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Solutions for Chapter 12

Section 12.2

2x/3

1. Show that e* and e are particular solutions of the differential equation 3y"+4y'—4y=0.

Wehave y=e® o y=P_aex_ oy o yro L — 46—y
dx X
Therefore 3y"+4y'—4y:[12—8_4]y:0
Similarly  y=e>® o y =22y Ly dews 4y
3 9 9
and 3y"+4y'—4y:[§+§—4}y=o

2. Show that €** and xe** are particular solutions of the differential equation y" -6y +9y=0.

3X ' dy

2
y=e¥ o5 y="TL=3%=3y - y”:ﬂ:%3X
dx 2

Therefore  y"—6y'+9y=[9-18+9]y=0

y=xe" — y=e*+3xe™ - y’'=6e"+9xe’

Therefore  y"—6y'+9y=0=[6+9x—6-18x+9x|e™* =0

3. Show that cos2x and sin2x are particular solutions of the differential equation y"+4y=0.

y=cos2X — Yy =-2sin2x — Yy"=-4cos2Xx=-4y

y'+4y=0=[-4+4]y=0

and y=sin2X — Yy =2cos2x — y"=-4sin2x=-4y

y"+4y:0:[—4+4]y:0
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Write down the general solution of the differential equation in

4. Exercise I: y=ae > +be?/

5. Exercise2: y=ae>* +bxe’ = (a+bx)e™

6. Exercise3: y=acos2x+bsin2x

Section 12.3

Find the general solutions of the differential equations:

7. y'-y'-6y=0

The characteristic equation of the differential equation is
A2 =A-6=(A-3)(1+2)
=0 when A=3 and A =-2

Two particular solutions of the differential equation are therefore

3x -2X
yy=¢e7, Y, =¢

and, because these functions are linearly independent, the general solution is

3x 2x
Yy=CY+CY, =Ce" +CE

8. 2y"-8y'+3y=0

The characteristic equation is

+./64 —
wzzizﬁ

4

21%-81+3=0 when A=

The general solution of the differential equation is therefore

y= Cle(2+2x/§)x + Cze(2—2«/§)x _ X |:Cle2J§x i Cze,z\/gx}

9. y"-8y'+16y=0

The characteristic equation

A2—81+16=(1-4)>=0

has the double root A = 4. Two particular solutions are therefore e** and xe**, and the general

solution is

y) = (¢, + ¢y
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10. 4y"+12y+9y=0
The characteristic equation

427 +124 + 9= (21 +3)?
=0 when x=-3/2 (double root)

The general solution of the differential equation is therefore

y(x) = (¢, + c,x)e 2

11, y"+4y'+5y=0
The characteristic equation is

A2 +40+5=0

withroots A= %(—4 * \/M) =-2%i
The two particular solutions,
Y1 () =2 and y, (x) = e
are linearly independent, and the general solution is
y(x) = c,e X 4 ¢ e(2x
=e X (ce™ +ce™)
The equivalent trigonometric form is

y(x) =e>*(acos x+ bsin x)

12. y"+3y'+5y=0
The characteristic equation
A2 430+5=0

has complex roots

Then  y(x)=e ¥’ [aei‘/m/2 + be‘i‘/ﬁx/ﬂ

—g¥2 [Acos\/ﬁx/2+ Bsin\/ﬁx/ﬂ
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Section 12.4

Solve the initial value problems:

2
13, 92X o0 X0 =1, %(O):O
t

The characteristic equation is A2 +1—-2=(1—1)(A+2)=0, withroots A =1,—2.

The general solution is
x(t) = ae' + be ™
with first derivative

dx t 2t
—(t)=ae" —2be
OIt()

Then, by the initial conditions,

x(0)=1=a+b

2 1
dx - a=—, b=-
E(0):0=a—2b 3 3

The solution of the initial value problem is therefore

X(t) = %[Ze‘ + e‘ﬂ

2
14. ﬂ+6%+9X=O; x(1) =0, %(l)=1

The characteristic equation is A2 +64+9 = (4+3)> =0, with double root A =-3.

The general solution is
X(t) = (a+bt)e™

with first derivative
%(t) =(b—3a—-3bt)e™

Then, by the initial conditions,

x(1)=0=(a+b)e
- a=-¢, b=¢’
%(1) =1=(-3a-2b)e"

and x(t) =e* V(-1
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15.

