Chapter 9

Paper:

Willis, K. J., A. Feurdean, H. J. B. Birks, A. E. Bjune, E. Breman, R. Broekman, J-A. Grytnes, M. New, J. S. Singarayer, and J. Rozema. "Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin." *New Phytologist* 192, no. 2 (2011): 553-560.

Questions:

- 1. What effect does UV-B radiation have on plants?
- 2. What factors influence the amount of UV-B radiation reaching the Earth's surface?
- 3. Why is it interesting or important to reconstruct UV-B radiation through geological time?
- 4. What 'proxy' or indicator method can be used to infer past levels of UV-B radiation?
- 5. What are the limitations associated with this proxy method?
- 6. What are the two main objectives of the paper?
- 7. How did the authors ensure that the procedures used to extract fossil pine pollen did not alter the original para-coumaric acid content of the pollen grain?
- 8. What are the key findings in relation to UV-B and para-coumaric acid abundance across modern latitudinal gradients?
- 9. What are the key findings in relation to Holocene UV-B?
- 10. What interesting features of Holocene UV-B history does the fossil pollen para-coumaric acid record show?

