The Chemistry Maths Book

Erich Steiner

University of Exeter

Second Edition 2008

Solutions

Chapter 12 Second-order differential equations.

Constant coefficients

- 12.1 Concepts
- 12.2 Homogeneous linear equations
- 12.3 The general solution
- 12.4 Particular solutions
- 12.5 The harmonic oscillator
- 12.6 The particle in a one-dimensional box
- 12.7 The particle in a ring
- 12.8 Inhomogeneous linear equations
- 12.9 Forced oscillations

1. Show that e^{-2x} and $e^{2x/3}$ are particular solutions of the differential equation 3y'' + 4y' - 4y = 0.

We have
$$y = e^{-2x} \rightarrow y' = \frac{dy}{dx} = -2e^{-2x} = -2y \rightarrow y'' = \frac{d^2y}{dx^2} = 4e^{-2x} = 4y$$

Therefore
$$3y'' + 4y' - 4y = \lceil 12 - 8 - 4 \rceil y = 0$$

Similarly
$$y = e^{2x/3} \rightarrow y' = \frac{2}{3}e^{2x/3} = \frac{2}{3}y \rightarrow y'' = \frac{4}{9}e^{2x/3} = \frac{4}{9}y$$

and
$$3y'' + 4y' - 4y = \left[\frac{4}{3} + \frac{8}{3} - 4\right]y = 0$$

2. Show that e^{3x} and xe^{3x} are particular solutions of the differential equation y'' - 6y' + 9y = 0.

$$y = e^{3x} \rightarrow y' = \frac{dy}{dx} = 3e^{3x} = 3y \rightarrow y'' = \frac{d^2y}{dx^2} = 9e^{3x} = 9y$$

Therefore
$$y'' - 6y' + 9y = [9 - 18 + 9]y = 0$$

$$y = xe^{3x} \rightarrow y' = e^{3x} + 3xe^{3x} \rightarrow y'' = 6e^{3x} + 9xe^{3x}$$

Therefore
$$y'' - 6y' + 9y = 0 = [6 + 9x - 6 - 18x + 9x]e^{3x} = 0$$

3. Show that $\cos 2x$ and $\sin 2x$ are particular solutions of the differential equation y'' + 4y = 0.

$$y = \cos 2x \rightarrow y' = -2\sin 2x \rightarrow y'' = -4\cos 2x = -4y$$

$$y'' + 4y = 0 = [-4 + 4]y = 0$$

and
$$y = \sin 2x \rightarrow y' = 2\cos 2x \rightarrow y'' = -4\sin 2x = -4y$$

$$y'' + 4y = 0 = [-4 + 4]y = 0$$

Write down the general solution of the differential equation in

- **4.** Exercise 1: $y = ae^{-2x} + be^{2x/3}$
- **5.** Exercise 2: $y = ae^{3x} + bxe^{3x} = (a+bx)e^{3x}$
- **6.** Exercise 3: $y = a \cos 2x + b \sin 2x$

Section 12.3

Find the general solutions of the differential equations:

7.
$$y'' - y' - 6y = 0$$

The characteristic equation of the differential equation is

$$\lambda^{2} - \lambda - 6 = (\lambda - 3)(\lambda + 2)$$
$$= 0 \text{ when } \lambda = 3 \text{ and } \lambda = -2$$

Two particular solutions of the differential equation are therefore

$$y_1 = e^{3x}, \qquad y_2 = e^{-2x}$$

and, because these functions are linearly independent, the general solution is

$$y = c_1 y_1 + c_2 y_2 = c_1 e^{3x} + c_2 e^{-2x}$$

8.
$$2y'' - 8y' + 3y = 0$$

The characteristic equation is

$$2\lambda^2 - 8\lambda + 3 = 0$$
 when $\lambda = \frac{8 \pm \sqrt{64 - 24}}{4} = 2 \pm 2\sqrt{5}$

The general solution of the differential equation is therefore

$$y = c_1 e^{(2+2\sqrt{5})x} + c_2 e^{(2-2\sqrt{5})x} = e^{2x} \left[c_1 e^{2\sqrt{5}x} + c_2 e^{-2\sqrt{5}x} \right]$$

9.
$$y'' - 8y' + 16y = 0$$

The characteristic equation

$$\lambda^2 - 8\lambda + 16 = (\lambda - 4)^2 = 0$$

has the double root $\lambda = 4$. Two particular solutions are therefore e^{4x} and xe^{4x} , and the general solution is

$$y(x) = (c_1 + c_2 x)e^{4x}$$

10.
$$4y'' + 12y + 9y = 0$$

The characteristic equation

$$4\lambda^2 + 12\lambda + 9 = (2\lambda + 3)^2$$

= 0 when $x = -3/2$ (double root)