16.

d2x dx
—+4+9x=0; X(a/3)=0, —(n/3)=-1
preang (n/3) dt(n )

The characteristic equation is A2 +9=0, with complex roots A =43i.
The general solution is, in trigonometric form,
X(t) = acos 3t +bsin 3t

with first derivative

%(t) =—3asin 3t +3bcos 3t

Then, by the initial conditions,
X(n/3)=0=-a

dx — a=0, bZl
E(n/3):—1:—3b 3

and the solution of the initial-value problem is

X(t) = %sin 3t

d?x _dx dx
——=2—+2x=0; x(0)=1, —(0)=0
dt? at © dt()

. S . 1 .
The characteristic equation is 4> —24+2 =0, with complex roots A = 5(2 tV4-8)=1=i.
The general solution is

x(t) = e'(acost +bsint)

with first derivative
%(t) =e'[(a+b)cost+(b—a)sint |
dt

Then, by the initial conditions,
x(0)=1=a

- a=1 b=-1
X 0y=0=a+b
dt

and the solution of the initial-value problem is

X(t) = (cost —sint)e*
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Solve the boundary value problems:

2
17. %+4%+8y:0; y(n/2) =1, yGu/4)=1

L L . 1 .
The characteristic equation is A% +42+8=0, with complex roots A = 5(—4 +416-32)=-212i.

The general solution is
y(x) = e **(acos2x +bsin 2x)
Application of the boundary conditions gives
y(n/2)=-1=¢e"x(-a) — a=¢"
yOn/4) =1=e7"2x(-h) > b=-&?
and the solution of the boundary value problem is

n-2X /2

y(X)=¢ (cos2x—e"/“sin2X)

2

18. %Jrgy:o; y=0when Xx=0, y=1whenx=m/2
X

As in Exercise 15, the general solution of the differential equation is
y(X) = acos3x+bsin3x

Then y(0)=0=a - a=0
y(r/2)=1=-b — b=-1

and the solution of the boundary value problem is

y(X) = —sin3Xx

2
19. M+8ﬂ+16y=0; y(0)=0, y(1)=1

dx>  dx
The characteristic equation is A% +81+16 =0, with double root A =—4 .
The general solution is
y(X) = (a+bx)e ™

Then y(0)=0=a - a=0
y()=1=be®* — b=¢*

Therefore  y(x) = xe*(™
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2
20. %+%—2yzo; y(0)=2, y>0asx > o

As in Exercise 13, the general solution is
y(x) = ae* +be ™
The first boundary condition gives

y(0)=2=a+b

The second condition requires that the solution go to zero as X goes to infinity. The function e>* has

this property but the function €* must be excluded. The condition therefore requires that we

set a=0.

Then b =2 and the solution of the boundary value problem is

y(x)=2e*

2
21. Solve (:jt_f +a%0=0 subject to the condition A(t+2n7) =46(t) .

The general solution of the differential equation is
ot) = Ae'™ + Be ',
Application of the cyclic boundary condition gives

O(t +2n7) = Ae'a(t+217) | ge-ia(t+2n7)

— Ae iat e i2nar —iat e—i2nar

+ Be x
= O(t) when eT12787 1

and the condition is satisfied when 2rar = 2zn for integer n. Therefore, a=n/r and

o) = Ae'T 4 BT n_0 11,42,
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Section 12.5

22. Given that the general solution of the equation of motion mX = —kx for the harmonic oscillator is
X(t) = acoswt +bsinwt , where @ =~/k/m , (i) show that the solution can be written in the form
X(t) = Acos(a)t -0 ), where A is the amplitude of the vibration and Jis the phase angle, and express A

and J'in terms of a and b; (ii) find the amplitude and phase angle for the initial conditions

X(0) =1, X(0) = .

(i) We have X(t) = Acos(wt — §)= Acos wt cos § + Asin wtsin &

a=Acoso

=acoswt +bsinwt when )
b=Asind

Therefore ~ A=+a’+b*, &=tan '(b/a)
(if) Application of the initial conditions gives

X(t) = acos wt + bsin wt —> x(0)=1=a

X(t) = —wasinwt + wbcoswt — X(0)=w=wb
Therefore a=b=1 — A:\/E, 5:tan_l(l):%

and X(t) =2 (ot -7 /4)

23. Solve the equation of motion for the harmonic oscillator with initial conditions

x(0) =0, X(0)=u,.

The general solution is

X(t) = acos wt + bsin wt

Then X(t) = —wasin wt + wb cos wt
x(0)=0=a u

Therefore —  X(t)=—"sin ot
%(0) = U, = wb ®
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Section 12.6

24. For the particle in a box, find the nodes and sketch the graph of the wave function y,, for

(i) n=4 and (i) n=5.

