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Chapter 39: Probability

39.1. A sample space is the set of all possible outcomes of a random experiment. We may be able
to associate several sample spaces with an experiment in each case.
(a) Assuming that the coins are spun and placed in sequence in a row. A single spin of each coin
will give a sequence of 5 heads(H) or tails(T )). A typical outcome could be {H,T,H, T, T} Since
each coin could be H or T the number of possible outcomes is 2× 2× 2× 2× 2 = 25 = 32 in this
sample space.

Another sample space could be the the number of heads which occur when 5 coins are spun.
The coins could show 0 heads, 1 head, 2 heads and so on. The sample space is therefore

S = {0, 1, 2, 3, 4, 5},

which has 6 elements.
(b) Assume that the sample space is the sum of the faces shown. Any sum between 3 and 18 is
possible. Hence the sample space has 16 possible outcomes.
(c) Each outcome of the coin can be combined with the outcomes of the die. A typical outcome
could be {H, 5}. Hence the number of outcomes is 2× 6 = 12.
(d) A standard dartboard is divided into 20 sectors numbered 1, 2, . . . , 20, each sector has areas
which the values are double and tripled. There are also inner and outer bulls. Assuming that a
dart always hits the board there are 20× 3+2 = 62 scoring areas on the board where the dart can
score. We might be interested in the probability that the dart lands in one of these parts of the
dartboard.

A second space could be the score which occurs when the dart lands on the board. Taking
account of the doubles and triples, and the inner bull which scores 50 and the outer bull which
scores 25, the sample space is

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24,

25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 50, 51, 54, 57, 60}.

There are 43 possible outcomes.

39.2. The sample space for two dice has 36 possible outcomes which are listed in Example 39.2.
They are equally likely. Of the 36 outcomes, 6 score 7. Hence the probability of a score of 7 is
6/36=1/6.

At least one 5 appears in 11 possible outcomes. Hence the probability that no 5 appears is

36− 11
36

=
25
36

.

In the list in Example 39.2, a score of 7 or less appears in 21 outcomes. Hence the probability
of a score of 7 or less is 21/36=7/12.

39.3. The set of the scores of two dice can be expressed as

S = {(i, j)|i, j = 1, 2, 3, 4, 5, 6}

(see also Example 39.2). S has 36 elements. We can write A and B as

A = {(i, j)|i + j = 5}, B = {(i, j)|i = 4 or j = 4 or both = 4}.
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As lists:
A = {(1, 4), (2, 3), (3, 2), (4, 1)},

B = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (1, 4), (2, 4), (3, 4), (5, 4), (6, 4)}.
The elements in the union and intersection of A and B are

A ∪B = {(2, 3), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5),
(4, 6), (1, 4), (2, 4), (3, 4), (5, 4), (6, 4)}

A ∩B = {(1, 4), (4, 1)}.

39.4. (a) Only B occurs is the set
B\(A ∪ C).

(b) As in (a) only A occurs is A\(B ∪ C) and only C occurs is C\(A ∪B). Therefore exactly one
of A, B or C occurs is the union of (a) with only A and only C, that is,

(B\(A ∪ C)) ∪ (A\(B ∪ C)) ∪ (C\(A ∪B)).

39.5. The number of elements in A ∪ B is the sum of the number of elements in the intersection
of A and B plus the number of elements in A but not in B and the number of elements in B but
not in A. The intersection of A and B is A ∩ B. A is the complement of A, that is, the set of
elements not in A, so that A ∩B is the set of elements in B but not in A. Similarly, B ∩A is the
set of elements in A but not in B. Therefore

n(A ∪ B) = n(A ∩ B) + n(A ∩ B) + n(B ∩A).

The sets A and B are given by

A = {(i, j)|i + j = 6}, B = {(i, j)|i = j}.

The lists of elements in A and B are

A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)},

B = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
Also

A ∩B = {(3, 3)},
A ∩B = {(1, 1), (2, 2), (4, 4), (5, 5), (6, 6)},

A ∩B = {(1, 5), (2, 4), (4, 2), (5, 1)}.
Therefore

n(A ∪ B) = n(A ∩ B) + n(A ∩ B) + n(B ∩A)
= 1 + 5 + 4 = 10

39.6. A is the event that an ace is drawn, B is the event that a heart is drawn, and C is the event
that a black card is drawn.
(a) A ∩B is the event that the ace of hearts is drawn.
(b) A ∩ C is the event that the ace of clubs or spades is drawn.
(c) A ∪B is the event that any ace or any heart is drawn.
(d) A ∪B ∪ C is the event that any ace or any heart or any black card is drawn.
(e) A\B is the event that the ace of clubs or the ace of diamonds or the ace of spades is drawn.
(f) A\B is the event that any heart other than the ace is drawn.
(g) A\C is the event a black card but not an ace is drawn.
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(h) (A ∩B) ∪ C is the event that the ace of hearts or any black card is drawn.
(i) (A ∩B) ∪ (A ∩ C) is the event an ace is drawn ( the same as A).