The general solution of the differential equation is therefore

$$y(x) = (c_1 + c_2 x)e^{-3x/2}$$

11.
$$y'' + 4y' + 5y = 0$$

The characteristic equation is

$$\lambda^2 + 4\lambda + 5 = 0$$

with roots
$$\lambda = \frac{1}{2} \left(-4 \pm \sqrt{16 - 20} \right) = -2 \pm i$$

The two particular solutions,

$$y_1(x) = e^{(-2+i)x}$$
 and $y_2(x) = e^{(-2-i)x}$

are linearly independent, and the general solution is

$$y(x) = c_1 e^{(-2+i)x} + c_2 e^{(-2-i)x}$$
$$= e^{-2x} (c_1 e^{ix} + c_2 e^{-ix})$$

The equivalent trigonometric form is

$$y(x) = e^{-2x} (a\cos x + b\sin x)$$

12.
$$y'' + 3y' + 5y = 0$$

The characteristic equation

$$\lambda^2 + 3\lambda + 5 = 0$$

has complex roots

$$\lambda = \frac{1}{2} \left(-3 \pm \sqrt{9 - 20} \right) = -\frac{3}{2} \pm \frac{\sqrt{11}}{2} i$$

Then
$$y(x) = e^{-3x/2} \left[ae^{i\sqrt{11}x/2} + be^{-i\sqrt{11}x/2} \right]$$

= $e^{-3x/2} \left[A\cos\sqrt{11}x/2 + B\sin\sqrt{11}x/2 \right]$

Solve the initial value problems:

13.
$$\frac{d^2x}{dt^2} + \frac{dx}{dt} - 2x = 0$$
; $x(0) = 1$, $\frac{dx}{dt}(0) = 0$

The characteristic equation is $\lambda^2 + \lambda - 2 = (\lambda - 1)(\lambda + 2) = 0$, with roots $\lambda = 1, -2$.

The general solution is

$$x(t) = ae^t + be^{-2t}$$

with first derivative

$$\frac{dx}{dt}(t) = ae^t - 2be^{-2t}$$

Then, by the initial conditions,

$$\begin{cases} x(0) = 1 = a + b \\ \frac{dx}{dt}(0) = 0 = a - 2b \end{cases} \rightarrow a = \frac{2}{3}, b = \frac{1}{3}$$

The solution of the initial value problem is therefore

$$x(t) = \frac{1}{3} \left[2e^t + e^{-2t} \right]$$

14.
$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 0$$
; $x(1) = 0$, $\frac{dx}{dt}(1) = 1$

The characteristic equation is $\lambda^2 + 6\lambda + 9 = (\lambda + 3)^2 = 0$, with double root $\lambda = -3$.

The general solution is

$$x(t) = (a+bt)e^{-3t}$$

with first derivative

$$\frac{dx}{dt}(t) = (b - 3a - 3bt)e^{-3t}$$

Then, by the initial conditions,

$$x(1) = 0 = (a+b)e^{-3}$$

$$\frac{dx}{dt}(1) = 1 = (-3a-2b)e^{-3}$$
 $\Rightarrow a = -e^3, b = e^3$

and
$$x(t) = e^{3(1-t)}(t-1)$$

15.
$$\frac{d^2x}{dt^2} + 9x = 0$$
; $x(\pi/3) = 0$, $\frac{dx}{dt}(\pi/3) = -1$

The characteristic equation is $\lambda^2 + 9 = 0$, with complex roots $\lambda = \pm 3i$.

The general solution is, in trigonometric form,

$$x(t) = a\cos 3t + b\sin 3t$$

with first derivative

$$\frac{dx}{dt}(t) = -3a\sin 3t + 3b\cos 3t$$

Then, by the initial conditions,

$$x(\pi/3) = 0 = -a$$

$$\frac{dx}{dt}(\pi/3) = -1 = -3b$$
 $\rightarrow a = 0, b = \frac{1}{3}$

and the solution of the initial-value problem is

$$x(t) = \frac{1}{3}\sin 3t$$

16.
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 2x = 0$$
; $x(0) = 1$, $\frac{dx}{dt}(0) = 0$

The characteristic equation is $\lambda^2 - 2\lambda + 2 = 0$, with complex roots $\lambda = \frac{1}{2}(2 \pm \sqrt{4 - 8}) = 1 \pm i$.

