The Chemistry Maths Book

Erich Steiner

University of Exeter

Second Edition 2008

Solutions

Chapter 16 Vectors

- 16.1 Concepts
- 16.2 Vector algebra
- 16.3 Components of vectors
- 16.4 Scalar differentiation of a vector
- 16.5 The scalar (dot) product
- 16.6 The vector (cross) product
- 16.7 Scalar and vector fields
- 16.8 The gradient of a scalar field
- 16.9 Divergence and curl of a vector field
- 16.10 Vector spaces

Section 16.2

1. The position vectors of the points A, B, C and D are a, b, c, and d. Express the following quantities in terms of a, b, c, and d: (i) \overrightarrow{AB} and \overrightarrow{BA} , (ii) the position of the centroid of the points, (iii) the position of the midpoint of \overrightarrow{BC} , (iv) the position of an arbitrary point on the line \overrightarrow{BC} (the equation of the line).

(i)
$$\overrightarrow{AB} = b - a$$
, $\overrightarrow{BA} = a - b$

- (ii) the mean position of the four points is $\frac{1}{4}(a+b+c+d)$
- (iii) the mean position of **b** and **c** is $\frac{1}{2}(b+c)$
- (iv) $b + \lambda \overrightarrow{BC} = b + \lambda (c b)$, all λ

Section 16.3

2. Two sides of the triangle ABC are $\overrightarrow{AB} = (2, 1, -1)$ and $\overrightarrow{AC} = (3, 2, 0)$. Find \overrightarrow{BC}

$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} = (3, 2, 0) - (2, 1, -1) = (1, 1, 1)$$

Figure 2

Find (i) the vector $\mathbf{a} = (a_1, a_2, a_3)$ with the given initial point $P(x_1, y_1, z_1)$ and terminal point $Q(x_2, y_2, z_2)$, (ii) the length of \mathbf{a} , (iii) the unit vector parallel to \mathbf{a} .

- 3. P(1, -2, 0), Q(4, 2, 0)
 - (i) $a = \overrightarrow{PQ} = (4, 2, 0) (1, -2, 0) = (3, 4, 0)$
 - **(ii)** $|a| = \sqrt{3^2 + 4^2 + 0} = 5$
 - (iii) $\hat{a} = \frac{a}{|a|} = \frac{1}{5}(3, 4, 0) = (3/5, 4/5, 0)$
- **4.** P(-3, 2, 1), Q(-1, -3, 2)
 - (i) $a = \overrightarrow{PQ} = (-1, -3, 2) (-3, 2, 1) = (2, -5, 1)$
 - (ii) $|a| = \sqrt{4+25+1} = \sqrt{30}$
 - (iii) $\hat{a} = \frac{a}{|a|} = \frac{1}{\sqrt{30}} (2, -5, 1) = (2/\sqrt{30}, -5/\sqrt{30}, 1/\sqrt{30})$

5. P(0, 0, 0), Q(2, 3, 1)

(i)
$$a = \overrightarrow{PQ} = (2, 3, 1)$$

(ii)
$$|a| = \sqrt{4+9+1} = \sqrt{14}$$

(iii)
$$\hat{a} = \frac{a}{|a|} = \frac{1}{\sqrt{14}} (2, 3, 1) = (2/\sqrt{14}, 3/\sqrt{14}, 1/\sqrt{14})$$

For
$$\mathbf{a} = (1, 2, 3)$$
, $\mathbf{b} = (-2, 3, -4)$, $\mathbf{c} = (0, 4, -1)$, find

6.
$$a+b, b+a$$

$$a + b = (1, 2, 3) + (-2, 3, -4) = (-1, 5, -1) = b + a$$

7. 3a, -a, a/3

$$3a = 3(1, 2, 3) = (3, 6, 9), -a = -(1, 2, 3) = (-1, -2, -3), a/3 = (1/3, 2/3, 1)$$

8. 3a + 2b - 3c

$$3a + 2b - 3c = (3, 6, 9) + (-4, 6, -8) - (0, 12, -3) = (-1, 0, 4)$$

9. 3a-3c, 3(a-c)

$$3(a-c) = 3a-3c = (3, 6, 9) - (0, 12, -3) = (3, -6, 12)$$

10. |a+b|, |a|+|b|

By Exercise 6,
$$a+b=(-1,5,-1) \rightarrow |a+b| = \sqrt{1+25+1} = \sqrt{27}$$

and
$$|\mathbf{a}| = \sqrt{1+4+9} = \sqrt{14}, \quad |\mathbf{b}| = \sqrt{4+9+16} = \sqrt{29}$$

 $\rightarrow |\mathbf{a}| + |\mathbf{b}| = \sqrt{14} + \sqrt{29}$

- 11. Three masses, $m_1 = 2$, $m_2 = 3$, $m_3 = 1$, have position vectors $\mathbf{r}_1 = (3, -2, 1)$, $\mathbf{r}_2 = (2, -1, 0)$, $\mathbf{r}_3 = (0, 1, -2)$, respectively. Find (i) the position vector of the centre of mass, (ii) the position vectors of the masses with respect to the centre of mass.
 - (i) By equation (16.12), the centre of mass is

$$\mathbf{R} = \frac{1}{(2+3+1)} \left[2(3,-2,1) + 3(2,-1,0) + (0,1,-2) \right] = \frac{1}{6} (12,-6,0) = (2,-1,0)$$

