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Solutions for Chapter 5

Section 5.2

Evaluate the indefinite integrals:

By Table 5.11,

1. 2dx=2x+C

2. @ dx =L x*+C
4

. (2/3)+1
3 [rax=Xic=3xPic
) 2/3)+1 5

* =3+1
4. %zj.x*dx:x +C:—lx‘2+C=—L2+C

Jx -3+1 2 2%
. 31 3

5. | xPdx=———+Cc=2x"+C
J —(1/3)+1 2

6. sin 4x dX:—%cos4X+C

7. e dx = Le™ +.C

8. e dx = —%e’zx +C

9. d—xlzln(x—l)+C —InA(x-1), with InA=C.
X_

10. ;&=—ln(3—x)+c =ln3i,fromtyp65 in Table 5.1 with a=-1,b=3.
—-X

Evaluate the indefinite integrals subject to the given conditions:

11. y:J‘x2 dx; y=0 when x=3

We have y:J‘x2 dx=x*/3+C

Then y=0 when x=3 - 0=3*/3+C > C=-9

Therefore  y=x / 3-9

© E Steiner 2008




Solutions for Chapter 5
12. yzjcos4xdx; y=0 when x=mn/4
We have y:Icos4X dx=isin4X+C
y=0 when x=n/4 — O:%sinn+C:0+C - C=0
1.
Therefore y= Zsm 4x

13. I:J(5x4+2x+3)dx; | =4 when x=2

5 2
= | (5x* +2x +3) dx:SxX?+2xX7+3x+C

=X +x*+3x+C

| =4 when Xx=2 — 4=32+4+6+C=42+C —» C=-38

Therefore I =x> + x> +3x-38

2
14, |=dex; | =3 when x=1

2
2
| =JA3X+—22Xde:3J‘dx+2J‘ldx+jL2dx
X X X
1

X
=3X+2Inx——+C
X

| =3 when x=1 - 3=3+0-1+C —» C=1

Therefore | :3X+21nx—l+1
X
15. 1 =I[—4+4cos2x—%ezxjdx; | =0 when x=0
I :J‘[—4+4cos2x—%ezxjdx:—4x+2sin2x—%e2" +C

| =0 when Xx=0 — 0=0+0—%+C - C:i

Therefore | =—4Xx+2sin 2X—%ezx +£
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Solutions for Chapter 5

Section 5.3.

Evaluate the definite integrals:

16

17.

18.

19.

20.

21.

22.

23.

+1 3 2 +
: j (2x? +3x+4)dx = 22X 3% L ax
. 302

3
dv 3
=|In(v+2 =In5-n4=1In5/4
Iz U+2 |: (U ):|2 /

5
Ise—st dt = _le—3t :_le—IS +le_3 =l[e"3 —e_ISJ
| 3 3 3 3

1

/2

cosd d6’=[sin6’]n/2 = sinE—sinO =1-0=1
J 0 2
e 1 T

cos360d@=|—sin30| =0-0=0

J0 3 0
0 1 0

sin 2x dx = {——cosZX}
o /4 2 —-n/4
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Solutions for Chapter 5

24. (i) Show that the rate equation of a first-order decomposition reaction i —kx

itten i RN In X
can be written in the logarithmic form d dr; =—

(ii) Integrate this equation with respect to t over the range 0 to t, and show that

1{@} =—kt and x(t)=x(0)e™

x(0)
(i) By the chain rule, dinx _1dx )
dt X dt
Therefore % =-kx — ld_x -
dt x dt
dinx
dt

. dlnx ‘
(i) We have L o dt:-det — [Inx], =—k[t];

— InX(t)—In x(0) = —kt

Therefore In {&} = —kt
x(0)

Then, because e™* =x,

X() -kt _ Kt
X0) =e" — X(t)=x(0)e

25. The Clausius-Clapeyron equation for liquid-vapour equilibrium is

d ln p _ AHvap
dT RT2

If the enthalpy of vaporization, AH is constant in the temperature range T, to T, show, by

vap

integrating both sides of the equation with respect to T, that

m[&j:_AHw (i_i],
Py R (T T,

where p; = p(T;) and p, = p(T,).

