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Solutions for Chapter 12  2

Section 12.2 

 
1. Show that 2xe−  and 2 3xe  are particular solutions of the differential equation 3 4 . 4y y y′′ ′+ − = 0

 

 We have  
2

2 2
22 2 4x xdy d yy e y e y y e y

dx dx
− −′ ′′= → = = − = − → = = =2 4x−

0

 

 Therefore 3 4 4 12 8 4y y y y′′ ′ ⎡ ⎤+ − = − − =⎣ ⎦  

 

 Similarly 2 3 2 3 2 32 2 4 4
3 3 9 9

x x xy e y e y y e y′ ′′= → = = → = =  

 and   4 83 4 4 4
3 3

y y y y
⎡ ⎤′′ ′ 0+ − = + − =⎢ ⎥
⎣ ⎦

 

 
 
2. Show that 3xe  and 3xxe  are particular solutions of the differential equation . 6 9y y y′′ ′− + = 0

 

     
2

3 3
23 3 9 9x xdy d yy e y e y y e y

dx dx
′ ′′= → = = = → = = =3x

39

 

 Therefore  6 9 9 18 9 0y y y y′′ ′ ⎡ ⎤− + = − + =⎣ ⎦

 
    3 3 3 33 6x x x x xy xe y e xe y e xe′ ′′= → = + → = +  

 Therefore  36 9 0 6 9 6 18 9 xy y y x x x e′′ ′ ⎡ ⎤− + = = + − − + =⎣ ⎦ 0
 
 
3. Show that cos 2x  and sin 2x  are particular solutions of the differential equation . 4 0y y′′ + =

 

      cos 2 2sin 2 4cos 2 4y x y x y x′ ′′= → = − → = − = − y

0

y

0

     4 0 4 4y y y′′ ⎡ ⎤+ = = − + =⎣ ⎦

 
  and    sin 2 2cos 2 4sin 2 4y x y x y x′ ′′= → = → = − = −

     4 0 4 4y y y′′ ⎡ ⎤+ = = − + =⎣ ⎦
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Write down the general solution of the differential equation in  

 
4. Exercise 1: 2 2 3x xy ae be−= +  

 
5. Exercise 2: 3 3 ( ) 3x x xy ae bxe a bx e= + = +  

 
6. Exercise 3:  cos 2 sin 2y a x b x= +

 

Section 12.3 

 
Find the general solutions of the differential equations: 

 

7.  6 0y y y′′ ′− − =

 The characteristic equation of the differential equation is 

    2 6 ( 3)( 2)

0  when  3  and  2

λ λ λ λ

λ λ

− − = − +

= = = −

Two particular solutions of the differential equation are therefore 

   3 2
1 2

x xy e y e−= , =  

and, because these functions are linearly independent, the general solution is 

   3 2
1 1 2 2 1 2

x xy c y c y c e c e−= + = +  

 
8.  2 8 3y y y′′ ′− + = 0

 The characteristic equation is 

   2 8 64 242 8 3 0  when  2 2
4

λ λ λ ± −
− + = = = ± 5  

The general solution of the differential equation is therefore 

   (2 2 5) (2 2 5) 2 2 5 2 5
1 2 1 2

x x x x xy c e c e e c e c e+ − −⎡ ⎤= + = +⎢ ⎥⎣ ⎦
 

 
9.   8 16 0y y y′′ ′− + =

The characteristic equation 

   2 28 16 ( 4)λ λ λ 0− + = − =  

has the double root 4λ = . Two particular solutions are therefore 4xe  and 4xxe , and the general 

solution is 

   4
1 2( ) ( ) xy x c c x e= +  
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10.  4 12 9y y y′′ + + = 0

The characteristic equation 

   2 24 12 9 (2 3)

0  when  3 2  (double root)x

λ λ λ+ + = +

= = −

 