(ii)
$$r_1 - R = (3, -2, 1) - (2, -1, 0) = (1, -1, 1)$$

 $r_2 - R = (2, -1, 0) - (2, -1, 0) = (0, 0, 0)$
 $r_3 - R = (0, 1, -2) - (2, -1, 0) = (-2, 2, -2)$

- **12.** Three charges, $q_1 = 3$, $q_2 = -2$, $q_3 = 1$, have position vectors $\mathbf{r}_1 = (2, 2, 1)$, $\mathbf{r}_2 = (2, -2, 3)$, $\mathbf{r}_3 = (0, -4, -3)$, respectively. Find (i) the dipole moment of the system of charges with respect to the origin, (ii) the position of the point with respect to which the dipole moment is zero.
 - (i) $\mu(\mathbf{0}) = 3r_1 2r_2 + r_3 = 3(2, 2, 1) 2(2, -2, 3) + (0, -4, -3) = (2, 6, -6)$
 - (ii) By equation (16.16), the dipole moment with respect to \mathbf{R} is

$$\mu(R) = \mu(0) - QR$$
 where $Q = 3 - 2 + 1 = 2$ is the total charge. Then

$$\mu(R) = 0$$
 when $\mu(0) = QR$

$$\rightarrow$$
 $\mathbf{R} = \frac{1}{2}(2,6,-6) = (1,3,-3)$

13. Forces are said to be in equilibrium if the total force is zero. Find f such that f, $f_1 = 2i - 3j + k$ and $f_2 = 2j - k$ are in equilibrium.

$$f + f_1 + f_2 = 0$$
 when $f = -(f_1 + f_2) = -[(2i - 3j + k) + (2j - k)]$
= $-2i + j$

- **14.** For the vectors $\mathbf{a} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 2\mathbf{j} 2\mathbf{k}$, $\mathbf{c} = -\mathbf{k}$, find (i) $\mathbf{x} = 2\mathbf{a} + \mathbf{b} + 4\mathbf{c}$, (ii) a vector perpendicular to \mathbf{c} and \mathbf{x} , (iii) a vector perpendicular to \mathbf{b} and \mathbf{c} .
 - (i) $x = 2a + b + 4c = 2(2i i + 3k) + (2i 2k) + 4(-k) \rightarrow x = 4i$
 - (ii) Vector c lies along z-direction, vector x along the x-direction. Therefore any vector along the y-direction is perpendicular c and x: $\rightarrow \lambda j$, where λ is arbitrary.
 - (iii) Vector b lies in the yz-plane, vector c along the z-direction. Therefore a vector along the x-direction is perpendicular to b and c: $\rightarrow \lambda i$.

Section 16.4

Differentiate with respect to t.

15. $2ti + 3t^2j$

$$\frac{\partial}{\partial t}(2t\mathbf{i} + 3t^2\mathbf{j}) = \left(\frac{\partial}{\partial t}2t\right)\mathbf{i} + \left(\frac{\partial}{\partial t}3t^2\right)\mathbf{j} = 2\mathbf{i} + 6t\mathbf{j}$$

16. $(\cos 2t, 3\sin t, 2t)$

$$\frac{\partial}{\partial t}(\cos 2t, 3\sin t, 2t) = \left(\frac{\partial}{\partial t}(\cos 2t), \frac{\partial}{\partial t}(3\sin t), \frac{\partial}{\partial t}(2t)\right) = (-2\sin 2t, 3\cos t, 2)$$

17. A body of mass m moves along the curve r(t) = x(t)i + y(t)j, where x = at and $y = (at - \frac{1}{2}gt^2)$ at time t. (i) Find the velocity and acceleration at time t. (ii) Find the force acting on the body. Describe the motion of the body (iii) in the x-direction, (iv) in the y-direction, (v) overall.

We have
$$r(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$$

= $at\mathbf{i} + (at - \frac{1}{2}gt^2)\mathbf{j}$

Then

(i)
$$v = \frac{\partial \mathbf{r}}{\partial t} = a\mathbf{i} + (a - gt)\mathbf{j}, \quad \mathbf{a} = \frac{\partial \mathbf{v}}{\partial t} = -g\mathbf{j}$$

- (ii) F = -mg j
- (iii) Motion along the x-direction is at constant speed $v_x=a$, to the right (x increasing) if a>0, to the left if a<0.
- (iv) Vertical motion (along the y-direction) is under the influence of gravity (F = -mgj). The initial speed is $v_y(0) = a$ when y(0) = 0. The maximum height, when the vertical velocity is zero, is given by

$$\frac{dy}{dt} = a - gt = 0$$
 when $t = a/g \rightarrow y(\text{max}) = a^2/2g$

(v) As illustrated in Figure 3 the motion of the body is parabolic with initial velocity $\mathbf{v}(0) = a\mathbf{i} + a\mathbf{j}$. This would be the motion of a projectile fired at angle of 45° to the horizontal if there were no air resistance or of other forces acting on the body.