T AH, [T AH E
We have J. dinp a7 =—=2 J. LdT - [ln pJTZ w2
7 dT R T K

AH AH
Therefore Inp,—-Ilnp, = P {_LJFTL} - ln& =" {i_i}
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Solutions for Chapter 5 6

Find the average values in the given intervals:

26. 2x% +3x+4; —1<x<+1

+1
2% 3x? }
1

+1
We have J‘ (2%% +3x+4) dx = {T+T+ ax| = ? (Exercise 16)
-

+1
and J. dx=2

-1

Therefore ~ 2x* +3x+4=(28/3)/2 =14/3

27. cos30; 0<6<m/2

/2 1 /2 1 n/2 -
We have j c0s36 d@ =| —sin3 0 =——, J‘ do=—
0 3 0 3 2

Therefore  cos36= (—1/3)/(n/2) =-2/3n

28. 1; 3<x<5

b b
We have 1= [I dx / I dx} =1 for all intervals
a a

Demonstrate and sketch a graph to interpret:

3 1 2 3
29. Iex dx:J‘eX dx+j e™* dx+j e X dx
0 0 1 2

=A+B+C inFigure 1 Figure 1

b b
We have I e X dx = [—e‘XJ =g ?_¢g®

a

Therefore

1 2 3
j e dx+I e dx+I e dx = — )+ - o)+ (o2 —e)
1

0 2
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Solutions for Chapter 5

3 6 6
30. '[ eX dx=J. e* dx—'[ e* dx
2 2 3

b b
We have I ¥ dx=[ex] =g —g?

a a

6 6
Therefore '[ e* dx—'[ e* dx=[;¥(—e2}—[;¥(—e3}=e3—e2

3

2

Figure 2

/2 n
31. (i) Show that J‘ cosX dx = —I cos X dx.
0 /2

—T T T

(iii) Sketch a graph to interpret these results.

0 /2 T
(ii) Calculate j cosx dx, J cos x dx, J cosx dx.

b
We have I cos X dx = sinb—sina . Therefore

a

n/2
0] j cosx dx =sinm/2—sin0=1-0=1
0

T
J cosx dx=sinm—sinn/2=0-1=-1

/2
/2
= —I cos X dx
0
"0
(i) cosX dx =sin0—sin(-m1)=0-0=0
-7[/2
cos X dx =sinm/2 —sin(-w) =1-0=1
T
cosX dx =sinm—sin(-n1)=0-0=0

v -7
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Solutions for Chapter 5

(iii) Figure 3
Ay | As
3 3
I 0 i
Ay Ay
5 l
i i
Evaluate and sketch a graph to interpret:
3 X +2  if x<1
32. f(x) dx where f(x)=
o X if x>1

We have

Jﬂ+3
-1

+1 3
f(x)dx:J. (x2+2)dx+J. x? dx
-1 1
+1
—[ Ly 1 ax
3 -1

X if x>0
if x<0

1

+1
33. J‘
-1

f(x) dx where f(x)= {

j+1
-1

—X

xdx

0 +1
f(x) dx=j (—x)dx+I
-1

0

-[-x/2] : +[+x2/21 —1/2+1/2=1

—-X

if x>0

if Xx<0

e

+a
3 j
a _etX

I+a f(x) dx=j0 (—e")dx+J‘ae‘X dx

_a —a 0
[T =],
=N+ )+ (2T 4

=0

f(x) dx where f(x)= {
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Solutions for Chapter 5

1

35. (i) Show that 3_(Xln X—X)=InX, (ii) evaluate '[ Inxdx.
X 0

(M d—X]nX=X><l+l><1nX=1+lnX (product rule)
X X

Therefore g—(xlnx—x) =(l+Inx)—-1=Inx
X

1 1
(i) J. Inx dx = limj In x dx

0 >0

1
- lim.[ 3—(xlnx—x)dx (by (i)

s—)OgX

- g%[xlnx—xji =[—1]—811310[51ng—g]

=-1
Evaluate:
S b | b
36. J. et dt = lim I e dt = lim {__e—ﬂ}
0 b— 0 b—o 3 0
= lim {—le‘3b}+l:l
b—ow| 3 3 3
37. J‘ e-X/Z dx = lim J‘ e‘X/Z dx = lim |:_26—X/2:| =2
0 b—o0 0 b—w 0
1 1