The general solution of the differential equation is therefore 

   3 2
1 2( ) ( ) xy x c c x e−= +  

 
11.  4 5y y y′′ ′+ + = 0

0

The characteristic equation is 

   2 4 5λ λ+ + =  

with roots  ( )1 4 16 20 2
2

iλ = − ± − = − ±  

The two particular solutions,  

    ( 2 ) ( 2 )
1 2( )  and  ( )i x i xy x e y x e− + − −= =

are linearly independent, and the general solution is 

    ( 2 ) ( 2 )
1 2

2
1 2

( )

( )

i x i x

x ix ix

y x c e c e

e c e c e

− + − −

− −

= +

= +

The equivalent trigonometric form is  

   2( ) ( cos sin )xy x e a x b x−= +  

 
12.  3 5y y y′′ ′+ + = 0

0

 The characteristic equation  

   2 3 5λ λ+ + =  

 has complex roots   

   ( )1 33 9 20
2 2

iλ = − ± − = − ±
11
2

 

 Then 11 2 11 23 2

3 2

( )

cos 11 2 sin 11 2

i x i xx

x

y x e ae be

e A x B x

−−

−

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤= +⎣ ⎦
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Section 12.4 
 
 
Solve the initial value problems: 

 

13. 
2

2 2 0 (0) 1  (0) 0d x dx dxx x
dt dtdt

+ − = ; = , =  

The characteristic equation is , with roots 2 2 ( 1)( 2) 0λ λ λ λ+ − = − + = 1, 2λ = − .  

The general solution is 

   2( ) t tx t ae be−= +  

with first derivative 

   2( ) 2t tdx t ae be
dt

−= −  

Then, by the initial conditions, 

   
(0) 1

2 1,
3 3(0) 0 2

x a b
a bdx a b

dt

= = + ⎫
⎪ → = =⎬

= = − ⎪
⎭

 

The solution of the initial value problem is therefore 

   21( ) 2
3

t tx t e e−⎡ ⎤= +⎣ ⎦  

 

14. 
2

2 6 9 0 (1) 0  (1)d x dx dxx x
dt dtdt

+ + = ; = , =1

2

 

The characteristic equation is , with double root 2 6 9 ( 3) 0λ λ λ+ + = + = 3λ = − .  

The general solution is 

   3( ) ( ) tx t a bt e−= +  

with first derivative 

   3( ) ( 3 3 ) tdx t b a bt e
dt

−= − −  

Then, by the initial conditions, 

   

3

3 3

3

(1) 0 ( )
,

(1) 1 ( 3 2 )

x a b e
a e b edx a b e

dt

−

−

⎫= = +
⎪

→ = − =⎬
⎪= = − −
⎭

 

and   3(1 )( ) ( 1)tx t e t−= −  
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15. 
2

2 9 0 (π 3) 0  (π 3) 1d x dxx x
dtdt

+ = ; / = , / = −  

The characteristic equation is , with complex roots 2 9 0λ + = 3iλ = ± .  

The general solution is, in trigonometric form,  

   ( ) cos3 sin 3x t a t b t= +  

with first derivative 

   ( ) 3 sin 3 3 cos3dx t a t b
dt

= − + t  

Then, by the initial conditions, 

   
(π 3) 0

10,
3(π 3) 1 3

x a
a bdx b

dt

= = − ⎫
⎪ → = =⎬

= − = − ⎪
⎭

 

and the solution of the initial-value problem is 

   1( ) sin 3
3

x t t=  

  

16. 
2

2 2 2 0 (0) 1 (0) 0d x dx dxx x
dt dtdt

− + = ; = , =  

The characteristic equation is , with complex roots 2 2 2 0λ λ− + =
1 (2 4 8) 1
2

iλ = ± − = ± .  