The general solution is

$$x(t) = e^t (a\cos t + b\sin t)$$

with first derivative

$$\frac{dx}{dt}(t) = e^{t} \left[(a+b)\cos t + (b-a)\sin t \right]$$

Then, by the initial conditions,

$$x(0) = 1 = a$$

$$\frac{dx}{dt}(0) = 0 = a + b$$

$$\Rightarrow a = 1, b = -1$$

and the solution of the initial-value problem is

$$x(t) = (\cos t - \sin t)e^{t}$$

Solve the boundary value problems:

17.
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 8y = 0$$
; $y(\pi/2) = -1$, $y(3\pi/4) = 1$

The characteristic equation is $\lambda^2 + 4\lambda + 8 = 0$, with complex roots $\lambda = \frac{1}{2}(-4 \pm \sqrt{16 - 32}) = -2 \pm 2i$.

The general solution is

$$y(x) = e^{-2x} (a\cos 2x + b\sin 2x)$$

Application of the boundary conditions gives

$$y(\pi/2) = -1 = e^{-\pi} \times (-a) \to a = e^{\pi}$$

$$y(3\pi/4) = 1 = e^{-3\pi/2} \times (-b) \rightarrow b = -e^{3\pi/2}$$

and the solution of the boundary value problem is

$$y(x) = e^{\pi - 2x} (\cos 2x - e^{\pi/2} \sin 2x)$$

18.
$$\frac{d^2y}{dx^2} + 9y = 0$$
; $y = 0$ when $x = 0$, $y = 1$ when $x = \pi/2$

As in Exercise 15, the general solution of the differential equation is

$$y(x) = a\cos 3x + b\sin 3x$$

Then
$$y(0)$$

$$y(0) = 0 = a \qquad \rightarrow \quad a = 0$$

$$y(\pi/2) = 1 = -b \rightarrow b = -1$$

and the solution of the boundary value problem is

$$y(x) = -\sin 3x$$

19.
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$$
; $y(0) = 0$, $y(1) = 1$

The characteristic equation is $\lambda^2 + 8\lambda + 16 = 0$, with double root $\lambda = -4$.

The general solution is

$$y(x) = (a+bx)e^{-4x}$$

Then
$$y(0) = 0 = a \rightarrow a = 0$$

$$y(1) = 1 = be^{-4} \quad \rightarrow \quad b = e^4$$

Therefore
$$y(x) = xe^{4(1-x)}$$

20.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$$
; $y(0) = 2$, $y \to 0$ as $x \to \infty$

As in Exercise 13, the general solution is

$$y(x) = ae^x + be^{-2x}$$

The first boundary condition gives

$$y(0) = 2 = a + b$$

The second condition requires that the solution go to zero as x goes to infinity. The function e^{-2x} has this property but the function e^x must be excluded. The condition therefore requires that we set a = 0.

Then b = 2 and the solution of the boundary value problem is

$$y(x) = 2e^{-2x}$$

21. Solve
$$\frac{d^2\theta}{dt^2} + a^2\theta = 0$$
 subject to the condition $\theta(t + 2\pi\tau) = \theta(t)$.

The general solution of the differential equation is

$$\theta(t) = Ae^{iat} + Be^{-iat}$$
.

Application of the cyclic boundary condition gives

$$\theta(t + 2\pi\tau) = Ae^{ia(t + 2\pi\tau)} + Be^{-ia(t + 2\pi\tau)}$$

$$= Ae^{iat} \times e^{i2\pi a\tau} + Be^{-iat} \times e^{-i2\pi a\tau}$$

$$= \theta(t) \text{ when } e^{\pm i2\pi a\tau} = 1$$

and the condition is satisfied when $2\pi a\tau = 2\pi n$ for integer n. Therefore, $a = n/\tau$ and

$$\theta(t) = Ae^{int/\tau} + Be^{-int/\tau}, \quad n = 0, \pm 1, \pm 2, \cdots$$

- **22.** Given that the general solution of the equation of motion $m\ddot{x} = -kx$ for the harmonic oscillator is $x(t) = a\cos\omega t + b\sin\omega t$, where $\omega = \sqrt{k/m}$, (i) show that the solution can be written in the form $x(t) = A\cos(\omega t \delta)$, where A is the amplitude of the vibration and δ is the phase angle, and express A and δ in terms of a and b; (ii) find the amplitude and phase angle for the initial conditions x(0) = 1, $\dot{x}(0) = \omega$.
 - (i) We have $x(t) = A\cos(\omega t \delta) = A\cos\omega t\cos\delta + A\sin\omega t\sin\delta$ = $a\cos\omega t + b\sin\omega t$ when $\begin{cases} a = A\cos\delta \\ b = A\sin\delta \end{cases}$

Therefore $A = \sqrt{a^2 + b^2}$, $\delta = \tan^{-1}(b/a)$

(ii) Application of the initial conditions gives

$$x(t) = a\cos\omega t + b\sin\omega t$$
 $\rightarrow x(0) = 1 = a$

$$\dot{x}(t) = -\omega a \sin \omega t + \omega b \cos \omega t \rightarrow \dot{x}(0) = \omega = \omega b$$