Figure 3

18. A body of mass m moves along the curve $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, where $x = 2\cos 3t$, $y = 2\sin 3t$ and z = 3t at time t. Find (i) the velocity and acceleration at time t, (ii) the force acting on the body. Describe the motion of the body (iii) in the x- and y- directions, (iv) in the x-plane, (v) in the z-direction, (vi) overall.

We have
$$r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

= $2\cos 3t \mathbf{i} + 2\sin 3t \mathbf{j} + 3t\mathbf{k}$

Then

(i)
$$v = \frac{\partial \mathbf{r}}{\partial t} = -6\sin 3t \, \mathbf{i} + 6\cos 3t \, \mathbf{j} + 3\mathbf{k}$$
$$\mathbf{a} = \frac{\partial \mathbf{v}}{\partial t} = -18\cos 3t \, \mathbf{i} - 18\sin 3t \, \mathbf{j} = -9(x\mathbf{i} + y\mathbf{j})$$

(ii)
$$F = m\mathbf{a} = -9m(x\mathbf{i} + y\mathbf{j})$$

(iii) The component of the force acting in the x-direction is $F_x = -9mx$ and this is the equation of motion of the harmonic oscillator, equation (12.29), with force constant k = 9m:

$$m\frac{d^2x}{dt^2} = -kx$$

The body therefore undergoes simple harmonic motion along the x-direction with frequency

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{3}{2\pi}$$

The body undergoes the same motion along the y-direction

(iv) The x- and y- coordinates of the body,

$$x = 2\cos 3t , \qquad y = 2\sin 3t$$

are parametric equation of the circle with radius 2 and centre at (x, y) = (0, 0), on the z-axis (see Example 9.13). The motion in the xy-plane is therefore circular around the z-axis. The body perform a complete revolution in time $t = 2\pi/3$. The frequency of circulation is therefore $v = 3/2\pi$ (as in (iii) for each direction)

- (v) The body moves in the positive z-direction with constant speed $v_z = 3$
- (vi) The motion is circular in a plane, parallel to the xy-plane, that moves at constant speed in the z-direction. The resulting motion is around a right-handed helix as described in Example 10.13

Section 16.5

For $\mathbf{a} = (1, 3, -2)$, $\mathbf{b} = (0, 3, 1)$, $\mathbf{c} = (1, -1, -3)$, find:

19. $a \cdot b$, $b \cdot a$

$$\mathbf{a} \cdot \mathbf{b} = (1, 3, -2) \cdot (0, 3, 1) = (1 \times 0) + (3 \times 3) + (-2 \times 1)$$

= $7 = \mathbf{b} \cdot \mathbf{a}$

20. $(a-b)\cdot c$, $a\cdot c-b\cdot c$

$$(a - b) \cdot c = [(1, 3, -2) - (0, 3, 1)] \cdot (1, -1, -3) = (1, 0, -3) \cdot (1, -1, -3) = 1 + 0 + 9 = 10$$

 $a \cdot c - b \cdot c = (1, 3, -2) \cdot (1, -1, -3) - (0, 3, 1) \cdot (1, -1, -3) = (1 - 3 + 6) - (0 - 3 - 3) = 10$

21. $(a \cdot c)b$

$$(\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b} = [(1,3,-2) \cdot (1,-1,-3)] \times (0,3,1) = 4 \times (0,3,1) = (0,12,4)$$

22. Show that a = (1, 2, 3), b = (0, -3, 2) and c = (-13, 2, 3) are orthogonal vectors.

$$\mathbf{a} \cdot \mathbf{b} = (1, 2, 3) \cdot (0, -3, 2) = 0 - 6 + 6 = 0$$

 $\mathbf{b} \cdot \mathbf{c} = (0, -3, 2) \cdot (-13, 2, 3) = 0 - 6 + 6 = 0$
 $\mathbf{c} \cdot \mathbf{a} = (-13, 2, 3) \cdot (1, 2, 3) = -13 + 4 + 9 = 0$

23. Find the value of λ for which $\boldsymbol{a} = (\lambda, 3, 1)$ and $\boldsymbol{b} = (2, 1, -1)$ are orthogonal.

$$\mathbf{a} \cdot \mathbf{b} = (\lambda, 3, 1) \cdot (2, 1, -1) = 2\lambda + 3 - 1$$

= 0 when $\lambda = -1$

For a = i, b = j, c = 2i - 3j + k, find

24.
$$a \cdot b = i \cdot j = 0$$

25.
$$b \cdot c = j \cdot (2i - 3j + k) = 0 - 3 + 0 = -3$$

26.
$$a \cdot c = i \cdot (2i - 3j + k) = 2 + 0 + 0 = 2$$

27. Find the angles between the direction of $a = i - j + \sqrt{2}k$ and the x-, y-, and z- directions.

Let the angles be α , β and γ , respectively. We need $|a| = \sqrt{1+1+2} = 2$.