The general solution is 

   ( ) ( cos sin )tx t e a t b t= +  

with first derivative 

   ( ) ( ) cos ( )sintdx t e a b t b a t
dt

⎡ ⎤= + + −⎣ ⎦  

Then, by the initial conditions, 

   
(0) 1

1, 1
(0) 0

x a
a bdx a b

dt

= = ⎫
⎪ → = = −⎬

= = + ⎪
⎭

 

and the solution of the initial-value problem is 

   ( ) (cos sin ) tx t t t= − e  
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Solve the boundary value problems: 

 

17. 
2

2 4 8 0 (π 2) 1 (3π 4) 1d y dy y y y
dxdx

+ + = ; = − , =  

The characteristic equation is , with complex roots 2 4 8 0λ λ+ + =
1 ( 4 16 32) 2 2
2

iλ = − ± − = − ± .  

The general solution is 

   2( ) ( cos 2 sin 2 )xy x e a x b x−= +  

Application of the boundary conditions gives 

   π π

3π 2 3π 2

(π 2) 1 ( )

(3π 4) 1 ( )

y e a a

y e b b

−

−

= − = × − → =

= = × − → = −

e

e

 

and the solution of the boundary value problem is 

   π 2 π 2( ) (cos 2 sin 2 )xy x e x e x−= −  

  

18. 
2

2 9 0 0 when 0, 1 when π 2d y y y x y x
dx

+ = ; = = = =  

As in Exercise 15, the general solution of the differential equation is 

   ( ) cos3 sin 3y x a x b x= +  

Then  (0) 0 0

(π 2) 1 1

y a a

y b b

= = → =

= = − → = −

 

and the solution of the boundary value problem is 

    ( ) sin 3y x x= −  

 

19. 
2

2 8 16 0 (0) 0 (1)d y dy y y y
dxdx

+ + = ; = , =1 

The characteristic equation is , with double root 2 8 16 0λ λ+ + = 4λ = − .  

The general solution is 

   4( ) ( ) xy x a bx e−= +  

Then  

4 4

(0) 0 0

(1) 1

y a a

y be b− e

= = → =

= = → =

 

Therefore 4(1 )( ) xy x xe −=  
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20. 
2

2 2 0 (0) 2 0 asd y dy y y y x
dxdx

+ − = ; = , → →∞  

As in Exercise 13, the general solution is 

   2( ) x xy x ae be−= +  

The first boundary condition gives 

   (0) 2y a b= = +  

The second condition requires that the solution go to zero as x goes to infinity. The function 2xe−  has 

this property but the function xe  must be excluded. The condition therefore requires that we  

set .  0a =

Then  and the solution of the boundary value problem is 2b =

   2( ) 2 xy x e−=  

 
 

21. Solve 
2

2
2 0d a

dt
θ θ+ =  subject to the condition ( 2π ) (t t)θ τ θ+ = . 

 

The general solution of the differential equation is  

   . ( ) iat iatt Ae Beθ −= +

Application of the cyclic boundary condition gives 

   ( 2π ) ( 2π )

2π 2π

2π

( 2π )

( )  when  1

ia t ia t

iat i a iat i a

i a

t Ae Be

Ae e Be e

t e

τ τ

τ τ

τ

θ τ

θ

+ − +

− −

±

+ = +

= × + ×

= =

 

and the condition is satisfied when 2π 2πa nτ =  for integer n. Therefore, a n τ=   and  

    ( ) int intt Ae Beτ τθ −= + ,    0, 1, 2,n = ± ±  
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Section 12.5 
 

 
22. Given that the general solution of the equation of motion mx kx= −  for the harmonic oscillator is 

( ) cos sinx t a t b tω ω= + , where k mω = / , (i) show that the solution can be written in the form 

( )( ) cosx t A tω δ= − , where A is the amplitude of the vibration and δ is the phase angle, and express A 

and δ in terms of a and b; (ii) find the amplitude and phase angle for the initial conditions 

(0) 1, (0)x x ω= = . 