Therefore
$$a = b = 1 \rightarrow A = \sqrt{2}$$
, $\delta = \tan^{-1}(1) = \frac{\pi}{4}$

and
$$x(t) = \sqrt{2} (\omega t - \pi/4)$$

23. Solve the equation of motion for the harmonic oscillator with initial conditions x(0) = 0, $\dot{x}(0) = u_0$.

The general solution is

$$x(t) = a\cos\omega t + b\sin\omega t$$

Then
$$\dot{x}(t) = -\omega a \sin \omega t + \omega b \cos \omega t$$

Therefore
$$\begin{cases} x(0) = 0 = a \\ \dot{x}(0) = u_0 = \omega b \end{cases} \rightarrow x(t) = \frac{u_0}{\omega} \sin \omega t$$

- **24.** For the particle in a box, find the nodes and sketch the graph of the wave function ψ_n for
 - (i) n = 4 and (ii) n = 5.

By equation (12.53), the normalized wave functions are

$$\psi_n(x) = \sqrt{\frac{2}{l}} \sin \frac{n\pi x}{l}$$
 $n = 1, 2, 3, ...$

(i)
$$n = 4$$
 $\psi_4(x) = \sqrt{\frac{2}{l}} \sin \frac{4\pi x}{l}$
= 0 when $\frac{4\pi x}{l} = n\pi$ $\rightarrow \frac{x}{l} = \frac{n}{4} = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$

The sketch of $\psi_4(x)$ should look like Figure 1.

(ii)
$$n = 5$$
 $\psi_5(x) = \sqrt{\frac{2}{l}} \sin \frac{5\pi x}{l}$
= 0 when $\frac{5\pi x}{l} = n\pi$ $\rightarrow \frac{x}{l} = \frac{n}{5} = 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1$

The sketch of $\psi_5(x)$ should look like Figure 2.

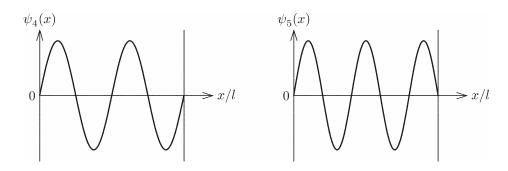


Figure 1 Figure 2

- 11
- 25. (i) Solve the Schrödinger equation (12.44) for the particle in a box of length l with potential-energy function V=0 for $-l/2 \le x \le +l/2$, $V=\infty$ for $x \le -l/2$ and $x \ge +l/2$. (ii) Show that the solutions ψ_n are even functions of x when n is odd and odd functions when n is even. (iii) Show that the solutions are the same as those given by (12.53) if x is replaced by x+l/2, except for a possible change of sign.
 - (i) The general solution of the equation for the particle in a box of length l is, equation (12.48),

$$\psi(x) = d_1 \cos \omega x + d_2 \sin \omega x$$

where ω is related to the energy by $\omega^2 = 2mE/\hbar^2$.

The boundary conditions in the present case are

$$V = \infty \qquad V = 0 \qquad V = \infty$$

$$-l/2 \qquad 0 \qquad l/2 \qquad x$$

$$\psi(-l/2) = \psi(+l/2) = 0$$

$$\psi(-l/2) = \psi(+l/2) = 0$$

$$\psi(-l/2) = \psi(+l/2) = 0$$

$$\psi(i/2) - \psi(i/2) = 0$$

$$= d_1 \cos(\omega l/2) - d_2 \sin(\omega l/2)$$

$$\psi(+l/2) = 0 = d_1 \cos(\omega l/2) + d_2 \sin(\omega l/2)$$

 $\psi(-l/2) = 0 = d_1 \cos(-\omega l/2) + d_2 \sin(-\omega l/2)$

These conditions are satisfied in two ways:

(a) $d_2 = 0$ and $\cos(\omega l/2) = 0$

Then

Then $\cos(\omega l/2) = 0$ when $\omega l/2 = n\pi/2$ for odd values of n,

with corresponding normalized wave functions (with $d_1 = \sqrt{2/l}$)

$$\psi_n(x) = \sqrt{\frac{2}{l}}\cos(n\pi x/l), \quad n = 1, 3, 5, \dots$$

(b) $d_1 = 0$ and $\sin(\omega l/2) = 0$

$$\sin(\omega l/2) = 0$$
 when $\omega l/2 = n\pi/2$ for even values of n,

with corresponding wave functions

$$\psi_n(x) = \sqrt{\frac{2}{l}} \sin(n\pi x/l), \quad n = 2, 4, 6, \dots$$

(ii) (a)
$$\psi_n(x) = \sqrt{\frac{2}{l}}\cos(n\pi x/l) = +\sqrt{\frac{2}{l}}\cos(-n\pi x/l)$$
 is an even function of x