38. By partial fractions = .
X(x-1) x-1 X

Therefore J‘ dx = I ( ! —ljdx
5 X(x=1) J, \x-1 X
b
- lim {mx—_l} - lim {lnﬁ}—lnl
b—o0 X b—w b 2

=1n1—lnl=1n2
2
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Solutions for Chapter 5 10

39. By partial fractions ! 1 !

X(x—1)> X X—1+(x—1)2 '

Therefore J. L:J. {l—L}dX+J. dx
> x(x=D? o [x x-1 ) (X172

=-In2 (by Exercise 38)

.

=—In2+1

For each function, state if it is an even function of X, an odd function, or neither. If neither, give the

even and odd components.

40. sin2x =-sin(-2x); odd
41. cos3x =+cos(—3X); even

42. sinxcos X =—sin(—X)cos(—X); oddxeven = odd

43. x=—(=x); odd
44, X4:+(—x)4; even

45. 3% £2x+1% J_{3(—x)2 +2(=x) + 1} neither (except when X = 0)

The function has even component 3x* +1= +|:3(—X)2 + 1}

odd component 2X = -2(—X)

46. e * =+e ™¥; neither (except when X =0)

. Ir _
The function has even component E[e X4 ex:|

odd component %[e’x - eXJ

47. 3x%+2x+1)e = [(3x2 +1)+(2x)]><[%(e*x re)+le —ex)]
- %[(3x2 F)x (€7 +e5)+(x) x (e~ —eX)J (even x even) + (odd x odd) = even

+%[(3x2 +D)x(Ee* - )+ (x)x (e +e* )J (even x odd) + (odd x even) = odd
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Solutions for Chapter 5 11

Section 5.4

48. The equation of an ellipse with centre at the origin is

2 2
X Yy _
—2+b—2—1

QD

where, if a > b, a is the major axis and b the minor axis (if a =b, we have a circle). Use Method 1

in Example 5.11 to find the area of the ellipse.

In the first quadrant (Figure 7), Y
22
b
X—2+y—2=1 - y:E a? —x? ’
a“ b a

An approximate value of the area of the strip between X and

X+AX is

AAzyAx:B a2 —x2 Ax 0 r xT+Ar a
a

Figure 7

and the total area in the first quadrant is

a a 2
A= [ yon D [ Vo g Do e
0 a

0 a

The total area of the ellipse is therefore 4A=mab.

49. Find the length of the curve y = %X3/ % between x=0 and x=1.

By equation (5.38), the length of the curve is

1 27Y2 1 12
5=I {1+(ﬂj} dx=I [l+ix} dx
0 dx 0 16

Now I (1+ ax)"2dx :33(1+ax)3/2.
a

1
3/2

Therefore s= gxﬁx 1+£x =2 ﬁ—1 :ﬂ

39 9 27| 64 54

0
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Solutions for Chapter 5 12

Section 5.6

50.

Three masses, m; =1, m, =2 and m; =3, lie on a straight line with m; at x, =—4, m, at X, =—1
and m; at X3 =+4 with respect to a point O on the line. Calculate (i) the position of the centre of

mass, (ii) the moment of inertia with respect to O, and (iii) the moment of inertia with respect to

the centre of mass.

mi mo CM ms

Figure 8 A A e
—4 =

(i) The total mass is M = 6, and the centre of mass lies at

X :ﬁzi“mixi :%[1x(—4)+2x(—1)+3x4]:1
(ii) 1(0) = > mx> =1x(—4)” +2x(-1)* +3x4*> =66

(iii) 1(X) =Y. m (4 = X)? =1x(=5)" +2x(-2)" +3x3> = 60

51.