 

 (i) We have  ( )( ) cos cos cos sin sin

cos
cos sin  when   

sin

x t A t A t A t

a A
a t b t

b A

ω δ ω δ ω δ

δ
ω ω

δ

= − = +

=⎧
= + ⎨ =⎩

 

  Therefore 2 2 1, tan ( )A a b b aδ −= + =   

 (ii) Application of the initial conditions gives 

     ( ) cos sin (0) 1

( ) sin cos (0)

x t a t b t x a

x t a t b t x b

ω ω

ω ω ω ω ω ω

= + → = =

= − + → = =

 

  Therefore 1 π1 2, tan (1
4

a b A δ −= = → = = =)  

  and   ( ) 2 ( π 4)x t tω= −  

 
 
23. Solve the equation of motion for the harmonic oscillator with initial conditions 

  0(0) 0, (0)x x u= = . 

 

 The general solution is 

    ( ) cos sinx t a t b tω ω= +  

 Then  ( ) sin cosx t a t b tω ω ω ω= − +  

 Therefore 0

0

(0) 0
( ) sin

(0)

x a u
x t t

x u b
ω

ωω

= = ⎫⎪ → =⎬
= = ⎪⎭
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Section 12.6 
 

 
24. For the particle in a box, find the nodes and sketch the graph of the wave function nψ  for  

 (i)  and (ii) . 4n = 5n =

 

 By equation (12.53), the normalized wave functions are 

    2 π( ) sinn
n xx

l l
ψ =         1 2 3n = , , ,…  

 (i)  4n = 4
2 4π( ) sin

4π 1 1 30  when  π 0, , , , 1
4 4 2 4

xx
l l

x x nn
l l

ψ =

= = → = =

 

  The sketch of 4 ( )xψ  should look like Figure 1. 

 

 (ii)  5n = 5
2 5π( ) sin

5π 1 2 3 40  when  π 0, , , , , 1
5 5 5 5 5

xx
l l

x x nn
l l

ψ =

= = → = =

 

  The sketch of 5 ( )xψ  should look like Figure 2. 

 

   

 

   
  

 

 

 

 

                   Figure 1                                                   Figure 2 
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25. (i) Solve the Schrödinger equation (12.44) for the particle in a box of length l with potential-energy 

function 0 for 2 2V l x l= − ≤ ≤ + , for 2  and 2V x l x l= ∞ ≤ − ≥ + . (ii) Show that the solutions 

nψ  are even functions of x when n is odd and odd functions when n is even. (iii) Show that the 

solutions are the same as those given by (12.53) if x is replaced by 2x l+ , except for a possible 

change of sign. 

 

 (i) The general solution of the  equation for the particle in a box of length l is, equation  (12.48),  

     1 2( ) cos sinx d x d xψ ω= + ω       

  where ω  is related to the energy by 2 22mEω = .  

  The boundary conditions in the present case are 

     ( 2) ( 2)l l 0ψ ψ− = + =           Figure 3 

  Then  1 2

1 2

1 2

( 2) 0 cos ( 2) sin ( 2

cos ( 2) sin ( 2)

( 2) 0 cos ( 2) sin ( 2)

l d l d l

d l d l

l d l d l

)ψ ω ω

ω ω

ψ ω

− = = − + −

= −

+ = = + ω

 

  These conditions are satisfied in two ways: 

  (a) 2 0  and  cos( 2) 0d lω= =  

   Then cos( 2) 0  when  2 π 2  for odd values of l l n nω= = ,  ω

   with corresponding normalized wave functions (with 1 2d l= ) 

     2( ) cos( π ), 1,  3,  5,  n x n x l n
l

ψ = = …  

  (b) 1 0  and  sin( 2) 0d lω= =  

     sin( 2) 0  when  2 π 2  for even values of l l n nω= = ,  ω

   with corresponding wave functions 

     2( ) sin( π ), 2,  4,  6,  n x n x l n
l

ψ = = …  

 