(b)
$$\psi_n(x) = \sqrt{\frac{2}{l}} \sin(n\pi x/l) = -\sqrt{\frac{2}{l}} \sin(-n\pi x/l)$$
 is an odd function of x

(iii) By equation (12.53),

$$\psi_n(x) = \sqrt{\frac{2}{l}} \sin(n\pi x/l), \quad n = 1, 2, 3, \dots$$

Then
$$\psi_n(x+l/2) = \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l} + \frac{n\pi}{2}\right) = \sqrt{\frac{2}{l}} \left[\sin\frac{n\pi x}{l} \cos\frac{n\pi}{2} + \cos\frac{n\pi x}{l} \sin\frac{n\pi}{2} \right]$$

(a)
$$n$$
 odd: $\psi_n(x+l/2) = \sqrt{\frac{2}{l}} \left[\sin \frac{n\pi x}{l} \times 0 + \cos \frac{n\pi x}{l} \times (\pm 1) \right] = (\pm) \sqrt{\frac{2}{l}} \cos \frac{n\pi x}{l}$

(b)
$$n$$
 even: $\psi_n(x+l/2) = \sqrt{\frac{2}{l}} \left[\sin \frac{n\pi x}{l} \times (\pm 1) + \cos \frac{n\pi x}{l} \times 0 \right] = (\pm)\sqrt{\frac{2}{l}} \sin \frac{n\pi x}{l}$

- **26.** For the particle in the box in Section 12.6, show that wave functions $\psi_n(x) = \sqrt{\frac{2}{l}} \sin \frac{n\pi x}{l}$ for n = 1 and n = 2 are (i) normalized, (ii) orthogonal.
 - (i) For normalization, $\int_0^l \psi_n(x)^2 dx = \frac{2}{l} \int_0^l \sin^2 \frac{n\pi x}{l} dx = 1$

We have
$$\sin^2 \frac{n\pi x}{l} = \frac{1}{2} \left[1 - \cos \frac{2n\pi x}{l} \right]$$

Therefore
$$\int_0^l \psi_n(x)^2 dx = \frac{1}{l} \int_0^l \left[1 - \cos \frac{2n\pi x}{l} \right] dx = \frac{1}{l} \left[x - \frac{l}{2n\pi} \sin \frac{2n\pi x}{l} \right]_0^l = \frac{1}{l} \left[(l) - (0) \right]$$

$$= 1 \text{ for all values of } n$$

(ii) For orthogonality,
$$\int_0^l \psi_1(x)\psi_2(x) dx = \frac{2}{l} \int_0^l \sin \frac{\pi x}{l} \sin \frac{2\pi x}{l} dx = 0$$

We have $\sin ax \sin bx = \frac{1}{2} [\cos(a-b)x - \cos(a+b)x]$

Therefore
$$\int_0^l \psi_1(x)\psi_2(x) dx = \frac{1}{l} \int_0^l \left[\cos \frac{\pi x}{l} - \cos \frac{3\pi x}{l} \right] dx = \frac{1}{l} \left[\frac{l}{\pi} \sin \frac{\pi x}{l} - \frac{l}{3\pi} \sin \frac{3\pi x}{l} \right]_0^l$$
$$= 0$$

because $\sin n\pi x = 0$ for integer *n*.

- **27.** For the particle in a ring show that wave functions $\psi_n(\theta) = 1/\sqrt{2\pi} e^{in\theta}$ for n = 3 and n = 4 are (i) normalized, (ii) orthogonal.
 - (i) For normalization, $\int_0^{2\pi} \psi_n^*(\theta) \psi_n(\theta) d\theta = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} \times e^{in\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} d\theta$ = 1 for all values of n
 - (ii) For orthogonality, $\int_{0}^{2\pi} \psi_{3}^{*}(\theta) \psi_{4}(\theta) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-3i\theta} \times e^{4i\theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i\theta} d\theta$ $= \frac{1}{2\pi i} \left[e^{i\theta} \right]_{0}^{2\pi} = \frac{1}{2\pi i} \left[e^{2\pi i} e^{0} \right] = 0$

because for integer n.

