Solutions to Exercises, Chapter 2 - **2.1** (a) 109.5° (b) 120° (c) 180° - **2.2** Ethane: sp³ hybrid AOs of C and 1s AO of H. CCl₄: sp³ hybrid AOs of C and 3p AO of Cl. - **2.3** The C–C bond in ethane is formed by end-to-end interactions between sp³ AOs on the two C atoms, and the resulting MOs are circularly symmetrical about the C–C bond axis. - 2.4 The carbon atom of methanal is sp^2 hybridized and trigonal planar. If the 2s and two 2p orbitals of O are sp^2 hybridized with an unpaired electron initially in one of these and another in the unhybridized 2p orbital, we have lone pairs in the other two sp^2 orbitals. The C=O double bond is the formed by (i) end-on overlap of the sp^2 orbitals (σ bond), and (ii) side-on overlap of the unhybridized 2p orbitals (σ bond) of the C and the O. The C also forms σ bonds using its other two sp^2 AOs and the 1s AO of two H atoms. - 2.5 The σ orbitals are derived from the two sp hybrid AOs of the C and one sp² hybrid of each of the two O atoms; one π orbital is formed by combination of the 2p_y AOs of the C and one O, and the other π orbital is from the 2p_z AOs of the C and the other O; the planes of the two π orbitals are perpendicular to each other (orthogonal), and each O atom has two hybrid sp² orbitals left over to accommodate lone pairs. ## 2.6 (a) $$H-C$$ H sp^3-1s (σ) H H $2p-2p$ (π) (a) $H-C$ H sp^3-1s (σ) $H-C$ H sp^2-1s (σ) (b) sp^2-sp^3 (σ) sp^2-sp^2 (σ) (a) sp^2-sp^3 (σ) sp^2-sp^2 (σ) (b) $$H - C - N$$: $H \rightarrow H$ $sp^3 (109.5^\circ)$ $sp^3 - 1s (\sigma) \rightarrow H \rightarrow H$ $sp^3 - sp^3 (\sigma)$ (c) $H - C \equiv N$: $sp^3 - 1s (\sigma) \rightarrow H \rightarrow H$ $sp^3 - sp^3 (\sigma)$ $$2p_y - 2p_y (\pi) \text{ and } 2p_z - 2p_z (\pi)$$ $sp - 1s (\sigma) \rightarrow sp - sp (\sigma)$ 2.7 - (a) $(CH_3)_3CCH_2CH=CH_2$ (b) $CH_3CH_2CH(OH)CH_3$ (c) $(CH_3)_2CHCONH_2$ (d) $CH_3CH_2CH_2OCH_3$ - 2.8 2.9 **2.10** *trans*- and *cis*-pent-2-enes are stereoisomers, and others are constitutional isomers. 2.11 - (a) $-CH(CH_3)_2 > -CH_2CH(CH_3)_2$ (b) -F < -Cl (c) $-OCH_3 > -N(CH_3)_2$ - (d) $-Cl > -SCH_3$ (e) $-CH = CH_2 < -C(CH_3)_3$ ## 2.12 - (a) Z (groups of higher priority: Cl and OCH₃) - (b) E (groups of higher priority: CH_3 and CHO)