 (ii) (a) 2 2( ) cos( π ) cos( π ) is an even function of   n x n x l n x l x
l l

ψ = = + −  

  (b) 2 2( ) sin( π ) sin( π ) is an odd function of   n x n x l n x l x
l l

= = − −ψ  
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 (iii) By equation (12.53), 

     2( ) sin( π ), 1,  2,  3,  n x n x l n
l

ψ = = …  

  Then  2 π π 2 π π π π( 2) sin sin cos cos sin
2 2n

n x n n x n n x nx l
l l l l l

ψ ⎛ ⎞ ⎡+ = + = +⎜ ⎟ 2
⎤

⎢ ⎥⎝ ⎠ ⎣ ⎦
 

  (a) n  odd: 2 π π 2 π( 2) sin 0 cos ( 1) ( ) cosn
n x n x n xx l

l l l l l
ψ ⎡ ⎤+ = × + × ± = ±⎢ ⎥⎣ ⎦

 

  (b) n  even: 2 π π 2 π( 2) sin ( 1) cos 0 ( ) sinn
n x n x n xx l

l l l l
ψ ⎡ ⎤+ = × ± + × = ±⎢ ⎥⎣ ⎦ l

 

 
 

26. For the particle in the box in Section 12.6, show that wave functions 2 π( ) sinn
n xx

l l
ψ =  for 

  and   are (i) normalized, (ii) orthogonal. 1n = 2n =

 

 (i) For normalization, 2 2

0 0

2 π( ) sin 1
l l

n
n xx dx dx

l l
ψ = =∫ ∫  

  We have  2 π 1 2 πsin 1 cos
2

n x n x
l l

⎡ ⎤= −⎢ ⎥⎣ ⎦
 

  Therefore  2

0 0 0

1 2 π 1 2 π 1( ) 1 cos sin ( ) (0)
2 π

1 for all values of 

ll l

n
n x l n xx dx dx x l

l l l n l l

n

ψ
⎡ ⎤⎡ ⎤

⎡ ⎤= − = − = −⎢ ⎥⎢ ⎥ ⎣ ⎦
⎣ ⎦ ⎣ ⎦

=

∫ ∫  

 

 (ii) For orthogonality, 1 2
0 0

2 π 2π( ) ( ) sin sin 0
l l x xx x dx dx

l l l
ψ ψ = =∫ ∫   

  We have  [ ]1sin sin cos( ) cos( )
2

ax bx a b x a b x= − − +  

  Therefore 1 2
0 0 0

1 π 3π 1 π 3π( ) ( ) cos cos sin sin
π 3π

0

ll l x x l x lx x dx dx
l l l l l l

ψ ψ x⎡ ⎤⎡ ⎤= − = −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

=

∫ ∫  

  because sin  for integer n. π 0n x =
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Section 12.7 
 
 
27. For the particle in a ring show that wave functions ( ) 1 2π in

n e θψ θ =  for 3n =  and  are  4n =

 (i) normalized, (ii) orthogonal. 

 

 (i) For normalization,  
2π 2π 2π

*

0 0

1 1( ) ( )
2π 2π

1 for all values of 

in in
n n d e e d

n

θ θ

0
dψ θ ψ θ θ θ θ−= × =

=

∫ ∫ ∫  

 (ii) For orthogonality , 
2π 2π 2π

3 4*
3 4

0 0

2π 2π 0

0

1 1( ) ( )
2π 2π

1 1 0 
2π 2π

i i i

i i

d e e d e

e e e
i i

θ θ θ

θ

0
dψ θ ψ θ θ θ θ−= × =

⎡ ⎤ ⎡ ⎤= = − =⎣ ⎦ ⎣ ⎦

∫ ∫  ∫

  because  for integer n. 