Then
$$\mathbf{a} \cdot \mathbf{i} = |\mathbf{a}| \cos \alpha \rightarrow 1 = 2\cos \alpha \rightarrow \cos \alpha = \frac{1}{2} \rightarrow \alpha = \frac{\pi}{3}$$

 $\mathbf{a} \cdot \mathbf{j} = |\mathbf{a}| \cos \beta \rightarrow -1 = 2\cos \beta \rightarrow \cos \beta = -\frac{1}{2} \rightarrow \beta = \frac{2\pi}{3}$
 $\mathbf{a} \cdot \mathbf{k} = |\mathbf{a}| \cos \gamma \rightarrow \sqrt{2} = 2\cos \gamma \rightarrow \cos \gamma = \frac{1}{\sqrt{2}} \rightarrow \gamma = \frac{\pi}{4}$

- **28.** A body undergoes the displacement d under the influence of a force f = 3i + 2j. Calculate the work done (i) by the force on the body when d = 2i j, (ii) by the body against the force when d = i 3k, (iii) by the body against the force when d = 2k.
 - (i) $W = f \cdot d = (3i + 2j) \cdot (2i j) = 6 2 = 4$
 - (ii) $W = -f \cdot d = -(3i + 2j) \cdot (i 3k) = -3$
 - (iii) $W = -f \cdot d = -(3i + 2j) \cdot (2k) = 0$
- **29.** A body undergoes a displacement from $\mathbf{r}_1 = (0, 0, 0)$ to $\mathbf{r}_2 = (2, 3, 1)$ under the influence of the conservative force $\mathbf{F} = x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k}$. (i) Calculate the work $W(\mathbf{r}_1 \to \mathbf{r}_2)$ done on the body. (ii) Find the potential-energy function $V(\mathbf{r})$ of which the components of the force are (-) the partial derivatives. (iii) Confirm that $W(\mathbf{r}_1 \to \mathbf{r}_2) = V(\mathbf{r}_1) V(\mathbf{r}_2)$.
 - (i) The work done by a conservative force is independent of the path. The contribution of the three components of force are then additive:

$$W(\mathbf{r}_{1} \to \mathbf{r}_{2}) = \int_{C} \left[F_{x} dx + F_{y} dy + F_{z} dz \right]$$

$$= \int_{x_{1}}^{x_{2}} F_{x} dx + \int_{y_{1}}^{y_{2}} F_{y} dy + \int_{z_{1}}^{z_{2}} F_{z} dz$$
fore
$$W(\mathbf{r}_{1} \to \mathbf{r}_{2}) = \int_{0}^{2} x dx + 2 \int_{o}^{3} y dy + 3 \int_{0}^{1} z dz = 2 + 9 + \frac{3}{2} = \frac{25}{2}$$

(ii)
$$F_x = x = -\frac{\partial V}{\partial x}, \quad F_y = 2y = -\frac{\partial V}{\partial y}, \quad F_z = 3z = -\frac{\partial V}{\partial z}$$

$$\to V = -\frac{1}{2}x^2 - y^2 - \frac{3}{2}z^2 + C$$

(iii)
$$V(\mathbf{r}_1) - V(\mathbf{r}_2) = \left[C\right] - \left[-2 - 9 - \frac{3}{2} + C\right] = \frac{25}{2}$$

30. Calculate the energy of interaction between the system of charges $q_1 = 2$, $q_2 = -3$ and $q_3 = 1$ at positions $\mathbf{r}_1 = (3, -2, 1)$, $\mathbf{r}_2 = (0, 1, 2)$ and $\mathbf{r}_3 = (0, 2, 1)$, respectively, and the applied electric field $\mathbf{E} = -2\mathbf{k}$.

The energy of interaction is

$$V = -\boldsymbol{\mu} \cdot \boldsymbol{E} = 2\mu_{\tau}$$

where

$$\mu_z = q_1 z_1 + q_2 z_2 + q_3 z_3 = 2 - 6 + 1 = -3$$

Then V = -6, independent of choice of origin for the neutral system.

Section 16.6

For
$$\mathbf{a} = (1, 3, -2)$$
, $\mathbf{b} = (0, 3, 1)$, $\mathbf{c} = (0, -1, 2)$, find:

31. $a \times b$, $b \times a$

$$\mathbf{a} \times \mathbf{b} = (1, 3, -2) \times (0, 3, 1)$$

$$= \mathbf{i} \left[3 \times 1 - (-2) \times 3 \right] + \mathbf{j} \left[(-2) \times 0 - 1 \times 1 \right] + \mathbf{k} \left[1 \times 3 - 0 \times 3 \right]$$

$$= 9\mathbf{i} - \mathbf{j} + 3\mathbf{k}$$

$$\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b} = -9\mathbf{i} + \mathbf{j} - 3\mathbf{k}$$

32. $b \times c$, $|b \times c|$

$$b \times c = (0, 3, 1) \times (0, -1, 2)$$

$$= i \left[3 \times 2 - 1 \times (-1) \right] + j \left[1 \times 0 - 2 \times 0 \right] + k \left[0 \times (-1) - 0 \times 3 \right]$$

$$= 7i$$

$$|b \times c| = 7$$

33. $(a+b)\times c$, $a\times c+b\times c$

$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = (1, 6, -1) \times (0, -1, 2)$$

$$= \mathbf{i} \left[6 \times 2 - (-1) \times (-1) \right] + \mathbf{j} \left[(-1) \times 0 - 1 \times 2 \right] + \mathbf{k} \left[1 \times (-1) - 6 \times 0 \right]$$

$$= 11\mathbf{i} - 2\mathbf{j} - \mathbf{k}$$

We have
$$\mathbf{a} \times \mathbf{c} = (1, 3, -2) \times (0, -1, 2)$$

= $\mathbf{i} [3 \times 2 - (-2) \times (-1)] + \mathbf{j} [(-2) \times 0 - 1 \times 2] + \mathbf{k} [1 \times (-1) - 3 \times 0]$
= $4\mathbf{i} - 2\mathbf{j} - \mathbf{k}$

and, from Exercise 32

$$b \times c = 7i$$

Therefore $\mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c} = 11\mathbf{i} - 2\mathbf{j} - \mathbf{k}$