39.7. (a) There are 4 kings in a pack of 52 cards. Hence

P (king) =
4
52

=
1
13

.

(b) As in (a) the probability that the first card is a king is 1
13 . Given that one king has been drawn

there will be 3 kings in the remaining 51 cards. Hence

P (2 kings) =
1
13

3
51

=
1

221
.

(c) If the second card is not a king it must be one of 48 remaining cards and the probability that
this occurs is 48

51 . Similarly the probability that the third card is not a king is 47
50 and so on. Hence

P (king,not king,not king,king) =
1
13

48
51

47
50

3
49

=
1128

270725
= 0.004166 . . . .

39.8. This is an example of selection with replacement: no cards are drawn or removed from the
pack at each cut unlike the preceding problem. The probability of one ace being shown is 1

13 .
Therefore the probability of two aces being shown in two consecutive cuts is

P (two aces) =
1
13

1
13

=
1

169
.

39.9. From Sections 1.17 and 39.4, the permutation nPr is defined by

nPr =
n!

(n− r)!
.

(a) 5P3 =
5!
2!

= 60.

(b) 10P4 =
10!
6!

= 10.9.8.7 = 5040.

(c) 7P7 =
7!
0!

= 5040,

(0! is defined to be equal to 1: see eqn (1.38c)).

(d) 7P1 =
7!
6!

= 7.

39.10. This is a permutation problem. The first letter can be chosen in 5 ways, the second in 4
ways, and so on. The number of different words which can be made up is

5P3 =
5!
2!

= 5.4.3 = 60.

39.11. (a) Since the first digit cannot be zero, there are 9 possible numbers which can be chosen
for the first digit. Since zero can chosen for any other position and numbers are selected without
replacement there are 9 possible digits in the second position, 8 digits for the third and so on.
Hence the number of possible distinct 5 digit numbers is

9.9.8.7.6 = 27216.
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(b) With any number of repetitions the number of distinct 5 digit numbers is

9.10.10.10.10 = 90000.

(c) The final digit must be either 0 or 5 and so can be chosen in 2 ways. Since there is no
replacement the first number can be chosen in 8 ways, the second in 7 ways, and so on. Hence the
number of 5 digit numbers is

8.7.6.5.2 = 3360.

39.12. From Sections 1.17 and 39.4 (see also eqn (1.38c)), the combination nCr is defined as

nCr =
n!

(n− r)!r!
.

(a) 7C3 =
7!

4!3!
= 35.

(b) 99C96 =
99!

3!96!
= 156849.

(c) 11C5 =
11!
6!5!

= 462.

39.13. Using the definition of nCr (see previous problem),

n−1Cr + n−1Cr−1 =
(n− 1)!

(n− 1− r)!r!
+

(n− 1)!
(n− r)!(r − 1)!

=
(n− 1)!

r!(n− r)!
[(n− r) + r]

=
n!

r!(n− r)!
= nCr

39.14. (a) Reverse the identity. Then, by the binomial theorem (1.44a) with x = 1,

2n = (1 + 1)n = 1 + nC1 + nC2 + · · ·+ nCn−1 + nCn

=
n∑

r=0

nCr

(b) By the binomial theorem with x = 3,

4n = (1 + 3)n = 1 + nC13 + nC232 + · · ·+ nCn−13n−1 + nCn3n

=
n∑

r=0

nCr3r

39.15. This is a combination problem: order in the hands is immaterial. The number of ways in
which 4 cards can be chosen from 52 is

52C4 =
52!

48!4!
=

52.51.50.49
1.2.3.4

= 270725.

4 card hands from the same suit are taken from 13 cards and there are 4 suits. Hence the
number of hands with cards from the same suit is

4× 13C4 =
4

13!
9!4! = 2860.
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The probability that a random hand of 4 cards contains cards from the same suit is, by counting,
equal to the ratio of the two previous results, namely

4× 13C4

52C4
=

2860
270725

= 0.0105 . . . .

39.16. The number an of different n card hands which can be dealt from 52 cards is given by

an = 52Cn =
52!

(52− n)!n!
.

The number bn of different n card hands of the same suit which can be dealt from 52 cards is
given by

bn = 4× 13Cn =
4× 13!

(13− n)!n!
.

The probability pn that bn occurs is given by

pn = P (4 cards of same suit) =
bn

an
=

4× 13Cn

52Cn
=

4× 13!(52− n)!
(13− n)!52!

.

The probabilities pn have been computed for n = 1, 2, 3, 4, 5: they are shown in the table below.

n 1 2 3 4 5

pn 1 0.235 0.517× 10−1 0.106× 10−1 0.198× 10−2

39.17. The box contains 22 balls of which 7 are red(r), 9 are white(w) and 6 are black(b). firstly,
imagine that all the balls are individually distinguished in some way. The total number of 4 ball
selections from the box is

N = 22C4 =
22!