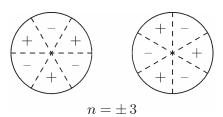
- **28.** The diagrams of Figure 12.8 are maps of the signs and nodes of some real wave functions (12.71) for the particle in a ring. Draw the corresponding diagrams for (i) $n = \pm 3$, (ii) $n = \pm 4$.
 - (i) $n = \pm 3$: we have (a) $\sin 3\theta = 0$ when $3\theta = n\pi$, $\theta = n\pi/3$

$$\rightarrow \theta = 0, \pi/3, 2\pi/3$$

(b) $\cos 3\theta = 0$ when $3\theta = n\pi/2$, $\theta = n\pi/6$ for *n* odd

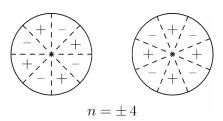
$$\rightarrow \theta = \pi/6, \pi/2, 5\pi/6$$

Figure 4



- (i) $n = \pm 4$: (a) $\sin 4\theta = 0$ when $4\theta = n\pi$, $\theta = n\pi/4$ $\rightarrow \theta = 0$, $\pi/4$, $\pi/2$, $3\pi/4$
 - (b) $\cos 4\theta = 0$ when $4\theta = n\pi/2$, $\theta = n\pi/8$ for *n* odd $\theta = \pi/8$, $3\pi/8$, $5\pi/8$, $7\pi/8$

Figure 5



29. Verify that equation (12.72) and its solutions (12.74) are transformed into (12.62) and (12.65) by means of the change of variable $\theta = x/r$.

Equation (12.72) is

$$\frac{d^2\psi}{dx^2} + \omega^2\psi = 0 \text{ where } \omega^2 = 2mE/\hbar^2$$

Putting $x = r\theta$ (r constant),

$$\frac{d\psi}{dx} = \frac{d\psi}{d\theta} \frac{d\theta}{dx} = \frac{1}{r} \frac{d\psi}{d\theta}, \quad \frac{d^2\psi}{dx^2} = \frac{1}{r^2} \frac{d^2\psi}{d\theta^2}$$

Therefore
$$\frac{d^2\psi}{dx^2} + \omega^2 \psi = 0 \rightarrow \frac{d^2\psi}{d\theta^2} + r^2 \omega^2 \psi = 0$$

and
$$r^2\omega^2 = \frac{2mr^2E}{\hbar^2} = \frac{2IE}{\hbar^2}$$

as required by equation (12.61). The solutions (12.74) are then

$$\psi_n = d_1 \cos \frac{2\pi nx}{l} + d_2 \sin \frac{2\pi nx}{l} \rightarrow d_1 \cos \frac{2\pi nr\theta}{l} + d_2 \sin \frac{2\pi nr\theta}{l}$$

and, because $2\pi r = l$,

$$\psi_n = d_1 \cos n\theta + d_2 \sin n\theta$$

and this is converted to the exponential form (12.65) by means of Euler's relations (8.35) and (8.36).

Section 12.8

30. Find a particular solution of the differential equation y'' - y' - 6y = 2 + 3x.

Let
$$y = a_0 + a_1 x$$

Then
$$y' = a_1, y'' = 0$$

and
$$y'' - y' - 6y = 2 + 3x$$
 $\rightarrow -a_1 - 6a_0 - 6a_1x = 2 + 3x$ $\rightarrow a_0 = -1/4, \ a_1 = -1/2$

Therefore
$$y = -\frac{1}{4} - \frac{x}{2}$$

Find the general solutions of the differential equations:

31.
$$y'' - y' - 6y = 2 + 3x$$

By Exercise 7, the general solution of the homogeneous differential equation is $y_h = ae^{3x} + be^{-2x}$, and by Exercise 30, the particular integral is

$$y_p = -\frac{1}{4} - \frac{x}{2}$$

The general solution of the inhomogeneous equation is then

$$y = y_h + y_p = ae^{3x} + be^{-2x} - \frac{1}{4} - \frac{x}{2}$$

32.
$$y'' - 8y' + 16y = 1 - 4x^3$$

By Exercise 9, the complementary function is $y_h = (a + bx)e^{4x}$. For the particular integral, let

$$y_p = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Then
$$y'_p = a_1 + 2a_2x + 3a_3x^2$$
, $y''_p = 2a_2 + 6a_3x$

and
$$y_p'' - 8y_p' + 16y_p = (2a_2 - 8a_1 + 16a_0) + (6a_3 - 16a_2 + 16a_1)x + (-24a_3 + 16a_2)x^2 + 16a_3x^3$$
$$= 1 - 4x^3 \text{ when } a_3 = -\frac{1}{4}, \ a_2 = -\frac{3}{8}, \ a_1 = -\frac{9}{32}, \ a_0 = -\frac{1}{32}$$