34. $a \times c + c \times a$

$$c \times a = -a \times c \rightarrow a \times c + c \times a = 0$$

35. $(a \times c) \cdot b$

From Exercise 33, $\mathbf{a} \times \mathbf{c} = 4\mathbf{i} - 2\mathbf{j} - \mathbf{k}$

Therefore $(a \times c) \cdot b = (4i - 2j - k) \cdot (3j + k) = 0 - 6 - 1 = -7$

36. $a \times (b \times c)$, $(a \times b) \times c$

From Exercise 32, $b \times c = 7i$

Therefore $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) \times (7\mathbf{i}) = -14\mathbf{j} - 21\mathbf{k}$

From Exercise 31, $\mathbf{a} \times \mathbf{b} = 9\mathbf{i} - \mathbf{j} + 3\mathbf{k}$

Therefore $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (9\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \times (-\mathbf{j} + 2\mathbf{k}) = \mathbf{i} - 18\mathbf{j} - 9\mathbf{k}$

37. Show that $a \times b$ is orthogonal to a and b.

By Equation (16.52)

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y) \mathbf{i} + (a_z b_x - a_x b_z) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}$$

Therefore $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (a_y b_z - a_z b_y) a_x + (a_z b_x - a_x b_z) a_y + (a_x b_y - a_y b_x) a_z$ $= a_y b_z a_x - a_z b_y a_x + a_z b_x a_y - a_x b_z a_y + a_z b_y a_z - a_y b_x a_z = 0$

and similarly for $(a \times b) \cdot b$

38. The quantity $a \cdot (b \times c)$ is called a **triple scalar product**. Show that

(i)
$$a \cdot (b \times c) = c \cdot (a \times b) = b \cdot (c \times a)$$
 (ii) $a \cdot (b \times c) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$ (determinant)

We have $\boldsymbol{b} \times \boldsymbol{c} = (b_y c_z - b_z c_y) \boldsymbol{i} + (b_z c_x - b_x c_z) \boldsymbol{j} + (b_x c_y - b_y c_x) \boldsymbol{k}$

(i) Therefore
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = a_x (b_y c_z - b_z c_y) + a_y (b_z c_x - b_x c_z) + a_z (b_x c_y - b_y c_x)$$

$$= \begin{bmatrix} a_x b_y c_z + c_x a_y b_z + b_x c_y a_z \end{bmatrix} - \begin{bmatrix} a_x c_y b_z + b_x a_y c_z + c_x b_y a_z \end{bmatrix}$$

The triple scalar product is invariant under a cyclic permutation of the symbols a, b, c. Thus, if $(a,b,c) \rightarrow (c,a,b)$ then

$$c \cdot (\mathbf{a} \times \mathbf{b}) = (a_y b_z - a_z b_y) c_x + (a_z b_x - a_x b_z) c_y + (a_x b_y - a_y b_x) c_z$$
$$= \begin{bmatrix} a_x b_y c_z + c_x a_y b_z + b_x c_y a_z \end{bmatrix} - \begin{bmatrix} a_x c_y b_z + b_x a_y c_z + c_x b_y a_z \end{bmatrix}$$

and similarly for $b \cdot (c \times a)$

(ii) By equations (16.52) and (16.53), and the discussion of determinants in Chapter 7, the vector product $b \times c$ can be written in the form of a determinant,

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \mathbf{i}(b_y c_z - b_z c_y) + \mathbf{j}(b_z c_x - b_x c_z) + \mathbf{k}(b_x c_y - b_y c_x)$$

The triple scalar product $a \cdot (b \times c)$ is obtained by replacing the vectors i, j, k by the corresponding components a_x , a_y , a_z :

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = a_x (b_y c_z - b_z c_y) + a_y (b_z c_x - b_x c_z) + a_z (b_x c_y - b_y c_x)$$

- **39.** The quantity $a \times (b \times c)$ is called a **triple vector product**.
 - (i) By expanding in terms of components, show that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
 - (ii) Confirm this formula for the vectors a = (1, 3, -2), b = (0, 3, 1), c = (0, -1, 2).