 
 
28. The diagrams of Figure 12.8 are maps of the signs and nodes of some real wave functions (12.71)  

 for the particle in a ring. Draw the corresponding diagrams for (i) 3n = ± , (ii)  n . 4= ±

 

 (i) n = ± : we have  (a) 3 sin 3 0  when  3 π, π 3

0, π 3, 2π 3

n nθ θ θ

θ

= = =

→ =

 

      (b) cos3 0  when  3 π 2, π 6  for  odd

π 6, π 2, 5π 6

n n nθ θ θ

θ

= = =

→ =

 

  

  
  Figure 4 
 

 

 

 (i) n = ± :     (a) 4 sin 4 0  when  4 π, π 4

0, π 4, π 2, 3π 4

n nθ θ θ

θ

= = =

→ =

 

      (b) cos 4 0  when  4 π 2, π 8  for   odd

π 8, 3π 8, 5π 8, 7π 8

n n nθ θ θ

θ

= = =

→ =

 

 

 
  Figure 5 
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29. Verify that equation (12.72) and its solutions (12.74) are transformed into (12.62) and (12.65) by 

means of the change of variable x rθ = . 

 

 Equation (12.72) is 

    
2

2
2 0d

dx
ψ ω ψ+ =  where  2 2mEω = 2      

 Putting (  constant)x r rθ= ,   

    
2 2

2 2
1 1,d d d d d d

dx d dx r d dx r d 2
ψ ψ θ ψ ψ ψ

θ θ θ
= = =   

 Therefore 
2 2

2 2
2 20 0d d r

dx d
ψ ψω ψ ω ψ

θ
+ = → + =2  

 and   
2

2 2
2 2

2 2mr E IEr ω = =  

 as required by equation (12.61). The solutions (12.74) are then 

    1 2 1 2
2π 2π 2π 2πcos sin cos sinn

nx nx nr nrd d d d
l l l l

θ θψ = + → +  

 and, because 2πr l= , 

    1 2cos sinn d n d nψ θ θ= +  

and this is converted to the exponential form (12.65) by means of Euler’s relations (8.35) and (8.36). 

 
Section 12.8 
 
 
30. Find a particular solution of the differential equation 6 2 3y y y x′′ ′− − = + . 

 

 Let     0 1y a a x= +

 Then   1, 0y a y′ ′′= =

 and   1 0 1

0 1

6 2 3 6 6 2 3

1 4, 1 2

y y y x a a a x x

a a

′′ ′− − = + → − − − = +

→ = − = −

 

 Therefore 1
4 2

xy = − −  
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Find the general solutions of the differential equations: 

 

31.  6 2 3y y y x′′ ′− − = +

 By Exercise 7, the general solution of the homogeneous differential equation is  3 2x x
hy ae be−= + , 

 and by Exercise 30, the particular integral is 

    1
4 2p

xy = − −  

 The general solution of the inhomogeneous equation is then 

    3 2 1
4 2

x x
h p

xy y y ae be−= + = + − −  

 
32. 38 16 1 4y y y′′ ′− + = − x  

 By Exercise 9, the complementary function is 4( ) x
hy a bx e= + .  For the particular integral, let 

     2 3
0 1 2 3py a a x a x a x= + + +

 Then   2
1 2 3 2 32 3 , 2 6p py a a x a x y a a′ ′′= + + = + x

 and   2 3
2 1 0 3 2 1 3 2 3

3
3 2 1 0

8 16 (2 8 16 ) (6 16 16 ) ( 24 16 ) 16

1 3 9 11 4  when  , , ,
4 8 32 32

p p py y y a a a a a a x a a x a

x a a a a

′′ ′− + = − + + − + + − + +

= − = − = − = − = −

x  

 Therefore 2 31 9 3 1
32 32 8 4py x x= − − − − x  

 and   4 21( ) ( ) (1 9 12 8 )
32

xy x a bx e x x x= + − + + + 3  

 
33. 36 2 xy y y e−′′ ′− − =  

 By Exercise 7, the complementary function is 3 2x x
hy ae be−= +  

 For the particular integral, let 3x
py ae−=  

 Then  3 , 9p p p py y y y′ ′′= − =  

 and   3 36 (9 3 6) 2  when  1x x
p p py y y ae e a− −′′ ′− − = + − = = 3  

 Therefore 3 2 1( )
3

3x x xy x ae be e− −= + +  
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34. 2 3 xy y y e−′′ ′− − =  