Therefore
$$y_p = -\frac{1}{32} - \frac{9}{32}x - \frac{3}{8}x^2 - \frac{1}{4}x^3$$

and
$$y(x) = (a+bx)e^{4x} - \frac{1}{32}(1+9x+12x^2+8x^3)$$

33.
$$y'' - y' - 6y = 2e^{-3x}$$

By Exercise 7, the complementary function is $y_h = ae^{3x} + be^{-2x}$

For the particular integral, let $y_p = ae^{-3x}$

Then
$$y'_{p} = -3y_{p}, \ y''_{p} = 9y_{p}$$

and
$$y_p'' - y_p' - 6y_p = (9+3-6)ae^{-3x} = 2e^{-3x}$$
 when $a = 1/3$

Therefore
$$y(x) = ae^{3x} + be^{-2x} + \frac{1}{3}e^{-3x}$$

34.
$$y'' - y' - 2y = 3e^{-x}$$

The characteristic equation for the complementary function is

$$\lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0$$
 when $\lambda = 2$ and $\lambda = -1$

and

$$y_h = ae^{2x} + be^{-x}$$

By Table 12.1, case 1, the choice of particular integral should be $y_p = ke^{-x}$, but this is already a solution of the homogeneous equation. By prescription (a) therefore, we use

$$y_p = kxe^{-x}$$

Then
$$y'_p = k(1-x)e^{-x}, y''_p = k(-2+x)e^{-x}$$

and
$$y_p'' - y_p' - 2y_p = k(-2 + \cancel{k} - 1 + \cancel{k} - \cancel{2x})e^{-x}$$

= $-3ke^{-x} = 3e^{-x}$ when $k = -1$

Therefore
$$y_p = -xe^{-x}$$

and
$$y(x) = y_h + y_p = ae^{2x} + be^{-x} - xe^{-x} = ae^{2x} + (b-x)e^{-x}$$

35.
$$y'' - 8y' + 16y = e^{4x}$$

By Exercise 9, the complementary function is $y_h = (a + bx)e^{4x}$. By Table 12.1, case 1, the choice of particular integral should be $y_p = ke^{4x}$, but the characteristic equation for y_h has double root $\lambda = 4$.

By prescription (b) therefore, we use

$$y_p = kx^2 e^{4x}$$

Then
$$y'_p = k(2x+4x^2)e^{4x}$$
, $y''_p = k(2+16x+16x^2)e^{4x}$

and
$$y_p'' - 8y_p' + 16y_p = k(2 + 16x + 16x^2 - 16x - 32x^2 + 16x^2)e^{4x}$$

= $2ke^{4x} = e^{4x}$ when $k = 1/2$

Therefore
$$y_p = \frac{1}{2}x^2e^{4x}$$

and
$$y(x) = y_h + y_p = (a + bx + x^2/2)e^{4x}$$

36.
$$y'' - y' - 6y = 2\cos 3x$$

By Exercise 7, the complementary function is $y_h = ae^{3x} + be^{-2x}$. For the particular integral, let

$$y_p = c\cos 3x + d\sin 3x$$

Then
$$y'_p = -3c \sin 3x + 3d \cos 3x$$
, $y''_p = -9c \cos 3x - 9d \sin 3x$

and
$$y_p'' - y_p' - 6y_p = (-15c - 3d)\cos 3x + (3c - 15d)\sin 3x$$

$$= 2\cos 3x \text{ if } \begin{cases} 3c - 15d = 0 \rightarrow c = 5d \\ -15c - 3d = 2 \rightarrow d = -1/39, c = -5/39 \end{cases}$$

Therefore
$$y_p = -\frac{1}{39} (5\cos 3x + \sin 3x)$$

and
$$y(x) = ae^{3x} + be^{-2x} - \frac{1}{39}(5\cos 3x + \sin 3x)$$

$$37. \quad y'' + 4y = 3\sin 2x$$

For the complementary function,

$$\lambda^2 + 4 = (\lambda + 2i)(\lambda - 2i) = 0$$
 when $\lambda = \pm 2i$

and
$$y_h = a\cos 2x + b\sin 2x$$

By Table 12.1, case 3, the choice of particular integral should be a combination of $\cos 2x$ and $\sin 2x$, but these are already solutions of the homogeneous equation. By prescription (a) therefore, we use

$$y_p = Cx\cos 2x + Dx\sin 2x$$

Then
$$y'_p = (C + 2Dx)\cos 2x + (D - 2Cx)\sin 2x$$
, $y''_p = 4(D - Cx)\cos 2x - 4(C + Dx)\sin 2x$

and
$$y_p'' + 4y = 4D\cos 2x - 4C\sin 2x$$
$$= 3\sin 2x \text{ when } C = -3/4 \text{ and } D = 0$$

Therefore
$$y_p = -\frac{3}{4}x\cos 2x$$

and
$$y(x) = y_h + y_p = (a - 3x/4)\cos 2x + b\sin 2x$$

38.
$$y'' - y' - 6y = 2 + 3x + 2e^{-3x} + 2\cos 3x$$

By Exercises 31, 33, and 36

$$y = ae^{3x} + be^{-2x} - \frac{1}{4} - \frac{x}{2} + \frac{1}{3}e^{-3x} - \frac{1}{39}(5\cos 3x + \sin 3x)$$