18!4!
=

22.21.20.19
1.2.3.4

= 7315.

the balls of one colour are indistinguishable. Noe consider how to take account of the fact that all
(a) 3 balls can be chosen from 7 red balls in 7C3 ways, and then the white ball can be chosen in 9
ways. Therefore

P (3r + 1w) =
9× 7C3

N
=

315
7315

=
9

209
= 0.043.

(b) 4 balls can be chosen from 7 red balls in 7C4 = 35 ways. Hence

P (4r) = 7C4

N
=

35
7315

=
1

209
= 0.0048.

(c) The 4 balls are either all red, all white or all black. Therefore

P (4r or 4w or 4b) = P (4r) + P (4w) + P (4b) =
1
N

(7C4 + 9C4 + 6C4)

=
35 + 126 + 15

7315
=

176
7315

=
16
665

= 0.024

(d) If a selection contains a least one ball of each of the three colours, then we can count instead
the number of selections which contain not more than two colours and subtract this from the total
number of possible selections. The number of different selections which contain no reds is 15C4, the
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number which contain no whites is 13C4 and the number which contain no blacks is 16C4. Hence
the probability that any selection contains at least one of each colour is

1− P (not more than two colours) = 15C4 + 13C4 + 16C4

N

=
1

7315

[
15!

11!5!
+

13!
9!4!

+
16!

11!4!

]

=
683
1463

= 0.467

39.18. (See Example 39.11.) Let

A1 = {event: component made by M1}
A2 = {event: component made by M2}
B = {event: component not faulty}

We are given the following probabilities:

P (A1) = 0.7, P (A2) = 0.3, P (B|A1) = 0.89, P (B|A2) = 0.83.

(a) This is simply P (B|A1) = 0.89.
(b) The events A1 and A2 are mutually exclusive so that, by the law of total probability (39.9)

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2)
= 0.89× 0.7 + 0.83× 0.3 = 0.872

(c) The event that a component is faulty is B. We require the value of the conditional probability
P (A1|B). By Bayes’ theorem (39.13),

P (A2|B) =
P (B|A2)P (A2)

P (B)
=

[1− P (B|A2)]P (A2)
1− P (B)

=
(1− 0.83)0.3

1− 0.872
(by (b) above)

= 0.40.

39.19. Let

Ai = {event: component made by Mi}, (i = 1, 2, 3)
B = {event: component not faulty}

We are given the following probabilities:

P (A1) = 0.45, P (A2) = 0.30, P (A3) = 0.25,

P (B|A1) = 0.87, P (B|A2) = 0.84, P (B|A3) = 0.91.

(a) The events A1, A2 and A3 are mutually exclusive. Hence by the law of total probability (39.9)

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3)
= 0.87× 0.45 + 0.84× 0.30 + 0.91× 0.25
= 0.871

(b) We require the conditional probability P (A2|B). By Bayes’ theorem (39.13)

P (A2|B) =
P (B|A2)P (A2)

P (B)
=

[1− P (B|A2)]P (A2)
1− P (B)

=
(1− 0.84)0.30

1− 0.87
(by (a) above)

= 0.37
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(c) We require the conditional probability P (A1 ∪A2|B). Since A1 and A2 are independent,

P (A1 ∪A2|B) = P (A1|B) + P (A2|B)

=
[1− P (B|A1)]P (A1)

1− P (B)
+

[1− P (B|A2)]P (A2)
1− P (B)

(as in (b))

=
(1− 0.87)0.45

1− 0.87
+ 0.37

= 0.45 + 0.37 = 0.82.

39.20. The parallel and series probabilities are given in Example 39.12. The components with
failure probabilities p1, p2 and p3 are in parallel and the probability of failure is p = p1p2p3.
Similarly the probability of failure of the parallel components with failure probabilities r1 and r2

is r = r1r2. The components with probabilities p, q and r are in series. Hence by the probability
is (see Example 39.12)

f = (p + q + r)− (qr + rp + pq) + pqr

= (p1p2p3 + q + r1r2)− (qr1r2 + r1r2p1p2p3 + p1p2p3q) + p1p2p3qr1r2

If the probability of failure in all components is the same, namely 0.98, then f = 0.999953.

39.21. In a batch of microprocessors, 5 are defective.
(a) The probability that one microprocessor chosen at random is defective is

P (1 defective) =
5

100
=

1
20

.

(b) The first microprocessor will be chosen from 100 and the second from 4 defectives in 99. Hence

P (2 defective) =
5

100
4
99

=
1

495
.

(c) After 1 defective has been chosen, the second defective will be chosen from 4 in 99. Hence

P (second defective given first defective) =
4
99

.

39.22. The order in which the numbers are chosen is immaterial. Hence the number of ways in
which 6 numbers can be chosen from 49 is

49C6 =
49!

