v2
2 −

1
2

∂

∂x
v2
3 + v2

∂v1

∂y
+ v3

∂v1

∂z

=
1
2

∂

∂x
(v2

1) + v2
∂v1

∂y
+ v3

∂v1

∂z
,

which agrees with the î component of (v · grad )v. A similar argument applies to the other
components.

34.16. Refer to Section 34.6. Laplace’s equation is given by div gradU = 0. In cylindrical polar
coordinates (ρ, φ, z) (see p. 689),

gradU =
∂U

∂ρ
êρ +

1
ρ

∂U

∂φ
êφ +

∂U

∂z
êz.

Let F = Fρêρ + Fφêφ + Fzêz = gradU . Then

div F = div gradU =
1
ρ

[
1
ρ
(ρFρ) +

∂

∂φ
(Fφ) +

∂

∂z
(ρFz)

]

=
1
ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+

1
ρ2

∂2U

∂φ2
+

∂2U

∂z2

from which Laplace’s equation follows.
If U = f(ρ), then the partial derivatives ∂U/∂φ = 0 and ∂U/∂z = 0. Hence f(ρ) satisfies the

ordinary differential equation

d
dρ

(
ρ
dU

dρ

)
= 0, or ρf ′′(ρ) + f ′(ρ) = 0.

This is a separable equation which for f ′(ρ):
∫

df ′

f ′
= −

∫
dρ

ρ
+ A,
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with solution (since ρ > 0)

ln f ′ = − ln ρ + C, or f ′ =
B

ρ
.

This is a further separable equation with solution given by
∫

df =
∫

Bdρ

ρ
+ A, or F = A + B ln ρ.

34.17. Refer to Section 34.6. Laplace’s equation is given by div gradU = 0. In spherical polar
coordinates (r, θ, φ) (see Example 34.7),

gradU =
∂U

∂r
êr +

1
r

∂U

∂θ
êθ +

1
r sin θ

∂U

∂φ
êφ.

Let F = Frêr + Fθêθ + Fφêφ = gradU . Then

div F = div gradU

=
1
r2

∂

∂r
(r2Fr) +

1
r sin θ

∂

∂θ
(sin θFθ) +

1
r sin θ

∂

∂φ
(Fφ)

=
1
r2

∂

∂r

(
r2 ∂U

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1
r2 sin2 θ

∂2U

∂φ2
.

from which Laplace’s equation follows.
If U = f(r), then Laplace’s equation reduces to

(r2f ′(r))′ = 0.

By integration r2f ′(r) = constant = −B, say. Hence

f ′(r) = −B

r
.

Integrating

f(r) = −
∫

Bdr

r
+ A =

B

r
+ A,

where A is a constant.

34.18. The divergence theorem (34.7) states that
∫ ∫ ∫

V
div FdV =

∫ ∫

S
F · n̂dS,

where n̂is the unit outward normal to the surface S of the region V.
In this problem V is the cube bounded by the planes x = ±1, y = ±1, z = ±1. For

F = xy2 î + xzĵ + xyzĵ,

the divergence of F is

div F =
∂

∂x
(xy2) +

∂

∂y
(xz)

∂

∂z
(xyz) = y2 + xy.

Applying the divergence theorem,
∫ ∫

S
F · n̂dS =

∫ ∫ ∫

V
div FdV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(y2 + xy)dxdydz

=
∫ 1

−1

∫ 1

−1

[
xy2 +

1
2
x2y

]1

x=−1

dydz =
∫ 1

−1

∫ 1

−1

ydydz

=
∫ 1

−1

[
1
2
y2

]1

−1

dz = 0
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34.19. The divergence theorem is quoted in Problem 34.18. Put the vector field in the theorem
equal to curlF. Then

∫ ∫

S
n̂ · curlFdS =

∫ ∫ ∫

V
div curlFdV = 0,

since div curlF ≡ 0 (see 34.10). Hence
∫ ∫

S
n̂ · curlFdS = 0.

34.20. The divergence theorem is quoted in Problem 34.18. The vector field F = n̂ on the surface
S. Hence ∫ ∫

S
n̂ · FdS =

∫ ∫

S
n̂ · n̂dS =

∫ ∫

S
dS = A,

which is the surface area of S. By the divergence theorem

A =
∫ ∫ ∫

V
div FdV.

34.21. In the divergence theorem let F = r = x̂i + yĵ + zk̂. Then, since div r = 3,
∫ ∫

S
r · n̂dS =

∫ ∫ ∫
div rdV

= 3
∫ ∫ ∫

dV = 3V,

where V is the volume enclosed by S. Hence

V =
1
3

∫ ∫

S
r · n̂dS.

(a) For the sphere, n̂ = r/r = r/a, where r is the position vector of a point on S. By the result in
Problem 34.20, the volume of the sphere is given by

V =
1
3

∫ ∫

S
r · r

a
dS

=
a

3

∫ ∫

S
dS =

a

3
× (surface area of the sphere)

=
a

3
(4πa2) =

4
3
πa3

(b) On the curved surface the position vector is perpendicular to the normal to the surface. On
the base of the cone n̂ = k̂. Hence the volume is given by

V =
1
3

∫ ∫

S
r · n̂dS =

1
3

∫ ∫

S1

hdS,

where S1 is the base of the cone and r · n̂ = h. The integral

1
3

∫ ∫

S1

dS

is the surface area A of the base. Therefore the volume of the cone is 1
3Ah.

34.22. Apply the divergence theorem with div F = 1. Then
∫ ∫

S
F · n̂dS =

∫ ∫ ∫

V
div FdV =

∫ ∫ ∫

V
dV = V,

the volume of the region enclosed by S.
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