(i) Let
$$\mathbf{b} \times \mathbf{c} = \mathbf{i}(b_y c_z - b_z c_y) + \mathbf{j}(b_z c_x - b_x c_z) + \mathbf{k}(b_x c_y - b_y c_x)$$

= $\mathbf{d} = \mathbf{i}d_x + \mathbf{j}d_y + \mathbf{k}d_z$

Then

$$a \times (b \times c) = i(a_{y}d_{z} - a_{z}d_{y}) + j(a_{z}d_{x} - a_{x}d_{z}) + k(a_{x}d_{y} - a_{y}d_{x})$$

$$= i\left[a_{y}(b_{x}c_{y} - b_{y}c_{x}) - a_{z}(b_{z}c_{x} - b_{x}c_{z})\right]$$

$$+ j\left[a_{z}(b_{y}c_{z} - b_{z}c_{y}) - a_{x}(b_{x}c_{y} - b_{y}c_{x})\right]$$

$$+ k\left[a_{x}(b_{z}c_{x} - b_{x}c_{z}) - a_{y}(b_{y}c_{z} - b_{z}c_{y})\right]$$

$$= i(a_{x}c_{x} + a_{y}c_{y} + a_{z}c_{z})b_{x} - i(a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z})c_{x}$$

$$+ j(a_{x}c_{x} + a_{y}c_{y} + a_{z}c_{z})b_{y} - j(a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z})c_{y}$$

$$+ k(a_{x}c_{x} + a_{y}c_{y} + a_{z}c_{z})b_{z} - k(a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z})c_{z}$$

$$= (a_{x}c_{x} + a_{y}c_{y} + a_{z}c_{z})(ib_{x} + jb_{y} + kb_{z})$$

$$-(a_{x}b_{x} + a_{y}b_{y} + a_{z}b_{z})(ic_{x} + jc_{y} + kc_{z})$$

$$= (a \cdot c)b - (a \cdot b)c$$

(ii) From Exercise 36, $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = -14\mathbf{j} - 21\mathbf{k}$

Also
$$\mathbf{a} \cdot \mathbf{c} = -7$$
, $\mathbf{a} \cdot \mathbf{b} = 7 \rightarrow (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c} = -7(\mathbf{b} + \mathbf{c})$
$$= -14\mathbf{j} + 21\mathbf{k}$$

Therefore

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

40. Find the area of the parallelogram whose vertices (in the xy-plane) have coordinates (1, 2), (4, 3), (8,6), (5,5).

If A, B, C, and D are the points (1, 2), (4, 3), (5, 5), and (8, 6), respectively, in the xy-plane, then, as in Figure 4,

$$\overrightarrow{AB} = (3,1) = a$$
, $\overrightarrow{AC} = (4,3) = b$, $\overrightarrow{BD} = (4,3) = b$, and $\overrightarrow{CD} = (3,1) = a$

 $\mathbf{a} \times \mathbf{b} = (3\mathbf{i} + \mathbf{j}) \times (4\mathbf{i} + 3\mathbf{j}) = 5\mathbf{k}$ Then

and the area of the parallelogram ABCD is

 $|\mathbf{a} \times \mathbf{b}| = 5$

- 41. The force F acts on a line through the point A. Find the moment of the force about the point O for

 - (i) F = (1, -3, 0), A(2, 1, 0), O(0, 0, 0) (ii) F = (0, 1, -1), A(1, 1, 0), O(1, 0, 2)
 - (iii) F = (1, 0, -2), A(0, 0, 0), O(1, 0, 3)

In each case, let $r = \overrightarrow{OA}$

- Figure 5
- (i) r = (2,1,0) and F = (1,-3,0) both lie in the xy-plane, and the torque

$$r \times F = \begin{bmatrix} 2 \times (-3) - 1 \times 1 \end{bmatrix} k = -7k$$

lies along the z-direction.

(ii) r = (1,1,0) - (1,0,2) = (0,1,-2) and F = (0,1,-1) lie in the yz-plane, and

$$r \times F = \lceil 1 \times (-1) - (-2) \times 1 \rceil i = i$$

lies along the x-direction

(ii) r = (0,0,0) - (1,0,3) = (-1,0,-3) and F = (1,0,-2) lie in the xz-plane, and

$$\mathbf{r} \times \mathbf{F} = [(-3) \times 1) - (-1) \times (-2)]\mathbf{j} = -5\mathbf{j}$$

lies along the y-direction

42. Calculate the torque experienced by the system of charges $q_1 = 2$, $q_2 = -3$ and $q_3 = 1$ at positions $\mathbf{r}_1 = (3, -2, 1)$, $\mathbf{r}_2 = (0, 1, 2)$ and $\mathbf{r}_3 = (0, 2, 1)$, respectively, in the electric field $\mathbf{E} = -\mathbf{k}$.

The dipole moment of the neutral system is

$$\mu = \sum_{i} q_{i} \mathbf{r}_{i} = 2(3, -2, 1) - 3(0, 1, 2) + (0, 2, 1)$$
$$= 6\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$$

and the torque acting on the system in the presence of electric field E = -k is

$$T = \mu \times E = -(6i - 5j - 3k) \times k = 5i + 6j$$

43. A charge q moving with velocity v in the presence of an electric field E and a magnetic field E experiences a total force $F = q(E + v \times B)$ called the **Lorentz force**. Calculate the force acting on the charge q = 3 moving with velocity v = (2, 3, 1) in the presence of the electric field E = 2i and magnetic field E = 3j.

$$F = q(E + v \times B) = 3[(2i) + (2i + 3j + k) \times (3j)]$$
$$= -3i + 18k$$

44. Use the property of the triple vector product (Exercise 39) to derive equation (16.60) from equations (16.58) and (16.59).