- **39.** An RLC–circuit contains a resistor (resistance *R*), an inductor (inductance *L*), and a capacitor (capacitance *C*) connected in series with a source of e.m.f. *E*.
 - (i) Use Kirchhoff's voltage law (Section 11.7) to show that the current I(t) in the circuit is given by the inhomogeneous equation

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = \frac{dE}{dt}$$

- (ii) Find the solution of the homogeneous equation (for dE/dt = 0), and confirm that it decays exponentially as $t \to \infty$.
- (iii) Show that the particular integral for the periodic e.m.f. $E(t) = E_0 \sin \omega t$ is

$$I_{p}(t) = I_{0} \sin(\omega t - \delta)$$

where
$$I_0 = \frac{E_0}{\sqrt{R^2 + S^2}}$$
, $\tan \delta = \frac{S}{R}$, and $S = \omega L - \frac{1}{\omega C}$.

(i) By Kirchhoff's law (Section 11.7),

$$E = E_L + E_R + E_C = L\frac{dI}{dt} + RI + \frac{Q}{C}$$

where
$$Q = \int I \, dt$$
, $\frac{dQ}{dt} = I$

Then
$$\frac{dE}{dt} = L \frac{d^2I}{dt^2} + R \frac{dI}{dt} + \frac{I}{C}$$

(ii) We have a second-order inhomogeneous differential equation. For the homogeneous equation

$$L\frac{d^2I_h}{dt^2} + R\frac{dI_h}{dt} + \frac{I_h}{C} = 0$$

let
$$\alpha = R/2L$$
, $\beta^2 = (R^2/4L^2) - (1/LC) = \alpha^2 - (1/LC)$.

Then
$$\frac{d^2I_h}{dt^2} + 2\alpha \frac{dI_h}{dt} + (\alpha^2 - \beta^2)I_h = 0$$

whose characteristic roots are
$$\frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4(\alpha^2 - \beta^2)} \right] = -\alpha \pm \beta$$

Therefore
$$I_h = ae^{-(\alpha+\beta)t} + be^{-(\alpha-\beta)t}$$

We consider two possible types of solution:

- (a) β is real, so that $|\beta| < \alpha$. Then $\alpha \pm \beta > 0$ and $I_h = ae^{-(\alpha + \beta)t} + be^{-(\alpha \beta)t} \to 0$ as $t \to \infty$
- (b) $\beta^2 < 0$, so that β is imaginary. Then $I_h = e^{-\alpha t} \left[A \cos \beta t + B \sin \beta t \right] \rightarrow 0$ as $t \rightarrow \infty$

(iii) If
$$E(t) = E_0 \sin \omega t$$
 then $\frac{dE}{dt} = E_0 \omega \cos \omega t$, and

$$L\frac{d^2I_p}{dt^2} + R\frac{dI_p}{dt} + \frac{I_p}{C} = E_0\omega\cos\omega t$$

Let
$$I_p = a \cos \omega t + b \sin \omega t$$

$$\frac{dI_p}{dt} = -a\omega\sin\omega t + b\omega\cos\omega t, \quad \frac{d^2I_p}{dt^2} = -a\omega^2\cos\omega t + b\omega^2\sin\omega t$$

Then, if
$$S = \omega L - \frac{1}{\omega C}$$
,

$$L\frac{d^{2}I_{p}}{dt^{2}} + R\frac{dI_{p}}{dt} + \frac{I_{p}}{C} = \left[-a\omega^{2}L + bR\omega + a/C\right]\cos\omega t + \left[-b\omega^{2}L - aR\omega + b/C\right]\sin\omega t$$

$$= \omega\left[bR - aS\right]\cos\omega t - \omega\left[bS + aR\right]\sin\omega t$$

$$= E_{0}\omega\cos\omega t \text{ when }\begin{cases}bR - aS = E_{0} \text{ and }\\bS + aR = 0\end{cases}$$

so that
$$a = -\frac{SE_0}{R^2 + S^2}$$
, $b = \frac{RE_0}{R^2 + S^2}$

Let
$$\sin \delta = \frac{S}{\sqrt{R^2 + S^2}}$$
, $\cos \delta = \frac{R}{\sqrt{R^2 + S^2}}$, and $I_0 = \frac{E_0}{\sqrt{R^2 + S^2}}$

Then
$$a = -I_0 \sin \delta$$
, $b = I_0 \cos \delta$

and
$$I_p = -I_0 \sin \delta \cos \omega t \sin \delta + I_0 \cos \delta \sin \omega t \cos \delta$$
$$= I_0 \sin(\omega t - \delta)$$