By equation (12.53), the normalized wave functions are

2 .
W, (X)=,|—sin — n=123,...

i n=4 wy,(x)= %sm—

=0 when m:nn — ﬁzﬂz(),l’l,g,l
| | 4 4274
The sketch of y,(X) should look like Figure 1.
() n=5 wi(x)= % sin?
=0 when 51t_x:nn lzﬂzo’l,%’iiJ
I I 5 5555
The sketch of w(X) should look like Figure 2.
V() Ps(x)
Figure 1 Figure 2
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25. (i) Solve the Schrodinger equation (12.44) for the particle in a box of length | with potential-energy

function V =0 for —1/2<x<+1/2, V =0 forx <—1/2 and x> +1/2 . (ii) Show that the solutions
v, are even functions of x when n is odd and odd functions when n is even. (iii) Show that the

solutions are the same as those given by (12.53) if X is replaced by x+1/2, except for a possible

change of sign.

(i) The general solution of the equation for the particle in a box of length | is, equation (12.48),

where o is related to the energy by o* = 2mE/ n .

The boundary conditions in the present case are

w(X) =d, cos X + d, sin @x

p(=1/2)=y(+1/2)=0

Then w(=1/2)=0=d, cos (-wl/2) + d, sin (-wl/2)

=d, cos (wl/2) —d, sin (@l/2)

w(+1/2)=0=d, cos (@l/2) + d, sin (wl/2)

These conditions are satisfied in two ways:

(a)

(b)

(i) (2)

(b)

d, =0 and cos(wl/2)=0

Then  cos(wl/2)=0 when wl/2=nn/2 for odd values of n,

with corresponding normalized wave functions (with d, = m )
wL(X) = Izcos(nnx/l), n=1,3,5, ...

d, =0 and sin(@l/2)=0
sin(@l/2) =0 when «l/2 =nn/2 for even values of n,

with corresponding wave functions

W, (X)= Igsin(nnx/l), n=2 4,6, ...

W (X)= %cos(nnx/l) = +\/Tgcos(— nrx/l) is an even function of x

W, (X) = %sin(nnx/l) = —\/Tisin(— nmx/l) is an odd function of x
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Solutions for Chapter 12
(iiif) By equation (12.53),

o (X) = Igsin(nnx/l), n=1,23, ..

2. 2] . .
Then w(x+1/2) = —sm($+n7n): I—{sm#cos%+cos$smn§}

(2) n odd: y/n(x+|/2):ﬁ{sin$x0+cos$x(il)}=(i) %om@

(b) n even: y/n(x+l/2):\/|§{sin n7tX><(i1)+cos

| nnxxo} 2 . nax

=(1) T s1nT

12

. . . . 2 . nmx
26. For the particle in the box in Section 12.6, show that wave functions y,(X) = T s1nT7t for

n=1 andn=2 are (i) normalized, (ii) orthogonal.

| |
(1) For normalization, J. 78 () dx = IEJ. sin’ # dx=1
0 0

We have sin’ # = %[1 —Cos 2n|nx}

[
[ [
Therefore IW”(X)deZ1I 1—cosM dx:l x—I—sinm :l[(l)—(O)]
0 1Jo | | 2nm | o |

=1 for all values of n
X
I

3 . 2. . 2mX
(i1) For orthogonality, J. W, (X, (X) dx :I_.[ sm—smT dx=0
0 0

We have  sinaxsinbx :%[cos(a—b)x—cos(a+b)x]

|
[ [
Therefore J. (X, (x)dx = Il... {cosn—x—cosm} dx =l{|—sinn—x—3Lsinﬂ
0 0

because sinnnx =0 for integer n.
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Section 12.7

27. For the particle in a ring show that wave functions y,(8) = 1/ 2ne" for n=3 and n=4 are

(i) normalized, (ii) orthogonal.

2n 1 2n ) 1 2n
w;(a)yxn(e)dazz—f e xedog=—| do
T

(i) For normalization, j
0 2n Jo

0

=1 for all values of n

2n 2n

(i1) For orthogonality, j

2n
y/;(a)w(e)de:zij e 7310 x 0 d&:ij e?de
0 T

0 2n Jy

:L[eie}“ :L_[ezm _eoJ _0
2mi 0 2mi

because for integer n.

28. The diagrams of Figure 12.8 are maps of the signs and nodes of some real wave functions (12.71)

for the particle in a ring. Draw the corresponding diagrams for (i) n=+3, (ii) n=+4.