Equation (16.59) for angular momentum is

$$l = r \times p = mr \times v$$

and equation (16.58) for velocity is

$$v = \omega \times r$$

Therefore $l = r \times p = mr \times (\omega \times r)$.

This is triple vector product and, by Exercise 39, $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$. Therefore

$$l = m \mathbf{r} \times (\boldsymbol{\omega} \times \mathbf{r}) = m(\mathbf{r} \cdot \mathbf{r})\boldsymbol{\omega} - m(\mathbf{r} \cdot \boldsymbol{\omega})\mathbf{r}$$
$$= mr^2 \boldsymbol{\omega} - m(\mathbf{r} \cdot \boldsymbol{\omega})\mathbf{r}$$

and this is equation (16.60)

- **45.** The position of a particle of mass m moving in a circle of radius R about the z-axis with angular speed ω is given by the vector function $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z\mathbf{k}$ where $x(t) = R\cos\omega t$, $y(t) = R\sin\omega t$, z = constant. (i) What is the angular velocity $\boldsymbol{\omega}$ about the z-axis? (ii) Find the velocity \boldsymbol{v} of the particle in terms of ω , x, y, and z. (iii) Find the angular momentum of the particle in terms of ω , x, y, and z. (iv) Confirm equation (16.60) in this case
 - (i) $\omega = \omega k$

(ii)
$$v = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} = -\omega R \sin \omega t \mathbf{i} + \omega R \cos \omega t \mathbf{j}$$
$$= -\omega y \mathbf{i} + \omega x \mathbf{j}$$

(iii)
$$l = r \times p = m(x i + y j + z k) \times (-\omega y i + \omega x j)$$
$$= m\omega \left[(x^2 + y^2) k - xz i - yz j \right]$$

(iv) We have, from (iii),

$$I = m\omega \left[(x^2 + y^2 + z^2) \mathbf{k} - xz \mathbf{i} - yz \mathbf{j} - z^2 \mathbf{k} \right]$$

$$= m\omega \left[r^2 \mathbf{k} - z(x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) \right] = mr^2 \omega - m(z\omega) \mathbf{r}$$

$$= mr^2 \omega - m(\mathbf{r} \cdot \omega) \mathbf{r}$$

which is equation (16.60).

46. For the system in Exercise 45, show that $l = I\omega$ when z = 0, where I is the moment of inertia about the axis of rotation.

From (iii) in Exercise 45,

$$\mathbf{l} = m\omega \left[(x^2 + y^2)\mathbf{k} - xz\mathbf{i} - yz\mathbf{j} \right]$$
$$= m(x^2 + y^2)\omega\mathbf{k} \text{ when } z = 0$$

But $I = m(x^2 + y^2)$ is the moment of inertia with respect to the axis of rotation.

Therefore $l = I\omega$.

47. The total angular momentum of a system of particles is the sum of the angular momenta of the individual particles. If the system in Exercise 45 is replaced by a system of two particles of mass m with positions $\mathbf{r}_1 = x(t)\mathbf{i} + y(t)\mathbf{j} + z\mathbf{k}$ and $\mathbf{r}_2 = -x(t)\mathbf{i} - y(t)\mathbf{j} + z\mathbf{k}$, find the total angular momentum $\mathbf{l} = \mathbf{l}_1 + \mathbf{l}_2$, and show that $\mathbf{l} = \mathbf{l}\boldsymbol{\omega}$ where \mathbf{l} is the total moment of inertia about the axis of rotation. This example demonstrates that $\mathbf{l} = \mathbf{l}\boldsymbol{\omega}$ when the axis of rotation is an axis of symmetry of the system.

From (iii) in Exercise 45,

$$\begin{aligned}
& \mathbf{l}_1 = m\boldsymbol{\omega} \left[(x^2 + y^2) \mathbf{k} - xz \mathbf{i} - yz \mathbf{j} \right] \\
& \mathbf{l}_2 = m\boldsymbol{\omega} \left[(x^2 + y^2) \mathbf{k} + xz \mathbf{i} + yz \mathbf{j} \right]
\end{aligned}$$

$$\mathbf{l} = \mathbf{l}_1 + \mathbf{l}_2 = 2m(x^2 + y^2) \boldsymbol{\omega} \mathbf{k} = I \boldsymbol{\omega}$$

where $I = 2m(x^2 + y^2)$ is the moment of inertia of the system of two particles.