The distribution of mass in a straight rod of length | is given by the density function
p(X)=x*; 0<x<I.Find (i) the total mass, (ii) the mean density, (iii) the centre of mass, (iv) the
moment of inertia with respect to an arbitrary point X, on the line, (v) the moment of inertia with

respect to the centre of mass. (vi) Show that the moment of inertia has its smallest value when

computed with respect to the centre of mass.

| |
(i) M =I P(X)dx =J x2dx =13/3
0 0
(ii) p=M/I=1%/3
(iii) X —ijlx (x)dx—LJ‘Ix3 dx—|4/|3—3l/4
B0 R VI R VA
| |
(iv) I(xo):J. (X=%p)? p(x)dx :I O = 2% X+ %2 )x* dx
0 0
=13/5-x,1* )2+ %213 /3
v) 1(X) =P /5-X1*2+ X233

=13/5-31°/8+16 =1°/80

© E Steiner 2008




Solutions for Chapter 5 13

. d _drs 4 23 /7] _ 14 3
(vi) %I(xo)_%[l [5=x 1243217 [3] = =124 2 /3

=0 when 1/2=2x,/3, x,=3l/4

The moment of inertia has minimum value when X, =31/4 ; that is, when computed with

respect to the centre of mass X =3l/4.

Section 5.7

52. A body moves in a straight line with velocity v = 3t* at time t. Calculate the distance travelled in

time interval (i) t=0—>1, (i) t=1—>2, (iii) t=3—>4.

dx E
We have v="—=3t* > X:I vdt:[t;—tf]
&

dt
Therefore
0] t=0,t,=1 > x=1-0=1
(ii) t=Lt=2 —> x=8-1=7
(iii) t,=3t,=4 > x=64-27=37

53. A body of mass m moves in a straight line (the X-direction) under the influence of a force F = kx.

What is the work done on the body between X=X, and X =Xy ?

B X K

WAsz Fdx=kj~ xdx == (%% = x,%)
A X 2

A
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Solutions for Chapter 5 14

54. A body of mass m moves in a straight line (the X-direction) under the influence of a force F =kx,
where k is positive (see Exercise 53). (i) Find the potential energy V (x) (choose V(0)=0). The
body is released from rest at X =1. (ii) Find (a) the total energy E and (b) the kinetic energy T(x)
as functions of X. (iii) Sketch a graph showing the dependence of V (X), T(X), and E on X.

(iv) Use the graph to describe the motion of the body. (v) What would be the motion if the body

were released from rest at (a) x=—1,(b) x=07?

(i) By Exercise 53 and Equation (5.56), the work done by the force is
k
W, = E(sz —x, 1) =V (x,) =V (%)
Therefore  V(x) = —% kx?

(if) The constant total energy is the sum of kinetic and potential energies, E =T (X)+V (X) . The

body is at rest when X =1. Therefore T (1) =0 and
(a) E=V(1)=—%k, (b) T(x)=E—V(x)=%k(x2—l)

(iii)

Figure 9

(iv) The body moves to the right with increasing speed.

|
As in Figurel0a it “falls down” the parabolic / ‘ \
potential energy surface.

Figure 10a
(v) (a) The body would move to the left with increasing speed: |
Figure 10b
(b) The body should remain at rest at the top of the |
potential surface: / \
Figure 10c
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Solutions for Chapter 5 15

55. Repeat Exercise 54 with F = —kx

: k
(i) W,yp = —E(XBZ —%,2) =V (X)) =V (%g)

Therefore V(x)= %kx2

(ii) (a) E=V(l):%k (b) T(x):E—V(x):%k(l—xz)
(iii) Figure 11
I _—____’;"\_\_ ________ E:%k
N V@)
,', W1 ()
/ i T
0 1

(iv) The body undergoes simple harmonic motion. As in Figure 12a,
it moves back and forth between X =+1 and x =-1

inside the parabolic potential energy surface.

Figure 12a

(V) (a) Like case (iv), as in Figure 12b.

Figure 12b

(b) The body would remain at rest at the bottom of the potential surface:

Figure 12¢
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Section 5.8

56. A slightly imperfect gas obeys the van der Waals equation of state
2
(p+%}(\/ — nb) = nRT

Find expressions for the work done by the gas in expanding reversibly from volume V, to volume

V, at (i) constant pressure, and (ii) constant temperature (assume a and b are constant).

(i) Atconstant p,

V2
W = pJ. dv =p(v, -V))
Vl

(if) AtconstantT,

__MRT _n’a
V-nb v?
V2 V2 V2
W= pdV:nRTI v —nzaj d—\g
v v, V—nb v, v

_nRTIn| 2= | g L_L
V, —nb v, V,
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