43!6!
= 13983816.

Hence the probability p6 of obtaining the 6 numbers is

p6 = P (6 correct) =
1

13983816
.

For 5 correct numbers, the 5 numbers must be chosen from the 6 which can occur in 6C5 but
the remaining number must not be one of the 6: this can be chosen in 43C1 ways. Hence the
probability that 5 correct numbers are obtained is

p5 = P (5 correct) = 6C543C1

49C6
=

43
2330636

= 0.000018.

Similarly the remaining probabilities are

p4 = P (4 correct) = 6C443C2

49C6
=

645
665896

= 0.000969,

p3 = P (3 correct) = 6C343C3

49C6
=

8815
499422

= 0.017650.
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The probability of winning with one lottery ticket is

p = p3 + p4 + p5 + p6 = 0.018637,

which is a probability of about 1 in 53.7 of winning.
The probability of obtaining 5 correctly from the 6 is p5 and the probability of correctly

obtaining the bonus ball is 1/42. Hence

q = P (5 correct and bonus ball) =
p5

42
=

43
97886712

.

39.23. The probability of obtaining 1 head and (n− 1) tails from the n players is

nCn−1

(
1
2

)(
1
2

)n−1

,

since the order of the (n − 1) tails is immaterial. The probability of obtaining 1 tail and (n − 1)
heads is the same. Hence the probability that the game ends at a given play is

2nCn−1

(
1
2

)(
1
2

)n−1

=
n

2n−1
.

The probability that it does not end is
1− n

2n−1
.

The probability that the game finishes at the ith play is the probability that is continues for
r = 1, 2, . . . , i− 1 and ends at the next play. Hence

P (game ends at ith) =
n

2n−1

(
1− n

2n−1

)i−1

.

This is a geometric distribution (see Section 40.5 in the following chapter). The mean number of
plays is

µ =
∞∑

i=1

ni

2n−1

(
1− n

2n−1

)i−1

=
n

2n−1

∞∑

i=1

i
(
1− n

2n−1

)i−1

To find the sum of this series consider the series

S =
∞∑

i=1

ixi.

Multiply both sides by x and subtract from the series for S so that

(1− x)S =
∞∑

i=1

xi−1 =
1

1− x
,

the latter series being geometric. Therefore S = 1/(1− x)2 so that

µ =
n

2n−1

1
[1− (1− n

2n−1 )]2
=

2n−1

n
.

(Comment: the last part of this problem would be more appropriate in Chapter 40.)
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Random variables and probability distributions

40.1. Let H denote heads and T tails. The sample space of possible outcomes is

S = {(HHH), (THH), (HTH), (HHT ), (TTH), (THT ), (HTT ), (TTT )}.
If X is the random variable of the number of heads (the ‘events’ being considered) define a sample
space SX is given by

SX = {0, 1, 2, 3}.
Since P (H) = 0.45 and P (T ) = 0.55, it follows from S that the probability distribution of X is

xi 0 1 2 3

pi 0.553 = 0.552 × 0.45× 3 = 0.55× 0.452 × 3 = 0.453 =
0.166 0.408 0.334 0.91

The probability that X ≥ 1 is

P (X ≥ 1) = p1 + p2 + p3 = 0.833.

1 2 3 4
xi

0.1

0.2

0.3

0.4

pi

Figure 1: Problem 40.1

40.2. Obviously pj > 0 and

∞∑
1

1
3

(
1
2j

+
1

2j−1

)
=

1
3




∞∑

j=1

1
2j

+
∞∑

j=1

1
2j−1




=
1
3




∞∑

j=1

1
2j

+ 2
∞∑

j=1

1
2j




=
∞∑

j=1

1
2j

=
1
2

1− 1
2

= 1,

the series being geometric (see Section 1.15). Hence the sequence {pj} is a possible probability
distribution. The probability that the random variable X ≥ 6 is given by

P (X ≥ 6) =
∞∑

j=6

pj =
1
3

∞∑

j=6

(
1
2j

+
1

2j−1

)
=

1
3

(
1
25

+
2
25

)

=
1
25

=
1
32
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40.3. (see Section 40.3.) The probability of i successes in n trials is the binomial distribution
nCip

i(1 − p)n−i where p is the probability of success in any trial. In this problem n = 12, p = 1
3

and i = 0, 1, 2, . . . , 12. The computed probabilities are to 3 decimal places:

i 0 1 2 3 4 5 6
pi 0.008 0.462 0.127 0.212 0.238 0.191 0.111

i 7 8 9 10 11 12
pi 0.048 0.015 0.003 0.000 0.000 0.000

From Section 40.4, the mean and standard deviation of the binomial distribution are p and√
np(1− p) respectively. Hence

mean = 12× 1
3

= 4,

standard deviation =

√
12× 1

3
× 2

3
= 1.633.