 The characteristic equation for the complementary function is 

    2 2 ( 2)( 1) 0  when  2  and  1λ λ λ λ λ λ− − = − + = = = −  

 and   2x x
hy ae be−= +  

By Table 12.1, case 1, the choice of particular integral should be x
py ke−= , but this is already a 

solution of the homogeneous equation. By prescription (a) therefore, we use 

   x
py kxe−=  

Then  (1 ) , ( 2 )x x
p py k x e y k x e− −′ ′′= − = − +  

and   2 ( 2p p py y y k x′′ ′− − = − + 1 x− + 2x− )

3 3  when  1

x

x x

e

ke e k

−

− −= − = = −

 

Therefore x
py xe−= −  

and   2 2( ) ( )x x x x
h py x y y ae be xe ae b x e x− − −= + = + − = + −  

 

35. 48 16 xy y y e′′ ′− + =  

By Exercise 9, the complementary function is 4( ) x
hy a bx e= + .  By Table 12.1, case 1, the choice 

of particular integral should be 4x
py ke= , but the characteristic equation for  has double  hy

root 4λ = .  

By prescription (b) therefore, we use 

    2 4x
py kx e=  

 Then  2 4 2 4(2 4 ) , (2 16 16 )x x
p py k x x e y k x x e′ ′′= + = + +  

 and   8 16 (2 16p p py y y k x′′ ′− + = + 216x+ 16x− 232x− 216x+ 4

4 4

)

2  when  1 2

x

x x

e

ke e k= = =

 

Therefore 2 41
2

x
py x e=  

 and   2 4( ) ( 2) x
h py x y y a bx x e= + = + +  

 

 

 

© E Steiner 2008   



Solutions for Chapter 12  17

36.  6 2cos3y y y x′′ ′− − =

 By Exercise 7, the complementary function is 3 2x x
hy ae be−= + . For the particular integral, let 

    cos3 sin 3py c x d= + x  

 Then  3 sin 3 3 cos3 , 9 cos3 9 sin 3p py c x d x y c x d′ ′′= − + = − − x  

 and   6 ( 15 3 )cos3 (3 15 )sin 3

3 15 0 5
2cos3  if  

15 3 2 1 39, 5 39

p p py y y c d x c d x

c d c d
x

c d d c

′′ ′− − = − − + −

− = → =⎧⎪= ⎨
− − = → = − = −⎪⎩

 

 Therefore 1 (5cos3 sin 3 )
39py x= − + x  

 and   3 2 1( ) (5cos3 sin 3 )
39

x xy x ae be x x−= + − +  

 
37.  4 3sin 2y y′′ + = x

i

 For the complementary function, 

    2 4 ( 2 )( 2 ) 0  when  2i iλ λ λ λ+ = + − = = ±  

 and   cos 2 sin 2hy a x b x= +  

By Table 12.1, case 3, the choice of particular integral should be a combination of cos 2x  and  

sin 2x , but these are already solutions of the homogeneous equation. By prescription (a) therefore,  

we use 

    cos 2 sin 2py Cx x Dx x= +  

 Then  ( 2 ) cos 2 ( 2 )sin 2 , 4( ) cos 2 4( )sin 2p py C Dx x D Cx x y D Cx x C Dx′ ′′ x= + + − = − − +  

 and   4 4 cos 2 4 sin 2

3sin 2  when  3 4  and  0

py y D x C x

x C D

′′ + = −

= = − =

 

 Therefore 3 cos 2
4py x= − x  

 and   ( ) ( 3 4)cos 2 sin 2h py x y y a x x b= + = − + x  

 
38. 36 2 3 2 2cos3xy y y x e−′′ ′− − = + + + x  

 By Exercises 31, 33, and 36 

    3 2 31 1 1 (5cos3 sin 3 )
4 2 3 39

x x xxy ae be e x x− −= + − − + − +  
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39. An RLC–circuit contains a resistor (resistance R), an inductor (inductance L), and a capacitor 

(capacitance C) connected in series with a source of e.m.f. E.  