(i) n=43:we have (a) sin30 =0 when 30 =nn, 0 =nn/3
— 0=0,n/3,2n/3

(b) cos30 =0 when 30 =nn/2,0=nn/6 forn odd
- 0=n/6,1/2, 5n/6

Figure 4
n==43
(i) n=x4: (a) sin40 =0 when 40 =nn, @ =nn /4
- 0=0,n/4,7/2,3n/4
(b) cos40 =0 when 40 =nn/2, @ =nx /8 for n odd
— 0=mn/8,3n/8, 5n/8,7n /8
Figure 5

n=-=+4
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29. Verify that equation (12.72) and its solutions (12.74) are transformed into (12.62) and (12.65) by

means of the change of variable 6 = X/r .

Equation (12.72) is

d’y

dx?

+ o'y =0 where o = 2mE/h2
Putting X =r6@ (r constant),

dy _dydo_1dy dy

1dy
dx d@dx rdo dx® r?de?

2 2

Therefore d—l/z/ +o'y=0 > d—f+ o’y =0
dx déo
2
and rzwzzzmr E 2IE

o
as required by equation (12.61). The solutions (12.74) are then

2nnrd . 2zmnr@

2mnx . 2mhX
v, =d, cos +d, sin +d, sin

— d, cos

and, because 2nr =1,
v, =d, cos nd + d, sinnd

and this is converted to the exponential form (12.65) by means of Euler’s relations (8.35) and (8.36).

Section 12.8

30. Find a particular solution of the differential equation y"—y'—6y =2+3X.

Let y =38, +aX
Then y'=a, y'=0
and y' =y —6y=2+3x — —a —63,—6ax=2+3X
- ay=-1/4, a, =-1/2
Therefore y= _1ox
4 2
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Find the general solutions of the differential equations:

31.

32.

33.

y'—y'—6y=2+3X

By Exercise 7, the general solution of the homogeneous differential equation is Y, = ae™ + be™?¥,

and by Exercise 30, the particular integral is

The general solution of the inhomogeneous equation is then

I X
3x —2X

=y, +y,=ae’" +he" ———=
y yh yp 4 2

y" =8y’ +16y =1-4x>
By Exercise 9, the complementary function is Y, = (a+ bx) e* . For the particular integral, let

Yp =8+ X+aX +ax’

Then Y =a +2a,x+3a;%, Yy =2a, +63;X
and yp =8y, +16y, =(2a, —8a, +163)) + (635 —16a, +16a )X + (—24a; +16a,)X" +16a;x’
=1-4x> when a, L a, -3 a I a, __L
4 8 32 32

Therefore Y, =—-—-—X-=X" ——X

and y(x)=(a+ bx)e4x—3i2(1+9x+12x2+8x3)

y”_ y1_6y _ 2e73X

By Exercise 7, the complementary function is y,, = ae®* + be
For the particular integral, let y, = ae™*

Then Yo =-3Yp, Yp =9Y,

and yh =Y, =6y, =(9+3-6)ae* =2 when a=1/3

Therefore  y(x) = ae** + be ™ +§ef3x
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34, y' -y —2y=3e"*
The characteristic equation for the complementary function is
A =A-2=(A-2)(A+1)=0 when A1 =2 and A=-1
and yh, = ae”* +be™

By Table 12.1, case 1, the choice of particular integral should be y, = ke™ , but this is already a

solution of the homogeneous equation. By prescription (a) therefore, we use

yp =kxe™
Then yp =k(1-x)e7", yp =k(=2+x)e”
and Yy =¥y =2y, =k(=2+ X -1+ X - 28)e™*

=-3ke™* =3¢ when k =-1

Therefore  y, =—xe™*

and y(X) =y, +Yy, =ae” +be ¥ —xe™* = ae™ + (b - x)e~*

35. y"—8y'+16y=e*

By Exercise 9, the complementary function is Y, = (a+ bx) e, By Table 12.1, case 1, the choice
of particular integral should be y, = ke**, but the characteristic equation for Yy, has double

root A =4.