40.4. The probability density function and the corresponding cumulative density function of the

a b

1
cdf

a b

1�Hb-aL

pdf

Figure 2: Problem 40.4: pdf and cdf for the uniform distribution on (a, b).

uniform distribution

f(x) =
{

1/(b− a) a < x < b
0 elsewhere

are shown in Figure 2. The mean is given by (see (40.12))

µ = E(X) =
∫ ∞

−∞
xf(x)dx =

∫ b

a

xdx

b− a
=

1
b− a

[
1
2
x2

]b

a

=
1
2
(b + a).

The variance of the uniform distribution is

σ2 =
∫ ∞

−∞
(x− µ)2f(x)dx =

∫ b

a

(x− µ)2
1

b− a
dx

=
1

b− a

[
1
3
(x− µ)3

]b

a

=
1

3(b− a)
[
(b− µ)3 − (a− µ)3

]

=
1

3(b− a)

[
1
8
(b− a)3 − 1

8
(a− b)3

]

=
1
12

(b− a)2
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The standard deviation is therefore
σ =

1
2
√

3
(b− a).

40.5. From Section 40.5 the mean µ of the geometric distribution pi = (1− p)i−1p is µ = 1/p. Let
q = 1− p. The variance of the geometric distribution is given by

σ2 = E(X2)− µ2 = p

∞∑

i=1

i2qi−1 − µ2 = p(1 + 22q + 32q2 + · · ·)− µ2

= p
d
dq

(q + 2q2 + 3q3 + · · ·)− µ2

Let
S = q + 2q2 + 3q3 + · · · .

Then
S − qS = q + q2 + q3 + · · · = q

1− q
,

which is the sum of a geometric series. Hence

S =
q

(1− q)2
.

Therefore

σ2 = p
d
dq

(
q

(1− q)2

]
− µ2 = p

[
1

(1− q)2
+

2q

(1− q)3

]
− µ2

=
1
p

+
2
p2
− 2

p
− 1

p2
=

1− p

p2

40.6. Let p = 0.012 be the probability that a particular component is faulty. Let pi be the
probability that the first faulty component occurs for the ith component. Then,

pi = (1− p)i−1p,

since the first i − 1 components must be not faulty (with probability 1 − p). This is a geometric
distribution. From Section 40.5 and Problem 40.5, the mean of the geometric distribution is given
by µ1/p but this includes the faulty component. If it is excluded the average number of component
until the first faulty component is

1
p
− 1 =

1− p

p
= 82.33.

The variance is given by (it is not affected by the the exclusion or not of the first faulty component)

σ2 =
∞∑

i=1

i2pi − µ2 =
1− p

p2
.

The standard deviation is therefore

σ =
√

1− p

p
= 82.83.

40.7. This requires the geometric distribution with p = 1
2 . For the geometric distribution (see

(40.9))
pi = (1− p)i−1p.
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For 8 heads before the first tail, put i = 9. Then

p9 =
(

1
2

)8 1
2

=
1
29

.

40.8. We must have X = i if success occurs at the ith trial and r − 1 successes have occurred
previous to that. The order in which the r− 1 successes happen in the i− 1 trials is not material,
so that

pi = i−1Cr−1p
r(1− p)i−r, (i = r, r − 1, . . .),

which is the negative binomial distribution. The sum of the probabilities which start at i = r (it
is possible that the first r trials could all be successes) is

∞∑

i=r

pi = pr
∞∑

i=r

i−1Cr−1p
r(1− p)i−r

= pr
[
r−1Cr−1 + rCr−1(1− p) + r+1Cr−1(1− p)2 + · · ·]

= pr

[
r + r(1− p) +

r(r + 1)
2!

(1− p)2 + · · ·
]

= rpr 1
[1− (1− p)]r+1

(by the binomial expansion)

=
r

p

The mean value of X is given by

E(X) =
∞∑

i=r

ipi = pr
∞∑

i=r

ii−1Cr−1p
r(1− p)i−r

= pr
[
rr−1Cr−1 + (r + 1)rCr−1(1− p) + (r + 2)r+1Cr−1(1− p)2 + · · ·]

= rpr

[
1 + (r + 1)(1− p) +

(r + 1)(r + 2)
2!

(1− p)2 + · · ·
]

=
rpr

[1− (1− p)]r+1
=

r

p

The expected value of X2 is given by (replacing 1− p by q)

E(X2) =
∞∑

i=r

i2pi = pr
∞∑

i=r

i2i−1Cr−1p
r(1− p)i−r

= pr
[
r2

r−1Cr−1 + (r + 1)2rCr−1(1− p) + (r + 2)2r+1Cr−1(1− p)2 + · · ·]

= rpr

[
r + (r + 1)2q +

(r + 1)(r + 2)2

2!
q2 + · · ·

]

=
rpr

qr−1

∂

∂q

[
qr + (r + 1)qr+1 +

(r + 1)(r + 2)
2!

