## Solutions to Exercises, Chapter 2

- **2.1** (a)  $109.5^{\circ}$  (b)  $120^{\circ}$  (c)  $180^{\circ}$
- **2.2** Ethane: sp<sup>3</sup> hybrid AOs of C and 1s AO of H. CCl<sub>4</sub>: sp<sup>3</sup> hybrid AOs of C and 3p AO of Cl.
- **2.3** The C–C bond in ethane is formed by end-to-end interactions between sp<sup>3</sup> AOs on the two C atoms, and the resulting MOs are circularly symmetrical about the C–C bond axis.
- 2.4 The carbon atom of methanal is  $sp^2$  hybridized and trigonal planar. If the 2s and two 2p orbitals of O are  $sp^2$  hybridized with an unpaired electron initially in one of these and another in the unhybridized 2p orbital, we have lone pairs in the other two  $sp^2$  orbitals. The C=O double bond is the formed by (i) end-on overlap of the  $sp^2$  orbitals ( $\sigma$  bond), and (ii) side-on overlap of the unhybridized 2p orbitals ( $\sigma$  bond) of the C and the O. The C also forms  $\sigma$  bonds using its other two  $sp^2$  AOs and the 1s AO of two H atoms.
- 2.5 The  $\sigma$  orbitals are derived from the two sp hybrid AOs of the C and one sp<sup>2</sup> hybrid of each of the two O atoms; one  $\pi$  orbital is formed by combination of the 2p<sub>y</sub> AOs of the C and one O, and the other  $\pi$  orbital is from the 2p<sub>z</sub> AOs of the C and the other O; the planes of the two  $\pi$  orbitals are perpendicular to each other (orthogonal), and each O atom has two hybrid sp<sup>2</sup> orbitals left over to accommodate lone pairs.

## 2.6

(a) 
$$H-C$$
  $H$   $sp^3-1s$  ( $\sigma$ )  $H$   $H$   $2p-2p$  ( $\pi$ )

(a)  $H-C$   $H$   $sp^3-1s$  ( $\sigma$ )  $H-C$   $H$   $sp^2-1s$  ( $\sigma$ )

(b)  $sp^2-sp^3$  ( $\sigma$ )  $sp^2-sp^2$  ( $\sigma$ )

(a)  $sp^2-sp^3$  ( $\sigma$ )  $sp^2-sp^2$  ( $\sigma$ )



(b) 
$$H - C - N$$
:  
 $H \rightarrow H$ 
 $sp^3 (109.5^\circ)$ 
 $sp^3 - 1s (\sigma) \rightarrow H \rightarrow H$ 
 $sp^3 - sp^3 (\sigma)$ 

(c)  $H - C \equiv N$ :
 $sp^3 - 1s (\sigma) \rightarrow H \rightarrow H$ 
 $sp^3 - sp^3 (\sigma)$ 

$$2p_y - 2p_y (\pi) \text{ and } 2p_z - 2p_z (\pi)$$
 $sp - 1s (\sigma) \rightarrow sp - sp (\sigma)$ 

2.7

- (a)  $(CH_3)_3CCH_2CH=CH_2$  (b)  $CH_3CH_2CH(OH)CH_3$  (c)  $(CH_3)_2CHCONH_2$  (d)  $CH_3CH_2CH_2OCH_3$
- 2.8

2.9

**2.10** *trans*- and *cis*-pent-2-enes are stereoisomers, and others are constitutional isomers.

2.11

- (a)  $-CH(CH_3)_2 > -CH_2CH(CH_3)_2$  (b) -F < -Cl (c)  $-OCH_3 > -N(CH_3)_2$
- (d)  $-Cl > -SCH_3$  (e)  $-CH = CH_2 < -C(CH_3)_3$

## 2.12

- (a) Z (groups of higher priority: Cl and OCH<sub>3</sub>)
- (b) E (groups of higher priority:  $CH_3$  and CHO)