By prescription (b) therefore, we use
yp — kx2e4X

Then yp =k@x+4x?)e?, yr =k(@2+16x+16x>)e"

and Y =8y, +16y, =k(2+ T6x + 165 - Tox — 32€ + 1657 )e**

=2ke* =e** when k =1/2

Therefore  y, = 1 x2e*

and Y(X) =Y, + Y, = (a+bx+ x2/2)e¥
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36. y'—y'—6y=2cos3X
By Exercise 7, the complementary function is Yy, = ae™ +be™>* . For the particular integral, let

Yp = Ccos3x+dsin3x

Then Yp =—3Csin3x+3d cos3X, yj =-9Ccos3x—9d sin3Xx
and Yp —Yp —6Y, =(-15¢c—3d)cos3x+(3c—15d)sin3x
3¢-15d =0 —» c=5d
=2cos3X if
~15¢-3d =2 — d =-1/39, c=—-5/39

1 .
Therefore  y, = —5(5 cos 3x +sin 3X)

—2X

and y(x) = ae** + be —%(5 083X + sin 3X)

37. y"+4y=3sin2x
For the complementary function,
A* +4=(A+2i)(A-2i)=0 when A==2i
and Y =acos2x+bsin2x

By Table 12.1, case 3, the choice of particular integral should be a combination of cos2x and

sin 2X , but these are already solutions of the homogeneous equation. By prescription (a) therefore,

we use

Yp = Cxcos2x+ Dxsin2x
Then yp =(C+2Dx)cos 2x+(D —2Cx)sin 2X, Yy, =4(D —Cx)cos2x —4(C + Dx)sin 2x
and yp +4y =4Dcos2x —4Csin 2x

=3sin2x when C =-3/4 and D=0
3
Therefore  y, = _ZXCOS 2X

and y(X) = Yy +Yp = (@—3%/4)cos 2x +bsin 2x

38. y'—y' =6y =2+3x+2e"* +2co0s3x

By Exercises 31, 33, and 36

1 1 1 .
y=ae™ +be > —— X1 1e™x _ (5cos3x +sin3X)
4 2 3 39
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39. An RLC-<circuit contains a resistor (resistance R), an inductor (inductance L), and a capacitor
(capacitance C) connected in series with a source of e.m.f. E.

(i) Use Kirchhoff’s voltage law (Section 11.7) to show that the current I(t) in the circuit is given by

the inhomogeneous equation

2
Ld_l +R d_l + L = d_E
dt>  dt C dt
(ii) Find the solution of the homogeneous equation (for dE/dt = 0), and confirm that it decays

exponentially ast — oo .

(iii) Show that the particular integral for the periodic e.m.f. E(t) = E,sinot is

I, (t) =1, sin(wt - 5)

E
where |, =—0,tan5=§, and S =wL—L.

JR? + 82 R oC

(i) By Kirchhoff’s law (Section 11.7),

E:E,_+ER+EC:Ld—I+RI+9

dt C

dQ
h =|rdt, —==1
where Q I ot

2
Then d—E:Lﬂ+Rd—I+L
dt d> dt C

(i) We have a second-order inhomogeneous differential equation. For the homogeneous equation

Ld2|h+ dh
dt? d C

let a=R/2L, g =(R>*/4%)-(1/LC)=a’ -(]/LC).

2
Then a1y + 20(%
dt? dt

whose characteristic roots are %[—20( +r/4a® —4(a® - ﬁz)} =—atpf

Therefore |, = ae (@At 4 pe=(@-ANt

+(a> =), =0

We consider two possible types of solution:

a is real, so that <a.Then ¢+ B>0 and |, =ae @ 4phe @t 50 a5t >
(@ B h

(b) B> <0,sothat B is imaginary. Then I, =e ™[ Acos Bt +Bsin St | >0 as t — oo

© E Steiner 2008




Solutions for Chapter 12

(iii) If E(t) = E;sinwt then (jj—ltz =Eywcoswt , and

di, _di, 1,
L—=+R——+—=Ejwcosat
dt? d C
Let Ip =acoswt +bsin wt
dlp . dz'p 2 2
Tz—aa}s1nwt+bwcosa)t, d—zz—aa) cos wt +bw” sin wt
t

Then, if S :a)L—L,
C

10,
di, _di, 1, , 5 .
+ R—+—=[—aa) L+bRa)+a/C}cosa)t+[—ba) L—aRa)+b/CJsma)t
dt? dt  C
:a)[bR—aSJcosa)t—a)[bS +aRJsina)t
bR—aS=E, and
= E,wcos wt when
bS +aR =0
SE RE
sothat a=- 9 b= 0
R*+5? R?+5?
E
Let sinﬁz; cosézL, and |, = d

JR? 482 R +§2 JR? 182
Then a=-lysino, b=1;coso

and I, =—l,sindcosawtsind + |, cosdsinwtcosd

p

= |, sin(wt - 9)
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