+ · · ·
]

=
rpr

qr−1

∂

∂q

[
qr

(1− q)r+1

]
=

rpr

qr−1

[
rqr−1

(1− q)r+1
+

(r + 1)qr

(1− q)r+2

]

=
r(r + 1− p)

p2
.

Finally, the variance is given by

Var(X) = E(X2)− E(X)2 =
r(r + 1− p)

p2
− r2

p2
=

r(1− p)
p2

.

12



40.9. This is the problem as described at the beginning of Section 40.5. We are interested in
the number of bottles filled until the first failure. If X is this random variable (including the first
failure) and p is the probability that an individual bottle fails the weight test, then

P (X = i) = (1− p)ip,

which is a geometric distribution. The expected value until the first breakdown is E(X) = 1/p.
On average this is 1503 bottles. Hence E(X) = 1503 = 1/p so that the probability of an individual
bottle failing is p = 1/1503 = 0.000665 . . ..

40.10. The random variable X has the exponential distribution

f(t) =
{

1.5e−1.5t, t ≥ 0,
0, t < 0.

With α = 1.5,
(a) P (0 < X < 1) =

∫ 1

0
αe−αtdt = [−e−αt]10 = 1− e−α = 0.777;

(b) P (X < 0) = 0;

(c) P (X ≥ 1) =
∫∞
1

αe−αtdt = [−e−αt]∞1 = e−α = 0.223;

(d) P (X ≤ 1) = 1− e−α = 0.777, by (a) since f(t) = 0 for t < 0;

(d) P (X < 2) or P (X < 1) =
∫ 2

0
αe−αtdt = 1− e−2α = 0.950.

40.11. The distribution is exponential with density function

f(t) =
{

1.5e−1.5t, t ≥ 0,
0, t < 0.

where t is the time between calls in minutes. The mean of the exponential distribution is 1/α.
Therefore, since the mean time between calls is 20 minutes, α = 1/20 = 0.05.
(a) The probability that there are no calls in a one-hour interval is

P (X > 60) =
∫ ∞

60

αe−αtdt = [−αe−αt]∞60 = e−3 = 0.050.

(b) The probability that at least one call within a 15-minute interval is

P (X < 15) =
∫ 15

0

αe−αtdt = [−e−αt]150 = 1− e−15/20 = 0.528.

40.12. For

P (X = n) =
e−λλn

n!
, (n = 0, 1, 2, . . .),

the mean is given by

E(X) =
∞∑

n=1

n
e−λλn

n!
= e−λ

∞∑
n=1

λn

(n− 1)!

= e−λλ

(
1 + λ +

λ2

2!
+ · · ·

)

= e−λλeλ = λ.

The variance is given by

σ2 = E(X2)− E(X)2 =
∑
n=1

e−λλn

n!
− λ2

13



= e−λ

(
λ + 2λ2 +

3λ3

2!
+ · · ·

)
− λ2

= e−λλ
d
dλ

(
λ + λ2 +

λ3

2!
+ · · ·

)
− λ2

= e−λλ
d
dλ

(λeλ)− λ2 = e−λ(λeλ + λ2eλ)− λ2

= λ

The probability that 5 or more hits occur in the time interval is

P (X ≥ 5) =
∞∑

n=5

e−λλn

n!

= e−λ

(
eλ − 1− λ− λ2

2!
− λ3

3!
− λ4

4!

)

40.13. The standardized normal distribution has the probability density function

f(z) =
1√
2π

e−
1
2 z2

.

The numerical values can be calculated from the cumulative distribution table in Appendix H(b).

(a) P (Z ≥ 0.8) =
1√
2π

∫ ∞

0.8

e−
1
2 z2

dz = 0.212.

(b) P (Z ≤ 0.7) =
1√
2π

∫ 0.7

−∞
e−

1
2 z2

dz = 0.758.

(c) P (−0.5 ≤ Z ≤ 0.8) =
1√
2π

∫ 0.8

−0.5

e−
1
2 z2

dz = 0.480.

40.14. The density function is

f(t) =
{

0.1 33 < t < 43
0 elsewhere

Refer back to Problem 40.4 and put a = 33 and b = 43. The mean and variance of the operation
are respectively

µ =
1
2
(b + a) =

1
2
(43 + 33) = 38,

σ2 =
1
12

(b− a)2 =
1
12

(43− 33)2 =
100
12

= 8.33.

The probability that an operation takes longer than 40 secs is

P (X ≤ 40) =
∫ 43

40

0.1dt = 0.1× 3 = 0.3.

Therefore about a third of the operations take longer than 40secs.

40.15. The function

f(t) =
{

A(a2 − t2) −a ≤ t ≤ a
0 elsewhere

14



is a probability density function if f(t) ≥ 0 and
∫ ∞

−∞
f(t)dt = 1.