Section 16.8

Find the gradient ∇f for

48.
$$f = 2x^2 + 3y^2 - z^2$$

$$\nabla f = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right)(2x^2 + 3y^2 - z^2) = 4x\mathbf{i} + 6y\mathbf{j} - 2z\mathbf{k}$$

49.
$$f = xy + zx + yz$$

$$\nabla(xy + zx + yz) = (y+z)\mathbf{i} + (x+z)\mathbf{j} + (x+y)\mathbf{k}$$

50.
$$f = (x^2 + y^2 + z^2)^{-1/2}$$

We have
$$\frac{\partial f}{\partial x} = -x(x^2 + y^2 + z^2)^{-3/2}$$

and similarly for the other partial derivatives. Then

$$\nabla(x^2 + y^2 + z^2)^{-1/2} = -(x^2 + y^2 + z^2)^{-3/2}(x\mathbf{i} + y\mathbf{i} + z\mathbf{k})$$

Section 16.9

Find div v and curl v for

We have $\operatorname{div} \boldsymbol{v} = \nabla \cdot \boldsymbol{v}$

$$= \left(\frac{\partial}{\partial x}\boldsymbol{i} + \frac{\partial}{\partial y}\boldsymbol{j} + \frac{\partial}{\partial z}k\right) \cdot (v_x\boldsymbol{i} + v_y\boldsymbol{j} + v_z\boldsymbol{k}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

 $\operatorname{curl} \boldsymbol{v} = \nabla \times \boldsymbol{v}$

$$= \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \boldsymbol{i} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \boldsymbol{j} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \boldsymbol{k}$$

 $51. \quad v = xi + yj + zk$

$$\operatorname{div} \boldsymbol{v} = \left(\frac{\partial}{\partial x}\boldsymbol{i} + \frac{\partial}{\partial y}\boldsymbol{j} + \frac{\partial}{\partial z}k\right) \cdot (x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k})$$
$$= \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}\right) = 1 + 1 + 1 = 3$$

$$\operatorname{curl}\left(x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k}\right) = \left(\frac{\partial z}{\partial y} - \frac{\partial y}{\partial z}\right)\boldsymbol{i} + \left(\frac{\partial x}{\partial z} - \frac{\partial z}{\partial x}\right)\boldsymbol{j} + \left(\frac{\partial y}{\partial x} - \frac{\partial x}{\partial y}\right)\boldsymbol{k} = \boldsymbol{0}$$

 $52. \quad v = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}$

$$\operatorname{div}(z\mathbf{i} + x\mathbf{j} + y\mathbf{k}) = \left(\frac{\partial z}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial y}{\partial z}\right) = 0$$

$$\operatorname{curl}(z\mathbf{i} + x\mathbf{j} + y\mathbf{k}) = \left(\frac{\partial y}{\partial y} - \frac{\partial x}{\partial z}\right)\mathbf{i} + \left(\frac{\partial z}{\partial z} - \frac{\partial y}{\partial x}\right)\mathbf{j} + \left(\frac{\partial x}{\partial x} - \frac{\partial z}{\partial y}\right)\mathbf{k}$$

$$= \mathbf{i} + \mathbf{j} + \mathbf{k}$$

 $53. \quad v = yz\mathbf{i} + zx\mathbf{j} + xy\mathbf{k}$

$$\operatorname{div}\left(yz\boldsymbol{i} + zx\boldsymbol{j} + xy\boldsymbol{k}\right) = \frac{\partial yz}{\partial x} + \frac{\partial zx}{\partial y} + \frac{\partial xy}{\partial z} = 0$$

$$\operatorname{curl}(yz\boldsymbol{i} + zx\boldsymbol{j} + xy\boldsymbol{k}) = \left(\frac{\partial xy}{\partial y} - \frac{\partial zx}{\partial z}\right)\boldsymbol{i} + \left(\frac{\partial yz}{\partial z} - \frac{\partial xy}{\partial x}\right)\boldsymbol{j} + \left(\frac{\partial zx}{\partial x} - \frac{\partial yz}{\partial y}\right)\boldsymbol{k}$$
$$= (x - x)\boldsymbol{i} + (y - y)\boldsymbol{j} + (z - z)\boldsymbol{k} = \boldsymbol{0}$$

54. Show that curl v = 0 if $v = \operatorname{grad} f$.

We have
$$\mathbf{v} = \operatorname{grad} f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$$

Therefore $\operatorname{curl} \mathbf{v} = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}\right) \mathbf{i} + \left(\frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}\right) \mathbf{j} + \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}\right) \mathbf{k}$

$$= \left(f_{yz} - f_{zy}\right) \mathbf{i} + \left(f_{zx} - f_{xz}\right) \mathbf{j} + \left(f_{xy} - f_{yx}\right) \mathbf{k} = \mathbf{0}$$

55. Show that div v = 0 if v = curl w.

We have
$$\operatorname{curl} \boldsymbol{w} = \left(\frac{\partial w_z}{\partial y} - \frac{\partial w_y}{\partial z}\right) \boldsymbol{i} + \left(\frac{\partial w_x}{\partial z} - \frac{\partial w_z}{\partial x}\right) \boldsymbol{j} + \left(\frac{\partial w_y}{\partial x} - \frac{\partial w_x}{\partial y}\right) \boldsymbol{k}$$
Therefore
$$\operatorname{div} \boldsymbol{v} = \left(\frac{\partial^2 \psi_z}{\partial x \partial y} - \frac{\partial^2 w_y}{\partial x \partial z}\right) + \left(\frac{\partial^2 \psi_x}{\partial y \partial x} - \frac{\partial^2 \psi_z}{\partial y \partial x}\right) + \left(\frac{\partial^2 w_y}{\partial z \partial x} - \frac{\partial^2 w_x}{\partial z \partial y}\right) = 0$$

because all the third derivatives are equal.