 (i) Use Kirchhoff’s voltage law (Section 11.7) to show that the current ( )I t  in the circuit is given by 

the inhomogeneous equation 

  
2

2
d I dI I dEL R

dt C dtdt
+ + =  

 (ii) Find the solution of the homogeneous equation (for 0dE dt = ), and confirm that it decays 

exponentially as t .  →∞

 (iii) Show that the particular integral for the periodic e.m.f. 0( ) sinE t E tω=  is 

 0( ) sin( )pI t I tω δ= −  

  where 0
0 2 2

tan ,
E SI

RR S
δ= ,

+
=  and 1S L

C
ω

ω
= − . 

 

(i) By Kirchhoff’s law (Section 11.7), 

    L R C
dI QE E E E L RI
dt C

= + + = + +  

  where , dQQ I dt
dt

= = I∫  

  Then 
2

2
dE d I dI IL R
dt dt Cdt

= + +  

 
 (ii) We have a second-order inhomogeneous differential equation. For the homogeneous equation 

    
2

2 0h h hd I dI I
L R

dt Cdt
+ + =   

  let   2 2 2 22 , ( 4 ) (1 ) (1 )R L R L LC LCα β α= = − = − .  

  Then 
2

2 2
2 2 ( )h h

h
d I dI

I
dtdt

α α β+ + − 0=  

  whose characteristic roots are 2 2 21 2 4 4( )
2

α α α β α β⎡ ⎤− ± − − = − ±⎢ ⎥⎣ ⎦
 

  Therefore ( ) ( )t t
hI ae beα β α β− + − −= +  

  We consider two possible types of solution: 

  (a) β  is real, so that | |β α< . Then 0α β± >  and ( ) ( ) 0  as  t t
hI ae be tα β α β− + − −= + → →∞  

  (b) 2 , so that 0β < β  is imaginary. Then cos sin 0  as  t
hI e A t B t tα β β− ⎡ ⎤= + → →⎣ ⎦ ∞  
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 (iii) If 0( ) sinE t E tω=  then 0 cosdE E t
dt

ω ω= , and 

    
2

02 cosp p pd I dI I
L R E

dt Cdt
tω ω+ + =  

  Let  cos sinpI a t b tω ω= +  

    
2

2 2
2sin cos , cos sinp pd I d I

a t b t a t b
dt dt

tω ω ω ω ω ω ω ω= − + = − +  

  Then, if 1S L
C

ω
ω

= − , 

    
2

2 2
2

0
0

cos sin

cos sin

 and
cos  when  

0

p p pd I dI I
L R a L bR a C t b L aR b C

dt Cdt

bR aS t bS aR t

bR aS E
E t

bS aR

tω ω ω ω ω

ω ω ω ω

ω ω

⎡ ⎤ ⎡+ + = − + + + − − +⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

− =⎧
= ⎨ + =⎩

ω⎤
⎦  

  so that 0 0
2 2 2,   
SE RE

a b
R S R S

= − =
+ + 2  

 

  Let  0
02 2 2 2 2 2

sin , cos ,  and  
ES R I

R S R S R S
δ δ= = =

+ + +
 

  Then 0 0sin , cosa I b Iδ δ= − =  

  and  0 0

0

sin cos sin cos sin cos

sin( )

pI I t I t

I t

δ ω δ δ ω

ω δ

δ= − +

= −

 

   

 

 

 

 

 

 