Hence ∫ ∞

−∞
f(t)dt =

∫ a

−a

A(a2 − t2)dt = A

[
a2t− 1

3
t3

]a

−a

=
4a3

3
= 1,

if A = 3/(4a3). Therefore

f(t) =

{
3(a2−t2)

4a3 −a ≤ t ≤ a
0 elsewhere

The variance is given by

σ2 =
3

4a3

∫ a

−a

t2(a2 − t2)dt =
3

4a3

[
a2t3

3
− t5

5

]a

−a

=
a2

5
.

The standard deviation is given by σ = a/
√

5 which is 1 if a =
√

5.

40.16. The engines are modelled by N(1200, σ2). The normalized standard random variable is

Z =
X − 1200

σ
,

where X is the random variable of the time to failure. When X = 1000, then Z = −200/σ. We
require σ such that

P

(
Z ≥ −200

σ

)
=

∫ ∞

−200/σ

e−
1
2 z2

√
2π

dz = 0.95.

From the table in Appendix H(b), it follows that σ should satisfy

200
σ

= 1.645, or σ =
200

1.645
= 121.6.

40.17. (see Section 40.8.) The exponential distribution has the probability density function

f(t) =
{

αe−αt t ≥ 0
0 t < 0

Let X be the random variable of the time to failure. The mean of the exponential distribution is
E(X) = 1/α = 500 hours. Hence α = 1/500 = 0.002.

The probability that a bulb is still functioning after 640 hours is

P (X ≥ 640) =
∫ ∞

640

αe−αtdt = [−e−αt]∞640 = e−640/500 = 0.278.

Two bulbs will have failed after 640 hours with probability 0.278 and therefore two bulbs will still
be working with probability (1− 0.278)2. The two failing bulbs can be chosen in 4C2 ways. Hence
the probability that two bulbs are still working is

4C2 × (0.278)2 × (0.722)2 = 6× (0.278)2 × (0.722)2 = 0.242.

Chapter 41: Descriptive statistics

41.1. (a) The set of data is

{10, 11, 11, 15, 17, 20, 25, 25, 27, 30, 38, 42, 47},

15
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Figure 3: Problem 41.1(a)

which contains 13 observations. The mean is 24.5 and the median is 25. The first quartile is the
median of the first 7 observations, that is, 15, and the third quartile is the median of the last 7
observations, that is, 30. The boxplot is shown in Figure 3.
(b) The set of data is

{5, 12, 15, 16, 20, 29, 29, 32, 39, 44},
which contains 10 observations. The mean is 24.1 and the median 24.5. The first quartile is 15
and the third quartile is 32. The boxplot is shown in Figure 4.
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median

first quartile

third quartile

Figure 4: Problem 41.1(b)

41.2. The marks in an examination with 4 papers are are shown in the table. The means and
medians are

mean(paper 1) = 54.65, median(paper 1) = 60.5,

mean(paper 2) = 54.60, median(paper 1) = 52.5,

mean(paper 3 = 51.65, median(paper 1) = 49.5,

mean(paper 4 = 50.95, median(paper 1) = 52.5,

Paper 1 {24,27,27,30,40,42,48,55,58,60,
61,63,64,66,66,68,69,72,78,85},

Paper 2 {30,35,36,38,39,40,44,45,48,51,
54,58,61,64,65,65,69,70,81,90},

Paper 3 {26,29,30,35,36,37,46,48,49,49,
50,54,56,61,69m70,71,71,72,74}

Paper 4 {10,20,22,34,41,44,45,45,45,50,
55,55,55,56,64,65,66,70,85,91}
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The boxplots for the four papers can be compared in Figure 4.
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80

100

Paper 1 Paper 2 Paper 3 Paper 4

Figure 5: Problem 41.2

41.3. The samples of weights of 10 packets are

{Xi} = {25.1, 25.3, 25.0, 25.7, 25.3, 25.2, 25.1, 25.5, 25.7, 25.1}.

The various measures of the data are:

sample mean = X = 1
10

∑10
i=1 Xi = 25.3;

mode = most often Xi in sample = 25.1;
sample variance = S2 = 1

9

∑10
i=1(Xi −X)2 = 0.0644;

standard deviation = S = 0.254;

41.4. The set of data is reproduced in the table, and its histogram over 10 intervals and the
frequency polygon are shown in Figure 6.

length frequency length frequency
interval of pipes interval of pipes

9.5 ≤ x < 9.6 1 10 ≤ x < 10.1 21
9.6 ≤ x < 9.7 4 10.1 ≤ x < 10.2 15
9.7 ≤ x < 9.8 5 10.2 ≤ x < 10.3 11
9.8 ≤ x < 9.9 12 10.3 ≤ x < 10..4 5
9.9 ≤ x < 10.0 20 10.4 ≤ x < 10.5 2

(b) The numbers of pipe lengths in each intervals of length 0.2m are listed in the second table.
The corresponding bar chart and frequency polygon are shown in Figure 7.

length frequency length frequency
interval of pipes interval of pipes

9.5 ≤ x < 9.7 5 10.1 ≤ x < 10.3 26
9.7 ≤ x < 9.9 17 10.3 ≤ x < 10.5 7
9.9 ≤ x < 10.1 41

41.5. (See Section 41.1.) 127 observations over 36 intervals would average about 3 or 4 observations
per interval or bin which is too small for interpretation. The general working rule is about

√
n

bins for n observations which would reduce the number of intervals to about 11.
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Figure 6: Problem 41.4(a)
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Figure 7: Problem 41.4(b)

41.6. (See Section 41.3 and Problem 40.4 for the uniform distribution.) The uniform distribution
is

f(x) =
{

1, 1 ≤ x ≤ 2;
0, elsewhere

Let the sample of values be {Xi} for i = 1, 2, . . . 35. The sample mean X is simply the mean of
the sample, namely

X =
1
35

35∑

i=1

Xi.

The expected value of the sample mean is the mean of the random variable X, which has a uniform
distribution. The mean of the uniform distribution is

µ =
∫ 2

1

xdx =
[
1
2
x2

]2

1

=
3
2
.

Hence E(X) = 3
2 . The variance of the sample mean is (see (41.4))

Var(X) =
σ2

n
=

1
12× 35

=
1

420

for the uniform distribution. From (41.5) an estimator of the sample variance is

S2 =
1

n− 1

34∑

i=1

(Xi −X)2.
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41.7. The sample values are the 7 numbers

{Xi} = {9.71, 10.26, 9.80, 9.85, 9.99, 10.10, 9.79}.

the sample mean is

X =
1
7

7∑

i=1

=
1
7
(9.71 + 10.26 + 9.80 + 9.85 + 9.99 + 10.10 + 9.79) = 9.93.

An estimator for the sample variance is given by (41.5), namely,

S2 =
1

n− 1

7∑

i=1

(Xi −X)2

=
1
6
[(9.71− 9.93)2 + (10.26− 9.93)2 + (9.80− 9.93)2 + (9.85− 9.93)2

+(9.99− 9.93)2 + (10.10− 9.93)2 + (9.79− 9.93)2]
= 0.039

41.8. (See Example 41.1.) We require k1 and k2 so that

P (1460 < T < 1540) =
1√
2π

∫ k2

k1

e−
1
2 x2

dx. (i)

The mean and variance of X, the random variable that a 1 appears at a single throw of the die,
are

E(X) =
1
6
, Var(X) =

5
36

.

By the central limit theorem

P

(
k1 ≤

T − 1
69000

√
5

6

√
9000

≤ k2

)
=

1√
2π

∫ k2

k1

e−
1
2 x2

.

Comparison with (i) gives √
5

6

√
9000k2 +

1
6
9000 = 1540,

√
5

6

√
9000k1 +

1
6
9000 = 1460.

Therefore

k2 =
6(1540− 1500)√

5
√

9000
= 1.131,

k1 =
6(1460− 1500)√

5
√

9000
= −1.131.

41.9. The data of the fuel consumption versus car weight is reproduced in the table and displayed
in Figure 8.
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Vehicle weight fuel consumption
wi(kg) (xi) (km l−1)

A 2100 4.96
B 1350 9.10
C 1008 12.04
D 1323 7.68
E 710 15.15
F 1215 10.98
G 1436 7.75
H 1561 8.25
I 2120 4.85
J 1975 4.64
K 1535 5.56

The regression line which is the line of least squares fit to the data has the equation c = aw+ b,
where a and b are given by the linear equations (see (41.7))

a

11∑

i=1

w2
i + b

11∑
wi

wi =
11∑
=1

wici,

a

11∑

i=1

wi + 11b =
11∑

i=1

ci.

The solutions of these equations are a = −0.00707 and b = 18.76, so that the regression line
estimator is

ĉ = −0.00707w + 18.76.

The regression line is also shown in Figure 8. It is given that an unbiased estimator in linear

750 1000 1250 1500 1750 2000
w

6

8

10

12

14

c

Figure 8: Problem 41.9

regression is

S2 =
n∑

i=1

(ci − ĉi)2

n− 2
,

where ĉi = awi + b. The numbers ĉi are given in the table.
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wi ĉi wi ĉi

A 2100 3.92 G 1436 8.61
B 1350 9.22 H 1561 7.73
C 1008 11.64 I 2120 3.78
D 1323 9.41 J 1975 4.80
E 710 13.74 K 1535 7.91
F 1215 10.18

It follows that an estimate for the variance is S2 = 1.56.
The outlier is vehicle K. If it is deleted from the list, then the regression line estimator has the

equation
ĉ = −0.00700w + 18.90.

If K is deleted from the table above the estimator for the variance becomes S2 = 1.3, which is a
significant change.
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